Firm ESG Performance and Supply-Chain Total-Factor Productivity
Abstract
:1. Introduction
2. Mechanisms and Hypotheses
2.1. ESG Performance and Supply-Chain TFP
2.2. ESG Performance and Financing Constraints in the Supply Chain
2.3. Moderating Effect of Monopoly Power on the Relationship between ESG Performance and Firm TFP
3. Methodology and Data
3.1. Empirical Model and Variables
3.2. Descriptive Statistics
3.2.1. Dependent Variable
3.2.2. Core Explanatory Variable
3.2.3. Mechanism Variable
3.2.4. Moderator Variable
3.2.5. Control Variables
4. Empirical Results
4.1. Baseline Results
4.2. Mechanism Analysis
4.2.1. Mediation Effect Test
4.2.2. Moderating Effect Testing
4.3. Endogenous Tests
4.3.1. Instrumental Variable Two-Stage Least Square (IV-2SLS)
4.3.2. Additional Control Variables and Control City-Fixed Effects
4.4. Robustness Stability Test
5. Discussion
5.1. Research Contribution
5.2. Comparison with Existing Literature
5.3. Future Research
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruan, L.; Liu, H. Environmental, Social, Governance Activities and Firm Performance: Evidence from China. Sustainability 2021, 13, 767. [Google Scholar] [CrossRef]
- Chen, Z.F.; Xie, G.X. ESG disclosure and financial performance: Moderating role of ESG investors. Int. Rev. Financ. Anal. 2022, 83, 102291. [Google Scholar] [CrossRef]
- Ma, J.M.; Gao, D.; Sun, J. Does ESG performance promote total factor productivity? Evidence from China. Front. Ecol. Evol. 2022, 10, 1063736. [Google Scholar] [CrossRef]
- Aevoae, G.M.; Andries, A.M.; Ongena, S.; Sprincean, N. ESG and systemic risk. Appl. Econ. 2023, 55, 3085–3109. [Google Scholar] [CrossRef]
- Kim, S.; Li, Z.C. Understanding the Impact of ESG Practices in Corporate Finance. Sustainability 2021, 13, 3746. [Google Scholar] [CrossRef]
- Yu, E.P.Y.; Guo, C.Q.; Luu, B.V. Environmental, social and governance transparency and firm value. Bus. Strategy Environ. 2018, 27, 987–1004. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Liu, L.; Luo, S.M. Sustainable development, ESG performance and company market value: Mediating effect of financial performance. Bus. Strategy Environ. 2022, 31, 3371–3387. [Google Scholar] [CrossRef]
- Gao, S.; Meng, F.C.; Wang, W.S.; Chen, W.X. Does ESG always improve corporate performance? Evidence from firm life cycle perspective. Front. Environ. Sci. 2023, 11, 1105077. [Google Scholar] [CrossRef]
- Cornell, B.; Damodaran, A. Valuing ESG: Doing Good or Sounding Good? J. Impact ESG Investig. 2020, 1, 76–93. [Google Scholar] [CrossRef]
- Mendiratta, A.; Singh, S.; Yadav, S.S.; Mahajan, A. ESG Controversies and Firm Performance in India: The Moderating Impact of Government Effectiveness. Glob. Bus. Rev. 2023, 09721509231151490. [Google Scholar] [CrossRef]
- Baldi, F.; Pandimiglio, A. The role of ESG scoring and greenwashing risk in explaining the yields of green bonds: A conceptual framework and an econometric analysis. Glob. Financ. J. 2022, 52, 100711. [Google Scholar] [CrossRef]
- Massimo, D.G.; Adriana, D.L.; Carmelo, P. Measuring Productivity. J. Econ. Surv. 2011, 25, 952–1008. [Google Scholar]
- Miller, T.; Cao, S.F.; Foth, M.; Boyen, X.; Powell, W. An asset-backed decentralised finance instrument for food supply chains—A case study from the livestock export industry. Comput. Ind. 2023, 147, 103863. [Google Scholar] [CrossRef]
