Factors Influencing the Double-Up Adoption of Climate Change Adaptation Strategies among Smallholder Maize Farmers in Malawi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Sample Size
Study Area
2.2. Data Management and Analysis
2.3. Comparing Characteristics between Double-Up Adopters and Non-Adopters of Climate Change Adaptation Strategies
2.4. Assessing the Factors Influencing Double-Up Adoption of Climate Change Adaptation Strategies
2.5. Conceptual Framework
2.6. Theoretical Framework
2.6.1. Theory
2.6.2. Logit Model
2.6.3. Marginal Effects
2.7. Specification of the Empirical Model
- X = the vector of factors influencing the double-up adoption of climate change adaptation strategies;
- β = the vector of unknown parameters;
- εi = the stochastic error term.
2.8. Definition of Variables
2.8.1. Age of Household Head
2.8.2. Gender of Household Head
2.8.3. Landholding Size
2.8.4. Total Labor
2.8.5. Inorganic Fertilizer Use
2.8.6. Seed Access
2.8.7. Input Coupon Access
2.8.8. Adherence to Agricultural Extension Services
2.8.9. Access to Credit
2.8.10. Household Size
2.9. Diagnostic Test
3. Results and Discussion
3.1. Results of Diagnostic Tests for Econometric Problems
3.2. Descriptive Analysis
3.3. Factors Influencing Farmers’ Decision to Dually Adopt Climate Change Adaptation Strategies
3.3.1. Results of Logit Model
3.3.2. Landholding Size
3.3.3. Inorganic Fertilizer Use
3.3.4. Seed Access
3.3.5. Adherence to Extension Services
3.3.6. Input Coupon Access
3.3.7. Access to Credit
3.3.8. Limitation of the Study
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Region | Sample Size | Number of Districts |
---|---|---|
Northern | 1512 | 6 |
Central | 3144 | 9 |
Southern | 4286 | 13 |
Total | 8942 | 28 |
Variable | Unit of Measure | Expected Sign |
---|---|---|
Household head age | Number of years | +/− |
Household head gender | 1 = male, 0 = otherwise | +/− |
Landholding size | Area in acres | +/− |
Inorganic fertilizer use | 1 = yes, 0 = otherwise | +/− |
Seed access | 1 = yes, 0 = otherwise | + |
Input coupon access | 1 = yes, 0 = otherwise | + |
Adherence to extension services | 1 = yes, 0 = otherwise | + |
Access to credit | 1 = yes, 0 = otherwise | + |
Household size | Number of household members | +/− |
Total labor | Man-days | + |
Null Hypothesis (Ho) | |||
---|---|---|---|
Test | Test Statistics | Prob > Chi2 | |
Breusch–Pagan test | Constant variance | Chi2(1) = 96.83 | 0.0000 |
Variable | VIF | 1/VIF |
---|---|---|
Inorganic fertilizer use | 1.16 | 0.864992 |
Input coupon access | 1.14 | 0.876121 |
Household size | 1.10 | 0.908593 |
Head gender | 1.10 | 0.911290 |
Landholding size | 1.08 | 0.922115 |
Head age | 1.08 | 0.924116 |
Seed access | 1.04 | 0.963141 |
Access to credit | 1.04 | 0.964276 |
Adherence to extension services | 1.04 | 0.965663 |
Total labor | 1.01 | 0.991580 |
Seed access | Inorganic fertilizer use | Adherence to extension services | Access to credit | Input coupon access | Head gender | |
Seed access | 1.000 | |||||
Inorganic fertilizer use | 0.2829 | 1.000 | ||||
Adherence to extension services | 0.2231 | 0.3281 | 1.0000 | |||
Access to credit | 0.0492 | 0.0461 | 0.0494 | 1.0000 | ||
Input coupon access | 0.0435 | 0.4066 | 0.1496 | 0.0050 | 1.0000 | |
Head gender | −0.0389 | −0.0247 | −0.0214 | −0.0462 | 0.0236 | 1.0000 |
References
- Akinnagbe, O.M.; Irohibe, I.J. Agricultural adaptation strategies to climate change impacts in Africa. Bangladesh J. Agric. Res. 2014, 39, 407–418. [Google Scholar] [CrossRef]
- Omotoso, A.B.; Letsoalo, S.; Olagunju, K.O.; Tshwene, C.S.; Omotayo, A.O. Climate Change and Variability in sub- Saharan Africa: A systematic review of trends and impacts on agriculture. J. Clean. Prod. 2023, 4134, 137487. [Google Scholar] [CrossRef]
- Ozor, N.; Nnanji, C.E. The role of extension in agricultural adaptation to climate change in Enugu State, Nigeria. J. Agric. Ext. Rural. Dev. 2011, 3, 42–50. [Google Scholar]
- Food and Agriculture Organization. Malawi Country’s Sheet on Food and Agriculture and Policy Trends; FAO: Rome, Italy, 2014. [Google Scholar]
- Jafino, B.; Walsh, B.; Rozenberg, J.; Hallegatte, S. Revised Estimates of the Impact of Climate Change on Extreme Poverty by 2030; Policy Research Working Paper No. 9417; World Bank: Washington, DC, USA, 2020; Available online: http://hdl.handle.net/10986/34555 (accessed on 21 October 2023).
