Has the Development of Broadband Infrastructure Improved Household Energy Consumption in Rural China?
Abstract
:1. Introduction
2. Policy Background and Research Hypothesis
2.1. Institutional Background: “Broadband China” Strategy
2.2. Research Hypothesis
3. Data and Variable Description
3.1. Data
3.2. Variables
3.2.1. Dependent Variables
3.2.2. Independent Variable
3.2.3. Control Variables
3.2.4. Description
4. Methodology
4.1. Benchmark Model: Difference-in-Differences (DID) Method
4.2. Event-Study Specification
4.3. Further Verification: PSM-DID Method
4.4. Mechanism Analysis: Moderating Model
5. Results
5.1. DID Estimation Results
5.2. Robustness Check
5.2.1. PSM-DID Estimation Results
5.2.2. Placebo Test: Constructing Randomized Experiments
5.2.3. Counterfactual Test: Changing the Policy Execution Time
5.2.4. Control Other Policy Interference
6. Does Broadband Development Facilitate Households’ Transition to Clean Energy Consumption?
7. Further Analysis
7.1. Heterogeneity Analysis
7.1.1. Heterogeneity in Human Capital
7.1.2. Heterogeneity in Household Income Level
7.1.3. Heterogeneity in Family Size
7.1.4. Heterogeneity in Housing Type
7.2. Mechanism Analysis
7.2.1. Green Innovation Enhancement Channel
7.2.2. Energy Efficiency Enhancement Channel
7.2.3. Environmental Awareness Enhancement Channel
8. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Jiang, L.; Yu, L.; Xue, B.; Chen, X.; Mi, Z. Who is energy poor? Evidence from the least developed regions in China. Energy Policy 2020, 137, 111122. [Google Scholar] [CrossRef]
- Che, X.; Zhu, B.; Wang, P. Assessing global energy poverty: An integrated approach. Energy Policy 2021, 149, 112099. [Google Scholar] [CrossRef]
- Wang, X.; Bian, Y.; Zhang, Q. The effect of cooking fuel choice on the elderly’s well-being: Evidence from two non-parametric methods. Energy Econ. 2023, 125, 106826. [Google Scholar] [CrossRef]
- Asongu, S.A.; Anyanwu, J.C.; Tchamyou, V.S. Technology-driven information sharing and conditional financial development in Africa. Inf. Technol. Dev. 2019, 25, 630–659. [Google Scholar] [CrossRef]
- Yan, H.; Yi, X.; Jiang, J.; Bai, C. Can information technology construction alleviate household energy poverty? Empirical evidence from the “broadband China” Pilot Policy. Energy Policy 2024, 185, 113966. [Google Scholar] [CrossRef]
- Zhang, C.; Weng, X.; Guo, Y. Digital infrastructure construction and household energy efficiency: Based on a quasi-natural experiment in China. Sci. Total Environ. 2024, 911, 168544. [Google Scholar] [CrossRef]
- Zhang, S.H.; Yang, J.; Feng, C. Can internet development alleviate energy poverty? Evidence from China. Energy Policy 2023, 173, 113407. [Google Scholar] [CrossRef]
- Liu, K. Insuring against health shocks: Health insurance and household choices. J. Health Econ. 2016, 46, 16–32. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Nadarajah, M.; Pugazhendhi, R.; Sinha, A.; Gangatharan, S.; Chiaramonti, D.; Abou Houran, M. The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7. Appl. Energy 2023, 334, 120698. [Google Scholar] [CrossRef]
- Zhe, L.; Yüksel, S.; Dincer, H.; Mukhtarov, S.; Azizov, M. The positive influences of renewable energy consumption on financial development and economic growth. Sage Open 2021, 11, 21582440211040133. [Google Scholar] [CrossRef]
- He, K.; Mi, Z.; Zhang, J.; Li, J.; Coffman, D. The polarizing trend of regional CO2 emissions in China and its implications. Environ. Sci. Technol. 2023, 57, 4406–4414. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Y. Does energy poverty really exist in China? From the perspective of residential electricity consumption. Energy Policy 2020, 143, 111557. [Google Scholar] [CrossRef]
- Chen, C.f.; Xu, X.; Adua, L.; Briggs, M.; Nelson, H. Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States. Energy Policy 2022, 168, 113071. [Google Scholar] [CrossRef]
- Ali, M. Urbanisation and energy consumption in Sub-Saharan Africa. Electr. J. 2021, 34, 107045. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Zhang, T.; Ji, Q.; Lucey, B. Awareness, energy consumption and pro-environmental choices of Chinese households. J. Clean. Prod. 2021, 279, 123734. [Google Scholar] [CrossRef]
- Kurniawan, R.; Sugiawan, Y.; Managi, S. Cleaner energy conversion and household emission decomposition analysis in Indonesia. J. Clean. Prod. 2018, 201, 334–342. [Google Scholar] [CrossRef]
- Surahman, U.; Hartono, D.; Setyowati, E.; Jurizat, A. Investigation on household energy consumption of urban residential buildings in major cities of Indonesia during COVID-19 pandemic. Energy Build. 2022, 261, 111956. [Google Scholar] [CrossRef]