- Xu, B.; Sendra-García, J.; Gao, Y.X.; Chen, X.H. Driving total factor productivity: Capital and labor with tax allocation. Technol. Forecast. Soc. Change 2020, 150, 119782. [Google Scholar] [CrossRef]
- Ai, H.S.; Hu, S.L.; Li, K.; Shao, S. Environmental regulation, total factor productivity, and enterprise duration: Evidence from China. Bus. Strategy Environ. 2020, 29, 2284–2296. [Google Scholar] [CrossRef]
- Wang, S.F. The Tax Planning of firms Will Improve Their Total Factor Productivity. Front. Humanit. Soc. Sci. 2022, 2, 77–87. [Google Scholar]
- Pandit, S.; Wasley, C.E.; Zach, T. Information externalities along the supply chain: The economic determinants of suppliers’ stock price reaction to their customers’ earnings announcements. Contemp. Account. Res. 2011, 28, 1304–1343. [Google Scholar] [CrossRef]
- Choi, E.W.; Özer, Ö.; Zheng, Y. Network trust and trust behaviors among executives in supply chain interactions. Manag. Sci. 2020, 66, 5823–5849. [Google Scholar] [CrossRef]
- Yang, J.; Peng, Q.; Ge, Z. Spillover Effect of Digital Transformation along the Supply Chain—The Perspective of Supplier Innovation. China Ind. Econ. 2022, 8, 156–174. (In Chinese) [Google Scholar]
- Katz, M.L. Vertical Contractual Relations. In Handbook of Industrial Organization; Elsevier: Amsterdam, The Netherlands, 1989; Volume 1, pp. 655–721. [Google Scholar]
- Friedman, M. A Friedman doctrine: The social responsibility of business is to increase its profits. The New York Times Magazine, 13 September 1970; Volume 13, pp. 32–33. [Google Scholar]
- Chen, S.; Song, Y.; Gao, P. Environmental, social, and governance (ESG) performance and financial outcomes: Analyzing the impact of ESG on financial performance. J. Environ. Manag. 2023, 345, 118829. [Google Scholar] [CrossRef]
- Martiny, A.; Taglialatela, J.; Testa, F.; Iraldo, F. Determinants of environmental social and governance (ESG) performance: A systematic literature review. J. Clean. Prod. 2024, 456, 142213. [Google Scholar] [CrossRef]
- Dash, A.; Mohanty, S.K. The mediating effect of a firm’s corporate reputation and sustainability practices in translating CSR into competitive performance in Indian ESG companies. Soc. Bus. Rev. 2023, 18, 691–709. [Google Scholar] [CrossRef]
- Sharpe, S. Asymmetric Information, Bank Lending and Implicit Contracts: A Stylized Model of Customer Relationships. J. Finance 1990, 45, 1069–1087. [Google Scholar]
- Ying, F. “Gūanxi”, government and corporate reputation in China. Mark. Intell. Plan. 2007, 25, 499–510. [Google Scholar]
- Demski, J.S. Corporate Conflicts of Interest. J. Econ. Perspect. 2003, 17, 51–72. [Google Scholar] [CrossRef]
- Serpa, J.C.; Krishnan, H. The impact of supply chains on firm-level productivity. Manag. Sci. 2018, 64, 511–532. [Google Scholar] [CrossRef]
- Markusen, J.R. Trade versus Investment Liberalization; National Bureau of Economic Research: Cambridge, MA, USA, 1997. [Google Scholar]
- Chen, J. Corporate ESG and total factor productivity: Will the fulfillment of social responsibility sacrifice productivity? PLoS ONE 2024, 19, e0301701. [Google Scholar] [CrossRef]