- Currie-Alder, B.; Rosenzweig, C.; Chen, M.; Nalau, J.; Patwardhan, A.; Wang, Y. Research for climate adaptation. Commun. Earth Environ. 2021, 2, 220. [Google Scholar] [CrossRef]
- Zakari, S.; Ibro, G.; Moussa, B.; Abdoulaye, T. Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger. Sustainability 2022, 14, 2847. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Sustainable Crop Production Intensification; FAO: Rome, Italy, 2016. [Google Scholar]
- Pangapanga, P.I.; Jumbe, C.B.; Kanyanda, S.; Thangalimodzi, L. Unravelling strategic choices towards droughts and floods’ adaptation in Southern Malawi. Int. J. Disaster Risk Reduct. 2012, 2, 57–66. [Google Scholar] [CrossRef]
- Bezner, K.R.; Snapp, S.; Chirwa, M.; Shumba, L.; Msachi, R. Participatory research in legume diversification with smallholder farmers for improved human nutrition and soil fertility. Exp. Agric. 2007, 43, 437–453. [Google Scholar]
- Graham, H.; Vance, P. Legume: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef]
- Mhango, W.G.; Snapp, S.S.; Kanyama Phiri, G.Y. Opportunities and constraints to legume diversification for sustainable maize production on smallholder farmers in Malawi. Renew. Agric. Food Syst. 2012, 10, 1017–1029. [Google Scholar] [CrossRef]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Minot, N.; Epprecht, M.; Anh, T.T.; Trung, L.Q. Income Diversification in the Northern Uplands of Vietnam; IFPRI Research Report No.145; IFPRI: Washington, DC, USA, 2006; pp. 1–137. [Google Scholar]
- Rehima, M.; Belay, K.; Dawit, A.; Rashid, S. Factors affecting farmer’s crop diversification: Evidence from SNNPR, Ethiopia. Int. J. Agric. Sci. 2013, 3, 558–565. [Google Scholar]
- Adesina, F.O.; Siyambola, W.O.; Oketola, F.O.; Pelemo, D.A.; Ojo, L.O.; Adegbugbe, A.O. Potentials of agroforestry for climate change mitigation in Nigeria: Some Preliminary estimates. Glob. Ecol. Biogeogr. 1999, 8, 163–173. [Google Scholar] [CrossRef]
- Orry, J.P.; Gary, W. Factors affecting adoption of green manure and cover crop technologies among Paraguayan smallholder farmers. Agroecol. Sustain. Food Syst. 2016, 40, 1043–1057. [Google Scholar]
- Droppelmann, J.K.; Snapp, S.S.; Waddington, R.S. Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa. Food Security: The Science, Sociology and Economics of Food Production and Access to Food. Int. Soc. Plant Pathol. 2017, 9, 133–150. [Google Scholar]
- Sisay, A.; Sisay, T. The Principle Role of Organic Fertilizer on Soil properties and Agricultural Productivity. Agric. Res. Tech. 2019, 22, 556192. [Google Scholar]
- Mango, N.; Makate, C.; Mapemba, L.; Sopo, M. The role of crop diversification in improving household food security in centra Malawi. Agric. Food Secur. 2018, 7, 018–160. [Google Scholar] [CrossRef]
