Research on the Impact of Heterogeneous Environmental Regulation on the Coordinated Development of China’s Water–Energy–Food System from a Spatial Perspective
Abstract
:1. Introduction
2. Theoretical Background
3. Methods, Models and Variables
3.1. Methods
3.1.1. Comprehensive Evaluation Index
- (1)
- Dimensionless processing. Due to the different dimensions of each index, in order to be able to compare, it is necessary to eliminate the dimension of the original data. First, the indicators are standardized:
- (2)
- Calculate the proportion of the index j of the evaluation object i to the index Pij:
- (3)
- Calculation of information entropy sj:
- (4)
- Calculate the difference coefficient dj:
- (5)
- Calculate the weight index:
- (6)
- The comprehensive evaluation index is used to measure the development level of three subsystems in 30 regions of China. The calculation formula is as follows:
3.1.2. Coupling Coordination Degree
3.2. Variables Selection
3.3. Model Construction
3.3.1. Construction of Spatial Durbin Model
3.3.2. Construction of Influence Mechanism Model
3.4. Data Source
4. Results
4.1. Analysis of Spatiotemporal Evolution of WEF System Coupling and Coordination Development in China
4.2. The Impact of Heterogeneous Environmental Regulations on the Spatial Metric Estimation Results of WEF System
4.3. Analysis of "Neighborhood" Effect of Heterogeneous Environmental Regulation
4.4. The Results of the Mechanism Analysis
5. Discussion
6. Conclusions and Policy Recommendations
6.1. Conclusions
- (1)
- Overall, the coupling coordination index of the provincial-level WEF system in China showed a stable upward trend except for a slight decline in 2010–2011 and 2013–2014. During the research period, the regional coupling coordination level showed significant improvement. In 2003, most of the regions in the country were in a state of severe imbalance in the WEF system coupling coordination index. After decades of development, in 2020, the coupling coordination index of the WEF system in most regions of the country is in a state of high-quality coordination. The level of coupling coordination of the WEF system in various regions varies greatly, showing a distribution pattern of south > north and east > west overall.
- (2)
- Formal environmental regulations and informal environmental regulations both have significant positive effects on the coupling coordination development of the WEF system and also have significant positive spatial spillover effects. Heterogeneous environmental regulations can not only promote the coupling coordination development of the local WEF system but also promote the coupling coordination development of the neighboring WEF system. Compared with informal environmental regulations, formal environmental regulations have a stronger impact.
- (3)
- Foreign direct investment and industrial structure upgrading are important paths for environmental regulation to promote the coupling coordination development of the WEF system. Both formal and informal environmental regulations can promote the coupling coordination development of the WEF system by promoting foreign direct investment and industrial structure upgrading. Among them, formal environmental regulation has a greater impact than informal environmental regulation.