- Whitelock, V.G. Relationship between Environmental Social Governance (ESG) Management and Performance—The Role of Collaboration in the Supply Chain. Ph.D. Thesis, University of Toledo, Toledo, OH, USA, 2015. [Google Scholar]
- Chu, Y.; Tian, X.; Wang, W. Corporate innovation along the supply chain. Manag. Sci. 2019, 65, 2445–2466. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Wang, B.S.; Sun, X.Y.; Li, X.L. ESG performance and corporate value: Analysis from the stakeholders’ perspective. Front. Environ. Sci. 2022, 10, 1084632. [Google Scholar] [CrossRef]
- Zhao, C.H.; Guo, Y.; Yuan, J.H.; Wu, M.Y.; Li, D.Y.; Zhou, Y.; Kang, J.G. ESG and Corporate Financial Performance: Empirical Evidence from China’s Listed Power Generation Companies. Sustainability 2018, 10, 2607. [Google Scholar] [CrossRef]
- Katsamakas, E.; Sanchez-Cartas, J.M. A computational model of the competitive effects of ESG. PLoS ONE 2023, 18, e0284237. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, W.G. Tobin’s q and the Structure-performance Relationship: Comment. Am. Econ. Rev. 1986, 76, 1205–1210. [Google Scholar]
- Hicks, J.R. Annual survey of economic theory: The theory of monopoly. Econom. J. Econom. Soc. 1935, 3, 1–20. [Google Scholar] [CrossRef]
- Smirlock, M. Evidence on the (non) relationship between concentration and profitability in banking. J. Money Credit Bank. 1985, 17, 69–83. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhao, X.D.; Huo, B.F. Supply chain coordination and innovativeness: A social contagion and learning perspective. Int. J. Prod. Econ. 2018, 205, 47–61. [Google Scholar] [CrossRef]
- Hofmann, E.; Kotzab, H. A Supply Chain-Oriented Approach of Working Capital Management. J. Bus. Logist. 2010, 31, 305–330. [Google Scholar] [CrossRef]
- Shepherd, W. Control over technology by deregulated monopolies. Rev. D’économie Ind. 1997, 80, 25–45. [Google Scholar] [CrossRef]
- Flynn, J.J. Antitrust Policy, Innovation Efficiencies, and the Suppression of Technology. Antitrust LJ 1997, 66, 487. [Google Scholar]
- Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Levinsohn, J.; Petrin, A. Estimating production functions using inputs to control for unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Lin, Y.J.; Fu, X.Q.; Fu, X.L. Varieties in state capitalism and corporate innovation: Evidence from an emerging economy. J. Corp. Financ. 2021, 67, 101919. [Google Scholar] [CrossRef]
- Fee, C.E.; Hadlock, C.J.; Pierce, J.R. Investment, Financing Constraints, and Internal Capital Markets: Evidence from the Advertising Expenditures of Multinational Firms. Rev. Financ. Stud. 2009, 22, 2361–2392. [Google Scholar] [CrossRef]
- Hadlock, C.J.; Pierce, J.R. New Evidence on Measuring Financial Constraints: Moving Beyond the KZ Index. Rev. Financ. Stud. 2010, 23, 1909–1940. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef]
- Fisman, R.; Wang, Y.X. Trading Favors within Chinese Business Groups. Am. Econ. Rev. 2010, 100, 429–433. [Google Scholar] [CrossRef]
- Pittman, J.A.; Fortin, S. Auditor choice and the cost of debt capital for newly public firms. J. Account. Econ. 2004, 37, 113–136. [Google Scholar] [CrossRef]