- Snapp, S.; Rahmanian, M.; Batello, C. Pulse Crop for Sustainable Farms in Sub-Saharan Africa; FAO: Rome, Italy, 2018. [Google Scholar]
- White, S.; Crawford, E. Research on Multipurpose Legumes in Malawi: Synthesis Report, Global Center for Food Systems Innovation; Michigan State University: East Lansing, MI, USA, 2016. [Google Scholar]
- Kankwamba, H.; Mariam, M.; Pauw, K. Determinants and Spatiotemporal Dimensions of Crop Diversification in Malawi; International Food Policy Research Institute: Lilongwe, Malawi, 2012. [Google Scholar]
- Cutforth, B.L.; Mortensen, A.D.; Lynne, D.G.; Estridge, M.K. Factors affecting farmers’ crop diversity decision: An integrated approach. Am. J. Altern. Agric. 2015, 3, 12951–13145. [Google Scholar] [CrossRef]
- Diallo, A.; Dontor, E.; Owusu, V. Climate change adaptation strategies, productivity and sustainable food security in Southern Mali. Borlang High. Educ. Agric. Res. Dev. 2020, 159, 309–327. [Google Scholar] [CrossRef]
- Webber, H.; Gaiser, T.; Ewert, F. What role can crop models play in supporting climate change adaptation decisions to enhance food security in sub-Saharan Africa? Agric. Syst. 2014, 127, 161–177. [Google Scholar] [CrossRef]
- Ndamani, F.; Watanabe, T. Determinants of farmer’s adaptation to climate change: A micro level analysis in Ghana. Sci. Agric. 2016, 73, 201–208. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A microperspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef]
- Ojo, T.; Baiyegunhi, L. Determinants of adaption strategies to climate change among rice farmers in Southern Nigeria: A Multivariate Probit Approach. Int. Assoc. Agric. Econ. 2018. [Google Scholar] [CrossRef]
- Kinuthia, J.K.; Inoti, S.K.; Nakhone, L. Factors Influencing Farmers Choice of Crop Production Response Strategies to Climate Change and Variability in Narok East Sub-county, Kenya. J. Nat. Resour. Dev. 2018, 10, 69–77. [Google Scholar] [CrossRef]
- NSO. Fourth Integrated Household Survey 2016–2017; Basic Information Document: Zomba, Malawi, 2017. [Google Scholar]
- World Bank. Malawi Overview: Development News, Research and Data. 2023. Available online: https://www.worldbank.org/en/country/malawi/overview (accessed on 12 July 2023).
- Best, H. Organic farming as rational choice: Empirical investigations in environmental decision making. Ration. Soc. 2009, 21, 197–224. [Google Scholar] [CrossRef]
- Morton, J.F. The Impact of Climate Vhange on Smallholder and Subsistence Agriculture. Proc. Natl. Acad. Sci. USA 2008, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed]
- Smelser, N.; Swedberg, R.; Nee, V. New Institutionalism, Economic and Sociology; Princeton University Press: Princeton, NJ, USA, 2003; Available online: https://www.researchgate.net/publication/237643624 (accessed on 7 August 2023).