6.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, A.; Waseem, M.; Ullah, W.; Zhao, C.; Zhu, J. Spatiotemporal analysis of meteorological and hydrological droughts and their propagations. Water 2021, 13, 2237. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Rocholl, M.; Giljum, S.; Behrens, A.; Schlegelmilch, K. Factor X and the EU: How to Make Europe the Most Resource and Energy Efficient Economy in the World; Aachen Foundation Kathy Beys: Aachen, Germany, 2006. [Google Scholar]
- Yan, X.; Fang, L.; Mu, L. How does the water-energy-food nexus work in developing countries? An empirical study of China. Sci. Total Environ. 2020, 716, 134791. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; He, G.; Li, R.; Wang, X. Evaluating sustainability of water-energy-food (WEF) nexus using an improved matter-element extension model: A case study of China. J. Clean. Prod. 2018, 202, 1097–1106. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Hu, W.; Zhang, C.; Lin, Y. How urban sprawl influences eco-environmental quality: Empirical research in China by using the Spatial Durbin model. Ecol. Indic. 2021, 131, 108113. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Li, K.; Xiao, H.; Cai, Y. The spatial effects of city-level water-energy nexus: A case study of Hebei Province, China. J. Clean. Prod. 2021, 310, 127497. [Google Scholar] [CrossRef]
- Xu, S.; He, W.; Shen, J.; Degefu, D.M.; Yuan, L.; Kong, Y. Coupling and coordination degrees of the core water–energy–food nexus in China. Int. J. Environ. Res. Public Health 2019, 16, 1648. [Google Scholar] [CrossRef]
- Sun, C.; Hao, S. Research on the competitive and synergistic evolution of the water-energy-food system in China. J. Clean. Prod. 2022, 365, 132743. [Google Scholar] [CrossRef]
- Deng, H.M.; Wang, C.; Cai, W.J.; Liu, Y.; Zhang, L.X. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis. Sci. Total Environ. 2020, 720, 137635. [Google Scholar] [CrossRef]
- Sukhwani, V.; Shaw, R.; Mitra, B.K.; Yan, W. Optimizing Food-Energy-Water (FEW) nexus to foster collective resilience in urban-rural systems. Prog. Disaster Sci. 2019, 1, 100005. [Google Scholar] [CrossRef]
- Srigiri, S.R.; Dombrowsky, I. Governance of the Water-Energy-Food Nexus for an Integrated Implementation of the 2030 Agenda: Conceptual and Methodological Framework for Analysis; Discussion Papers; Deutsches Institut für Entwicklungspolitik (DIE): Bonn, Germany, 2021. [Google Scholar] [CrossRef]
- Franz, M.; Schlitz, N.; Schumacher, K.P. Globalization and the water-energy-food nexus–Using the global production networks approach to analyze society-environment relations. Environ. Sci. Policy 2018, 90, 201–212. [Google Scholar] [CrossRef]
- Sušnik, J. Data-driven quantification of the global water-energy-food system. Resour. Conserv. Recycl. 2018, 133, 179–190. [Google Scholar] [CrossRef]
- Hailemariam, W.G.; Silalertruksa, T.; Gheewala, S.H.; Jakrawatana, N. Water–energy–food nexus of sugarcane production in Ethiopia. Environ. Eng. Sci. 2019, 36, 798–807. [Google Scholar] [CrossRef]
- Shao, S.; Hu, Z.; Cao, J.; Yang, L.; Guan, D. Environmental regulation and enterprise innovation: A review. Bus. Strategy Environ. 2020, 29, 1465–1478. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Peng, H.; Skitmore, M.; Bai, X.; Zheng, Z. The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China. Renew. Sustain. Energy Rev. 2021, 135, 110417. [Google Scholar] [CrossRef]