- Benton, W.C.; Maloni, M. The influence of power driven buyer/seller relationships on supply chain satisfaction. J. Oper. Manag. 2005, 23, 1–22. [Google Scholar] [CrossRef]
- Yang, F.; Chen, T.W.; Zhang, Z.B. Can environmental, social, and governance performance drive two-way foreign direct investment behavior? Evidence from Chinese listed companies. J. Clean. Prod. 2023, 430, 139761. [Google Scholar] [CrossRef]
- Rahman, H.U.; Zahid, M.; Al-Faryan, M.A.S. ESG and firm performance: The rarely explored moderation of sustainability strategy and top management commitment. J. Clean. Prod. 2023, 404, 136859. [Google Scholar] [CrossRef]
- Green, K.W.; Zelbst, P.J.; Meacham, J.; Bhadauria, V.S. Green supply chain management practices: Impact on performance. Supply Chain Manag.-Int. J. 2012, 17, 290–305. [Google Scholar] [CrossRef]
- Caniato, F.; Henke, M.; Zsidisin, G.A. Supply chain finance: Historical foundations, current research, future developments. J. Purch. Supply Manag. 2019, 25, 99–104. [Google Scholar] [CrossRef]
- Marchi, B.; Zanoni, S. Supply Chain Management for Improved Energy Efficiency: Review and Opportunities. Energies 2017, 10, 1618. [Google Scholar] [CrossRef]
- Li, J.; Yan, D. Exploration on the Mechanism of the Impact of Green Supply Chain Management on Enterprise Sustainable Development Performance. Sustainability 2021, 13, 9906. [Google Scholar] [CrossRef]
- Wangsa, I.D.; Vanany, I.; Siswanto, N. A sustainable supply chain coordination model with an investment in green technology and electric equipment. Int. J. Syst. Sci.-Oper. Logist. 2023, 10, 2221078. [Google Scholar] [CrossRef]
- Kim, Y.H. The Effects of Major Customer Networks on Supplier Profitability. J. Supply Chain Manag. 2017, 53, 26–40. [Google Scholar] [CrossRef]
- Duan, Y.Q.; Yang, F.; Xiong, L. Environmental, Social, and Governance (ESG) Performance and Firm Value: Evidence from Chinese Manufacturing Firms. Sustainability 2023, 15, 12858. [Google Scholar] [CrossRef]
Methodology | Variable Name | Principle |
---|---|---|
Least squares method (OLS) | TFP-OLS | Estimating the residuals of the C-D production function using least squares estimation |
Fixed-effects method (FE) | TFP-FE | Estimating the residuals of the C-D production function using individual fixed-effects regression |
Olley–Pakes method (OP) | TFP-OP | Based on the consistent semiparametric estimator approach, the logarithmic value of the residuals is obtained by calculating the capital stock coefficients using a nonlinear least squares method, and finally fitting the C-D production function |
Levinsohn–Petrin method (LP) | TFP-LP | On the basis of the OP method, the proxy variable for investment is replaced with an indicator of intermediate goods inputs from the amount of investment, and finally, the C-D production function is fitted to obtain the logarithmic value of the residuals |
Variables | Types of Variables | Measurements | Literature Supporting |
---|---|---|---|
TFP-LP | explanatory variable | Levinsohn–Petrin Method | Levinsohn and Petrin [44] |
ESG | core explanatory variable | Huazheng ESG rate | Lin, Fu and Fu [46] |
grow | control variables | the growth rate of main business income | Fisman and Wang [50] and Pittman and Fortin [51] |
tobinq | Tobin’s Q value | ||