- McFadden, D. Econometric models for probabilistic choice among products. J. Bus. 1980, 53, S13–S29. [Google Scholar] [CrossRef]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Manski, C.F. The Structure of Random Utility Models. Theory Decis. 1977, 8, 229–254. [Google Scholar] [CrossRef]
- Ndhlovu, D. Determinants of Farm Households’ Cropland Allocation and Crop Diversification Decisions: The Role of Fertilizer Subsidies in Malawi; Norwegian University of Life Sciences: Ås, Norway, 2010. [Google Scholar]
- Phanga-phanga. Determinants of Poverty in Malawi: A household Level Analysis; Department of Economics, Chancellor College, University of Malawi: Zomba, Malawi, 2002. [Google Scholar]
- Gujarati, D.N. Basic Econometrics, 4th ed.; MacGraw Hill Companies: New York, NY, USA, 2004. [Google Scholar]
- Marenya, P.P.; Barrett, C.B. Household level determinant of adoption of improved natural resources management practices among smallholder farmers in western Kenya. Food Policy 2007, 32, 515–536. [Google Scholar] [CrossRef]
- Kamanet, P.; Bezner, K.R.; Chirwa, M. Participatory research approaches and social dynamics that influence agricultural practices to improve child nutrition in Malawi. Ecohealth 2004, 1, 109–119. [Google Scholar]
- Yirga, C.; Hassan, R.M. Multinomial logit analysis of farmers’ choice between short and long term soil fertility management practices in central highlands of Ethiopia. Res. Gate 2008, 7, 83–102. [Google Scholar]
- Akpo, E.; Ojiewo, C.O.; Kapran, I.; Omoigui, L.O.; Diama, A.; Varshney, R.K. Enhancing Smallholder Farmers Acess to Seed of Improved Legume Varieties through Multi-Stakeholder Platforms; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Kanyamuka, J.S. Adoption of Integrated Soil Fertility Management Technologies and its effects on maize productivity: A case of legume best bets project in Mkanankhoti EPA of Kasungu district in central Malawi. Res. Agric. Appl. Econ. 2017. [Google Scholar] [CrossRef]
- Ekepu, D.; Tirivanhu, P. Assessing socio-economic factors influencing adoption of legume-based multiple cropping systems among smallholder sorghum farmers in Soroti, Uganda. South Afr. J. Agric. Ext. 2016, 44, 195–215. [Google Scholar] [CrossRef]
- Sichoongwe, K.; Mapemba, L.; Ng’ong’ola, D.; Tembo, G. Determinants and Extent of Crop Diversification among Smallholder Farmers in Southern Zambia; Malawi Strategy Support Program-Working Paper; International Food Policy Research Institute: Washington, DC, USA, 2014. [Google Scholar]
- Maggio, G.; Sitko, N.; Ignaciuk, A. Cropping System Diversification in Eastern and Southern Africa: Identifying Policy Options to Enhance Productivity and Build Resilience; FAO Agricultural Development Economics Working Paper 18-05: Rome, Italy, 2018. [Google Scholar]
- Katengeza, S.; Holden, S.; Fisher, M. Use of Integrated Soil Fertility Management Technologies in Malawi: Impact of Dry Spells Exposure. J. Ecol. Econ. 2018, 156, 134–152. [Google Scholar] [CrossRef]
- Lambrecht, I.; Vanlauwe, B.; Maertens, M. Integrated Soil Fertility Management: From Concept to Practice in Eastern DR Congo; Bioeconomics Working Paper Series; KU Leuven: Leuven, Belgium, 2014. [Google Scholar]
Region | Total | |||||||
---|---|---|---|---|---|---|---|---|
Maize–Legume Diversification | North | Central | South | |||||
Frequency | Percent | Frequency | Percent | Frequency | Percent | Frequency | Percent | |
Non-diversifier | 859 | 22.49 | 1543 | 40.39 | 1418 | 37.12 | 3820 | 42.72 |
Diversifier | 653 | 12.75 | 1601 | 31.26 | 2868 | 55.99 | 5122 | 57.28 |
Total | 1512 | 16.91 | 3144 | 35.16 | 4286 | 47.93 | 8942 | 100 |
Maize: Organic fertilizer use | ||||||||
Non-adopter | 1194 | 18.18 | 2306 | 35.12 | 3066 | 46.70 | 6566 | 73.43 |
Adopter | 318 | 13.38 | 838 | 35.27 | 1220 | 51.35 | 2376 | 26.57 |