- Motte, H.; Vanneste, S.; Beeckman, T. Molecular and environmental regulation of root development. Annu. Rev. Plant Biol. 2019, 70, 465–488. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—Based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Aragòn-Correa, J.A.; Marcus, A.A.; Vogel, D. The effects of mandatory and voluntary regulatory pressures on firms’ environmental strategies: A review and recommendations for future research. Acad. Manag. Ann. 2020, 14, 339–365. [Google Scholar] [CrossRef]
- Du, L.; Tian, M.; Cheng, J.; Chen, W.; Zhao, Z. Environmental regulation and green energy efficiency: An analysis of spatial Durbin model from 30 provinces in China. Environ. Sci. Pollut. Res. 2022, 29, 67046–67062. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D.; Baloch, M.A.; Li, N. Mitigation pathways toward sustainable development: Is there any trade-off between environmental regulation and carbon emissions reduction? Sustain. Dev. 2020, 28, 813–822. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Shang, Y. The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resour. Conserv. Recycl. 2020, 157, 104777. [Google Scholar] [CrossRef]
- Schmidt, J.J.; Matthews, N. From state to system: Financialization and the water-energy-food-climate nexus. Geoforum 2018, 91, 151–159. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2019, 92, 356–367. [Google Scholar] [CrossRef]
- D’Amore, G.; Di Vaio, A.; Balsalobre-Lorente, D.; Boccia, F. Artificial intelligence in the water–energy–food model: A holistic approach towards sustainable development goals. Sustainability 2022, 14, 867. [Google Scholar] [CrossRef]
- Raya-Tapia, A.Y.; Cansino-Loeza, B.; Sánchez-Zarco, X.G.; Ramírez-Márquez, C.; Martín, M.; Ponce-Ortega, J.M. A spatial and temporal assessment of resource security in the water, energy, food and waste nexus in Spain. Sustain. Prod. Consum. 2023, 39, 109–122. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.W.; Zhang, Z.Y.; Gao, Y.; Zhang, D. Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin. Resour. Sci. 2021, 43, 2526–2537. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, Q.; Yu, X.; Zhang, S. Synergy assessment and optimization for water-energy-food nexus: Modeling and application. Renew. Sustain. Energy Rev. 2020, 134, 110059. [Google Scholar] [CrossRef]
- Chang, Y.; Li, G.; Yao, Y.; Zhang, L.; Yu, C. Quantifying the water-energy-food nexus: Current status and trends. Energies 2016, 9, 65. [Google Scholar] [CrossRef]
- El-Gafy, I. Water–food–energy nexus index: Analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Appl. Water Sci. 2017, 7, 2857–2868. [Google Scholar] [CrossRef]
- Al-Ansari, T.; Korre, A.; Nie, Z.; Shah, N. Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustain. Prod. Consum. 2015, 2, 52–66. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, C.; Fang, J.; Miao, Y. Paths and strategies for a resilient megacity based on the water-energy-food nexus. Sustain. Cities Soc. 2022, 82, 103892. [Google Scholar] [CrossRef]
- Deng, C.; Wang, H.; Gong, S.; Zhang, J.; Yang, B.; Zhao, Z. Effects of urbanization on food-energy-water systems in mega-urban regions: A case study of the Bohai MUR, China. Environ. Res. Lett. 2020, 15, 044014. [Google Scholar] [CrossRef]
- Sun, C.; Yan, X.; Zhao, L. Coupling efficiency measurement and spatial correlation characteristic of water–energy–food nexus in China. Resour. Conserv. Recycl. 2021, 164, 105151. [Google Scholar] [CrossRef]
- Qi, Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. Res. 2022, 29, 23303–23313. [Google Scholar] [CrossRef] [PubMed]