cflow | the ratio of net cash flow from operating activities to total assets | ||
roa | the return on total assets | ||
lev | the ratio of liabilities to total assets | ||
soe | nature of ownership | ||
sepe | the separation of two rights of suppliers and customers | ||
FC | mechanism variable | FC | Fee, Hadlock and Pierce [47,48] |
HHI | moderator variable | HHI | Ellison and Glaeser [49] |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables-Supplier | N | Mean | SD | Min | Max |
TFP-OP | 93 | 7.860 | 0.737 | 6.138 | 9.260 |
ESG | 93 | 3.917 | 0.956 | 2.500 | 6 |
size_1 | 93 | 0.157 | 0.321 | −0.443 | 1.691 |
grow_1 | 93 | 1.487 | 0.585 | 0.938 | 4.633 |
tobinq_1 | 93 | 0.0559 | 0.0703 | −0.0996 | 0.201 |
cflow_1 | 93 | 0.0350 | 0.0531 | −0.104 | 0.156 |
roa_1 | 93 | 0.543 | 0.160 | 0.0959 | 0.785 |
lev_1 | 93 | 0.538 | 0.501 | 0 | 1 |
soe_1 | 93 | 7.860 | 0.737 | 6.138 | 9.260 |
sepe_1 | 93 | 3.917 | 0.956 | 2.500 | 6 |
Variables-Customer | N | Mean | SD | Min | Max |
TFP-OP | 93 | 7.476 | 0.843 | 5.080 | 8.803 |
ESG | 93 | 4 | 0.749 | 2 | 6 |
size_1 | 93 | 0.149 | 0.452 | −0.309 | 4.078 |
grow_1 | 93 | 1.513 | 0.800 | 0.699 | 5.717 |
tobinq_1 | 93 | 0.0601 | 0.0634 | −0.0477 | 0.371 |
cflow_1 | 93 | 0.0425 | 0.0601 | −0.0601 | 0.305 |
roa_1 | 93 | 0.492 | 0.142 | 0.145 | 0.750 |
lev_1 | 93 | 0.344 | 0.478 | 0 | 1 |
soe_1 | 93 | 7.476 | 0.843 | 5.080 | 8.803 |
sepe_1 | 93 | 4 | 0.749 | 2 | 6 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Supplier TFP-OP | Customer TFP-OP | Supplier TFP-OP | Customer TFP-OP | |
ESG | −0.0018 | 0.4491 ** | 0.0179 | 0.2361 * |
(0.0341) | (0.2003) | (0.0324) | (0.1308) | |
grow_1 | −0.0389 | −0.2591 * | ||
(0.1891) | (0.1534) | |||
tobinq_1 | −0.2236 * | −0.2690 ** | ||
(0.1260) | (0.1026) | |||
cflow_1 | 1.2527 | 2.0559 | ||
(0.8340) | (1.3436) | |||
roa_1 | 4.0549 ** | 5.9543 ** | ||
(1.8011) | (2.3738) | |||
lev_1 | 2.9088 *** | 4.9567 *** | ||
(1.0865) | (1.3364) | |||
soe_1 | 0.0053 | 0.3137 | ||
(0.1198) | (0.3795) | |||
sepe_1 | −0.0000 | 0.0264 | ||
(0.0145) | (0.0202) | |||
Constant | 9.9438 *** | 7.5966 *** | 6.3308 *** | 3.9631 *** |
(0.1399) | (0.7994) | (0.5912) | (0.7332) | |
Observations | 93 | 93 | 93 | 93 |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Supplier FC | Customer FC | Supplier TFP-OP | Customer TFP-OP | |
ESG | 0.0114 | −0.1004 * | 0.2044 | 3.3267 ** |
(0.0083) | (0.0504) | (0.2460) | (1.5255) | |
HHI_C | 0.0000 | 48.2821 * | ||
(0.0000) | (24.8568) | |||
c.esg#c.HHI_C | −0.6664 | −10.7514 * | ||
(0.8799) | (5.9233) | |||
grow_1 | 0.0267 * | 0.0156 | 0.0286 | 0.0030 |
(0.0153) | (0.0202) | (0.0192) | (0.0079) | |
tobinq_1 | 0.0146 | −0.0227 *** | −0.2141 *** | 0.0755 *** |
(0.0091) | (0.0070) | (0.0411) | (0.0225) | |
cflow_1 | −0.3377 *** | −0.0780 | 1.6743 *** | −0.5007 |
(0.0856) | (0.1274) | (0.4076) | (0.3726) | |
roa_1 | −0.1549 | −0.3032 | 1.9872 *** | 3.8596 *** |
(0.1097) | (0.2131) | (0.6689) | (0.6338) | |
lev_1 | −0.9216 *** | −0.8476 *** | 2.4074 *** | 1.9294 *** |
(0.0408) | (0.0683) | (0.1989) | (0.2618) | |
soe_1 | −0.0011 | −0.0805 *** | 0.0187 | 0.4438 *** |
(0.0110) | (0.0222) | (0.0584) | (0.0906) | |
sepe_1 | −0.0005 | −0.0021 ** | −0.0025 | −0.0001 |
(0.0006) | (0.0009) | (0.0030) | (0.0043) | |