Total | 1512 | 16.91 | 3144 | 35.16 | 4286 | 47.93 | 8942 | 100 |
Maize: Agroforestry | ||||||||
Non-adopter | 667 | 14.10 | 1347 | 28.48 | 2715 | 57.41 | 4729 | 52.89 |
Adopter | 845 | 20.06 | 1797 | 42.65 | 1571 | 37.29 | 4213 | 47.11 |
Total | 1512 | 16.91 | 3144 | 35.16 | 4268 | 47.93 | 8942 | 100 |
Region | Total | |||||||
---|---|---|---|---|---|---|---|---|
Double-Up Adoption of Climate Change Adaptation Strategies | North | Central | South | |||||
Frequency | Percent | Frequency | Percent | Frequency | Percent | Frequency | Percent | |
Non-adopter | 967 | 18.04 | 1797 | 33.53 | 2595 | 48.42 | 5359 | 59.93 |
Adopter | 545 | 15.21 | 1347 | 37.59 | 1691 | 47.20 | 3583 | 40.07 |
Total | 1512 | 16.91 | 3144 | 35.16 | 4286 | 47.93 | 8942 | 100 |
Characteristics | Double-Up Adopters | Non-Adopters | |||
---|---|---|---|---|---|
(n = 3583) | (n = 5359) | ||||
Demographic and Socio-Economic Factors | Frequency | Percent | Frequency | Percent | p-Value |
Head gender (male = 1) | 2562 | 71.50 | 3660 | 68.30 | 0.120 |
Inorganic fertilizer use (yes = 1) | 2682 | 74.85 | 3613 | 67.42 | 0.000 |
Seed access | 1978 | 55.21 | 2533 | 47.27 | 0.000 |
Institutional factors | |||||
Input coupon access (yes = 1) | 977 | 27.27 | 1180 | 22.02 | 0.000 |
Access to credit | 1006 | 28.08 | 1135 | 21.18 | 0.000 |
Adherence to extension services | 2590 | 72.29 | 3329 | 62.12 | 0.000 |
Characteristics | Double-Up Adopters | Non-Adopters | |||
---|---|---|---|---|---|
(n = 3583) | (n = 5359) | ||||
Mean | Standard Error | Mean | Standard Error | p-Value | |
Age of household head | 44.90 | 0.2681076 | 44.47 | 0.2262526 | 0.2168 |
Landholding size (area in acres) | 1.83 | 0.276157 | 1.34 | 0.0195725 | 0.0000 |
Household size | 4.59 | 0.0327898 | 4.39 | 0.026778 | 0.1200 |
Total labor | 1910.15 | 189.4065 | 1195.45 | 142.8828 | 0.2020 |
Dependent Variable: Double-Up Adoption of Climate Change Adaptation Strategies | ||||
---|---|---|---|---|
Explanatory Variable | Coefficient | Marginal Effects Coefficient | Standard Errors | p-Value |
Landholding size (area in acres) | 0.2151 *** | 0.0515 *** | 0.0066 *** | 0.000 |
Household size | 0.0045 | 0.0011 | 0.0029 | 0.706 |
Inorganic fertilizer use (1 = yes, 0 = no) | 0.1398 *** | 0.0333 *** | 0.0124 *** | 0.007 |
Total labor (man-days) | 4.87 × 10−6 | 1.17 × 10−6 | 0.000 | 0.144 |
Seed access (1 = yes, 0 = no) | 0.2920 *** | 0.0698 *** | 0.0107 *** | 0.000 |
Adherence to extension services (1 = yes, 0 = no) | 0.3328 *** | 0.0787 *** | 0.0112 *** | 0.000 |
Input coupon access (1 = yes, 0 = no) | 0.2206 *** | 0.0534 *** | 0.0133 *** | 0.000 |
Access to credit (1 = yes, 0 = no) | 0.2910 *** | 0.0706 *** | 0.0128 *** | 0.000 |
Head gender (1 = male, 0 = otherwise) | 0.0157 | 0.0038 | 0.0121 | 0.757 |
Head age (years) | 0.0008 | 0.0002 | 0.0003 | 0.592 |
Constant | −1.4144 | 0.1236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikita, B.Y.; Lee, S.-H. Factors Influencing the Double-Up Adoption of Climate Change Adaptation Strategies among Smallholder Maize Farmers in Malawi. Sustainability 2024, 16, 602. https://doi.org/10.3390/su16020602
Tikita BY, Lee S-H. Factors Influencing the Double-Up Adoption of Climate Change Adaptation Strategies among Smallholder Maize Farmers in Malawi. Sustainability. 2024; 16(2):602. https://doi.org/10.3390/su16020602
Chicago/Turabian StyleTikita, Blessings Youngster, and Sang-Ho Lee. 2024. "Factors Influencing the Double-Up Adoption of Climate Change Adaptation Strategies among Smallholder Maize Farmers in Malawi" Sustainability 16, no. 2: 602. https://doi.org/10.3390/su16020602
APA StyleTikita, B. Y., & Lee, S.-H. (2024). Factors Influencing the Double-Up Adoption of Climate Change Adaptation Strategies among Smallholder Maize Farmers in Malawi. Sustainability, 16(2), 602. https://doi.org/10.3390/su16020602