- Sušnik, J.; Masia, S.; Indriksone, D.; Brēmere, I.; Vamvakeridou-Lydroudia, L. System dynamics modelling to explore the impacts of policies on the water-energy-food-land-climate nexus in Latvia. Sci. Total Environ. 2021, 775, 145827. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, N. Environmental regulation and environmental productivity: The case of China. Renew. Sustain. Energy Rev. 2016, 62, 758–766. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Yuan, K.; Zhang, X. Can informal environmental regulation promote industrial structure upgrading? Evidence from China. Appl. Econ. 2022, 54, 2161–2180. [Google Scholar] [CrossRef]
- Su, J.; Su, K.; Wang, S. Does the digital economy promote industrial structural upgrading?—A test of mediating effects based on heterogeneous technological innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- Verna, D.E.; Minton, M.S.; Ruiz, G.M. Trade exports predict regional ballast water discharge by ships in San Francisco Bay. Front. Mar. Sci. 2021, 8, 638955. [Google Scholar] [CrossRef]
- Demena, B.A.; Afesorgbor, S.K. The effect of FDI on environmental emissions: Evidence from a meta-analysis. Energy Policy 2020, 138, 111192. [Google Scholar] [CrossRef]
- Chen, D.; Hu, W.; Li, Y.; Zhang, C.; Lu, X.; Cheng, H. Exploring the temporary and spatial effects of city size on regional economic integration: Evidence from the Yangtze River Economic Belt in China. Land Use Policy 2023, 132, 106770. [Google Scholar] [CrossRef]
- Anselin, L.; Florax, R.J.G.M. New directions in spatial econometrics: Introduction. In New Directions in Spatial Econometrics; Springer: Berlin/Heidelberg, Germany, 1995; pp. 3–18. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Fahad, S.; Bai, D.; Liu, L.; Baloch, Z.A. Heterogeneous impacts of environmental regulation on foreign direct investment: Do environmental regulation affect FDI decisions? Environ. Sci. Pollut. Res. 2022, 29, 5092–5104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, X. FDI and environmental regulations in China. J. Asia Pac. Econ. 2008, 13, 332–353. [Google Scholar] [CrossRef]
- Yang, J.; Guo, H.; Liu, B.; Shi, R.; Zhang, B.; Ye, W. Environmental regulation and the pollution haven hypothesis: Do environmental regulation measures matter? J. Clean. Prod. 2018, 202, 993–1000. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, R. Effect of environmental regulation on industrial solid waste pollution in China: From the perspective of formal environmental regulation and informal environmental regulation. Int. J. Environ. Res. Public Health 2020, 17, 7798. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Liu, J.; Fu, Z. The impact of village rules and formal environmental regulations on farmers’ cleaner production behavior: New evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 7311. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; An, Z.; Yan, C.; Wu, R. Spatial-temporal characteristics and influencing factors of food production efficiency based on WEF nexus in China. J. Clean. Prod. 2022, 330, 129921. [Google Scholar] [CrossRef]
- Hua, E.; Wang, X.; Engel, B.A.; Qian, H.; Sun, S.; Wang, Y. Water competition mechanism of food and energy industries in WEF Nexus: A case study in China. Agric. Water Manag. 2021, 254, 106941. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, Z.; Liu, H.; Cao, C.; Qi, J. The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060. Environ. Earth Sci. 2021, 80, 1–17. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Song, Y.; Yang, T.; Zhang, M. Research on the impact of environmental regulation on enterprise technology innovation—An empirical analysis based on Chinese provincial panel data. Environ. Sci. Pollut. Res. 2019, 26, 21835–21848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Huang, M. Study on the impact of informal environmental regulation on substantive green innovation in China: Evidence from PITI disclosure. Environ. Sci. Pollut. Res. 2023, 30, 10444–10456. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cao, H.; Ma, Y.; Wu, S. Does technological innovation reduce water pollution intensity in the context of informal environmental regulation? Asia-Pac. J. Chem. Eng. 2020, 15, e2493. [Google Scholar] [CrossRef]