Constant | 0.7015 *** | 0.6062 *** | 6.2119 *** | −4.8226 |
(0.1310) | (0.2179) | (0.6327) | (6.3430) | |
Observations | 93 | 93 | 93 | 93 |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Variables | (1) | (2) |
---|---|---|
ESG | Customer TFP-OP | |
esgiv | −0.475 *** | |
(−3.99) | ||
ESG | 0.447 * | |
(1.75) | ||
grow_1 | 0.037 | −0.311 *** |
(0.79) | (−3.88) | |
tobinq_1 | −0.892 ** | 4.069 *** |
(−2.07) | (3.06) | |
cflow_1 | 0.287 | 1.733 |
(1.12) | (1.05) | |
roa_1 | −0.060 | 3.206 *** |
(−0.33) | (5.90) | |
lev_1 | 0.113 * | 0.021 |
(1.89) | (0.14) | |
soe_1 | 0.026 | 0.447 * |
(0.25) | (1.75) | |
sepe_1 | −0.014 | −0.080 |
(−0.79) | (−0.57) | |
Observations | 93 | 93 |
Province FE | Yes | Yes |
Year FE | Yes | Yes |
Variables | (1) | (2) |
---|---|---|
Customer TFP-OP | Customer TFP-OP | |
ESG | 0.3738 * | 0.2512 * |
(0.1954) | (0.1366) | |
grow_1 | −0.2663 | −0.0670 |
(0.1882) | (0.4529) | |
tobinq_1 | −0.3456 *** | −0.2706 * |
(0.0960) | (0.1398) | |
cflow_1 | 2.3173 | 2.3830 * |
(1.5753) | (1.4148) | |
roa_1 | 5.3732 ** | 6.0107 ** |
(2.6397) | (2.5440) | |
lev_1 | 4.7067 *** | 4.9038 *** |
(1.2091) | (1.5292) | |
soe_1 | −0.1002 | 0.3431 |
(0.3847) | (0.4221) | |
sepe_1 | 0.0226 | 0.0010 |
(0.0271) | (0.0447) | |
grow_2 | −0.1995 | |
(0.3439) | ||
tobinq_2 | −2.3522 ** | |
(0.9681) | ||
cflow_2 | 1.7093 * | |
(0.9903) | ||
roa_2 | 0.7412 | |
(0.6124) | ||
lev_2 | −0.0385 | |
(0.2389) | ||
soe_2 | −0.0311 * | |
(0.0164) | ||
sepe_2 | 0.3738 * | |
(0.1954) | ||
Constant | 3.7512 ** | 3.9470 *** |
(1.5561) | (0.9781) | |
Observations | 93 | 93 |
Province FE | Yes | Yes |
Year FE | Yes | Yes |
Variables | (1) | (2) | (3) |
---|---|---|---|
Customer TFP-LP | Customer TFP-OLS | Customer TFP-OP | |
ESG | 0.3786 ** | 0.5057 ** | 0.2361 |
(0.1696) | (0.2119) | (0.1644) | |
grow_1 | −0.3811 ** | −0.4082 ** | −0.2591 * |
(0.1683) | (0.1997) | (0.1320) | |
tobinq_1 | −0.3354 *** | −0.4042 *** | −0.2690 ** |
(0.1152) | (0.1339) | (0.1064) | |
cflow_1 | 3.0146 * | 4.1042 ** | 2.0559 |
(1.5447) | (1.8572) | (1.2374) | |
roa_1 | 6.7045 *** | 7.4689 *** | 5.9543 ** |
(2.4122) | (2.6817) | (2.2987) | |
lev_1 | 5.6299 *** | 6.7625 *** | 4.9567 ** |
(1.4036) | (1.5996) | (1.7411) | |
soe_1 | 0.2095 | 0.3250 | 0.3137 |
(0.4034) | (0.4655) | (0.3921) | |
sepe_1 | 0.0089 | 0.0222 | 0.0264 |
(0.0233) | (0.0281) | (0.0289) | |
Constant | 0.3786 ** | 0.5057 ** | 0.2361 |
(0.1696) | (0.2119) | (0.1644) | |
Observations | 93 | 93 | 93 |
Province FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Chen, T.; Zhang, Z.; Yao, K. Firm ESG Performance and Supply-Chain Total-Factor Productivity. Sustainability 2024, 16, 9016. https://doi.org/10.3390/su16209016
Yang F, Chen T, Zhang Z, Yao K. Firm ESG Performance and Supply-Chain Total-Factor Productivity. Sustainability. 2024; 16(20):9016. https://doi.org/10.3390/su16209016
Chicago/Turabian StyleYang, Feng, Tingwei Chen, Zongbin Zhang, and Kan Yao. 2024. "Firm ESG Performance and Supply-Chain Total-Factor Productivity" Sustainability 16, no. 20: 9016. https://doi.org/10.3390/su16209016
APA StyleYang, F., Chen, T., Zhang, Z., & Yao, K. (2024). Firm ESG Performance and Supply-Chain Total-Factor Productivity. Sustainability, 16(20), 9016. https://doi.org/10.3390/su16209016