Target Level | Indicators | Attribute |
---|---|---|
Water Resources Subsystem | Per capita water consumption | − |
Total available water resources per capita | + | |
Proportion of ecological water usage | + | |
Proportion of domestic water usage | − | |
Total precipitation | + | |
Water productivity | + | |
Irrigated area | + | |
Wastewater discharge volume | − | |
Water consumption per RMB 10,000 GDP | − | |
Water consumption per RMB 10,000 industrial value added | − | |
Energy Subsystem | Energy production | + |
Energy consumption | − | |
Energy self-sufficiency rate | + | |
Per capita energy consumption | − | |
Energy industry investment | + | |
Coal consumption ratio | − | |
Total renewable energy production | + | |
Energy structure | + | |
Energy consumption per RMB 10,000 GDP | − | |
Energy consumption per RMB 10,000 industrial value added | − | |
Food Subsystem | Per capita grain production | + |
Grain yield per unit area | + | |
Per capita grain consumption | − | |
Total power of agricultural machinery | + | |
Crop sown area | + | |
Fertilizer use per unit of arable land | − | |
Natural population growth rate | − | |
Rural residents’ disposable income | + |
LnER1 | LnER2 | LnCCD | ||||
---|---|---|---|---|---|---|
W1 | W2 | W1 | W2 | W1 | W2 | |
2003 | 0.085 *** | 0.203 *** | 0.072 *** | 0.456 *** | 0.093 *** | 0.322 *** |
2004 | 0.085 *** | 0.246 *** | 0.084 *** | 0.453 *** | 0.093 *** | 0.328 *** |
2005 | 0.081 *** | 0.292 *** | 0.088 *** | 0.442 *** | 0.087 *** | 0.315 *** |
2006 | 0.085 *** | 0.298 *** | 0.075 *** | 0.451 *** | 0.087 *** | 0.311 *** |
2007 | 0.080 *** | 0.353 *** | 0.095 *** | 0.430 *** | 0.084 *** | 0.308 *** |
2008 | 0.077 *** | 0.353 *** | 0.108 *** | 0.422 *** | 0.087 *** | 0.312 *** |
2009 | 0.083 *** | 0.272 *** | 0.083 *** | 0.435 *** | 0.087 *** | 0.316 *** |
2010 | 0.084 *** | 0.238 *** | 0.034** | 0.428 *** | 0.087 *** | 0.311 *** |
2011 | 0.084 *** | 0.292 *** | 0.085 *** | 0.418 *** | 0.086 *** | 0.307 *** |
2012 | 0.087 *** | 0.176 *** | 0.068 *** | 0.419 *** | 0.084 *** | 0.298 *** |
2013 | 0.087 *** | 0.139 *** | 0.055 *** | 0.416 *** | 0.080 *** | 0.288 *** |
2014 | 0.086 *** | 0.117 *** | 0.079 *** | 0.412 *** | 0.081 *** | 0.290 *** |
2015 | 0.082 *** | 0.139 *** | 0.057 *** | 0.411 *** | 0.086 *** | 0.315 *** |
2016 | 0.082 *** | 0.116 *** | 0.036** | 0.409 *** | 0.090 *** | 0.336 *** |
2017 | 0.083 *** | 0.152 *** | 0.061 *** | 0.407 *** | 0.094 *** | 0.346 *** |
2018 | 0.079 *** | 0.169 *** | 0.072 *** | 0.396 *** | 0.097 *** | 0.355 *** |
2019 | 0.081 *** | 0.174 *** | 0.077 *** | 0.400 *** | 0.099 *** | 0.364 *** |
2020 | 0.072 *** | 0.174 *** | 0.078 *** | 0.371 *** | 0.100 *** | 0.372 *** |
Test Type | LnER1 | LnER2 | |
---|---|---|---|
LM test | LM_error | 204.724 *** | 768.337 *** |
Robust_LM_error | 85.693 *** | 347.215 *** | |
LM_lag | 352.600 *** | 725.004 *** | |
Robust_LM lag | 233.569 *** | 303.883 *** | |
LR test | LR_SDM/SAR | 102.65 *** | 110.65 *** |
LR_SDM/SEM | 121.06 *** | 127.68 *** | |
Wald test | Wald_SDM/SAR | 44.61 *** | 68.84 *** |
Wald_SDM/SEM | 128.32 *** | 136.75 *** | |
Fixed effects test | LR_both/ind | 106.92 *** | 105.94 *** |
LR_both/time | 866.75 *** | 854.32 *** |
Variables | W1 | W2 | W1 | W2 |
---|---|---|---|---|
LnER1 | 0.087 *** | 0.125 *** | — | — |
(8.190) | (7.640) | — | — | |
LnER2 | — | — | 0.015 ** | 0.014 * |
— | — | (2.020) | (1.780) | |
LnAIS | 0.356 *** | 0.034 | 0.402 *** | 0.310 *** |
(11.580) | (1.160) | (12.630) | (10.550) | |
LnTEX | −0.100 *** | 0.116 *** | −0.092 *** | −0.068 *** |
(−7.760) | (10.090) | (−6.820) | (−4.950) | |
LnURB | 0.006 | 0.571 *** | 0.038 | 0.056 |
(0.160) | (10.350) | (1.020) | (1.480) | |
LnFDI | 0.030 *** | 0.089 *** | 0.040 *** | 0.034 *** |
(4.280) | (8.810) | (5.350) | (4.510) | |
LnPOP | 0.422 *** | 0.743 *** | 0.386 *** | 0.345 *** |
(5.000) | (34.440) | (4.330) | (3.670) | |
Spatial−rho | 0.054 *** | 0.339 ** | 0.101 *** | 0.632 *** |
sigma2_e | 0.006 *** | 0.029 *** | 0.007 *** | 0.008 *** |
R−sq | 0.5787 | 0.9195 | 0.3290 | 0.7418 |
Individual fixed | Yes | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes | Yes |
N | 540 | 540 | 540 | 540 |
Variables | W1 | W2 | W1 | W2 |
---|---|---|---|---|
LR_Direct | 0.088 *** | 0.122 *** | 0.016 ** | 0.019 ** |
(7.980) | (7.150) | (2.06) | (2.41) | |
LR_Indirect | 0.221 ** | 0.156 ** | 0.122 ** | 0.203 *** |
(2.380) | (1.990) | (2.06) | (4.47) | |
LR_Total | 0.308 *** | 0.278 *** | 0.114 ** | 0.222 *** |
(3.220) | (3.630) | (2.23) | (4.69) | |
Control variables | Yes | Yes | Yes | Yes |
R-sq | 0.5787 | 0.9195 | 0.3290 | 0.7418 |
Individual fixed | Yes | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes | Yes |
Log-likelihood | 552.8741 | 172.9610 | 577.2304 | 524.2584 |
N | 540 | 540 | 540 | 540 |
Variables | LnFDI | LnAIS | ||
---|---|---|---|---|
LnER1 | 0.630 *** | — | 0.419 *** | — |
(4.06) | — | (9.32) | — | |
LnER2 | — | 0.337 *** | — | 0.066 *** |
— | (5.54) | — | (3.19) | |
LnAIS | −0.140 | −0.024 | — | — |
(−0.98) | (−0.18) | — | — | |
LnTEX | 0.225 *** | 0.334 *** | 0.045 ** | 0.042 ** |
(3.62) | (6.42) | (2.34) | (2.32) | |
LnURB | 3.292 *** | 3.127 *** | 0.324 *** | 0.295 *** |
(15.04) | (14.35) | (4.07) | (3.46) | |
LnFDI | — | — | −0.013 | −0.003 |
— | — | (−0.98) | (−0.18) | |
LnPOP | 1.312 *** | 1.223 *** | −0.093 *** | −0.142 *** |
(22.07) | (20.15) | (−3.68) | (−5.37) | |
R−sq | 0.732 | 0.739 | 0.524 | 0.455 |
Individual fixed | Yes | Yes | Yes | Yes |
Time fixed | Yes | Yes | Yes | Yes |
N | 540 | 540 | 540 | 540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, S.; Liao, Z.; Liu, Y.; Fan, X. Research on the Impact of Heterogeneous Environmental Regulation on the Coordinated Development of China’s Water–Energy–Food System from a Spatial Perspective. Sustainability 2024, 16, 818. https://doi.org/10.3390/su16020818
Zou S, Liao Z, Liu Y, Fan X. Research on the Impact of Heterogeneous Environmental Regulation on the Coordinated Development of China’s Water–Energy–Food System from a Spatial Perspective. Sustainability. 2024; 16(2):818. https://doi.org/10.3390/su16020818
Chicago/Turabian StyleZou, Shaohui, Zhe Liao, Yichen Liu, and Xiangbo Fan. 2024. "Research on the Impact of Heterogeneous Environmental Regulation on the Coordinated Development of China’s Water–Energy–Food System from a Spatial Perspective" Sustainability 16, no. 2: 818. https://doi.org/10.3390/su16020818
APA StyleZou, S., Liao, Z., Liu, Y., & Fan, X. (2024). Research on the Impact of Heterogeneous Environmental Regulation on the Coordinated Development of China’s Water–Energy–Food System from a Spatial Perspective. Sustainability, 16(2), 818. https://doi.org/10.3390/su16020818