- Modigliani, F. Utility Analysis and the Consumption Function: An Interpretation of Cross-Section Data; Allen & Unwin: London, UK, 1954. [Google Scholar]
- Siaw, A.; Jiang, Y.; Twumasi, M.A.; Agbenyo, W. The impact of internet use on income: The case of rural Ghana. Sustainability 2020, 12, 3255. [Google Scholar] [CrossRef]
- Deaton, A. Saving and Liquidity Constraints; National Bureau of Economic Research: Cambridge, MA, USA, 1989. [Google Scholar]
- Li, J.; Wu, Y.; Xiao, J.J. The impact of digital finance on household consumption: Evidence from China. Econ. Model. 2020, 86, 317–326. [Google Scholar] [CrossRef]
- Wu, H.; Xue, Y.; Hao, Y.; Ren, S. How does internet development affect energy-saving and emission reduction? Evidence from China. Energy Econ. 2021, 103, 105577. [Google Scholar] [CrossRef]
- Qin, P.; Liu, M.; Su, L.; Fei, Y.; Tan-Soo, J.S. Electricity consumption in the digital era: Micro evidence from Chinese households. Resour. Conserv. Recycl. 2022, 182, 106297. [Google Scholar] [CrossRef]
- Hosier, R.H.; Dowd, J. Household fuel choice in Zimbabwe: An empirical test of the energy ladder hypothesis. Resour. Energy 1987, 9, 347–361. [Google Scholar] [CrossRef]
- He, J.; Qing, C.; Guo, S.; Zhou, W.; Deng, X.; Xu, D. Promoting rural households’ energy use for cooking: Using Internet. Technol. Forecast. Soc. Chang. 2022, 184, 121971. [Google Scholar] [CrossRef]
- Yan, J.; Li, J.; Li, X.; Liu, Y. Digital transition and the clean renewable energy adoption in rural family: Evidence from Broadband China. Front. Ecol. Evol. 2023, 11, 1241410. [Google Scholar] [CrossRef]
- Hong, J.; Shi, F.; Zheng, Y. Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy. Technol. Forecast. Soc. Change 2023, 190, 122437. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, C.; Wu, H.; Liu, J.; Hao, Y. The emerging driving force of energy consumption in China: Does digital economy development matter? Energy Policy 2022, 165, 112997. [Google Scholar] [CrossRef]
- Lv, Z.; Li, X.; Wang, W.; Zhang, B.; Hu, J.; Feng, S. Government affairs service platform for smart city. Future Gener. Comput. Syst. 2018, 81, 443–451. [Google Scholar] [CrossRef]
- Peng, Y.; Tao, C. Can digital transformation promote enterprise performance?—From the perspective of public policy and innovation. J. Innov. Knowl. 2022, 7, 100198. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Young consumers’ intention towards buying green products in a developing nation: Extending the theory of planned behavior. J. Clean. Prod. 2016, 135, 732–739. [Google Scholar] [CrossRef]
- Jacobson, L.S.; LaLonde, R.J.; Sullivan, D.G. Earnings Losses of Displaced Workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar]
- Ghimire, A.; Ali, S.; Long, X.; Chen, L.; Sun, J. Effect of Digital Silk Road and innovation heterogeneity on digital economy growth across 29 countries: New evidence from PSM-DID. Technol. Forecast. Soc. Change 2024, 198, 122987. [Google Scholar] [CrossRef]
- Tiwari, S.; Mohammed, K.S.; Guesmi, K. A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments. Energy Policy 2023, 180, 113677. [Google Scholar] [CrossRef]
- Mishra, R.; Naik, B.K.R.; Raut, R.D.; Kumar, M. Internet of Things (IoT) adoption challenges in renewable energy: A case study from a developing economy. J. Clean. Prod. 2022, 371, 133595. [Google Scholar] [CrossRef]
- Luan, B.; Zou, H.; Huang, J. Digital divide and household energy poverty in China. Energy Econ. 2023, 119, 106543. [Google Scholar] [CrossRef]
- Tso, G.K.; Guan, J. A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption. Energy 2014, 66, 722–731. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Hu, F.; Wu, B. Effect of digital transformation on enterprises’ green innovation: Empirical evidence from listed companies in China. Energy Econ. 2023, 128, 107135. [Google Scholar] [CrossRef]
- Tang, C.; Xu, Y.; Hao, Y.; Wu, H.; Xue, Y. What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China. Energy Econ. 2021, 103, 105576. [Google Scholar] [CrossRef]
- Peng, H.R.; Ling, K.; Zhang, Y.J. The carbon emission reduction effect of digital infrastructure development: Evidence from the broadband China policy. J. Clean. Prod. 2024, 434, 140060. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Ali, S.; Khan, Z. Eco-innovation and energy productivity: New determinants of renewable energy consumption. J. Environ. Manag. 2020, 271, 111028. [Google Scholar] [CrossRef]
- Jia, X.; Xie, B.; Wang, X. The impact of network infrastructure on enterprise digital transformation—A quasi-natural experiment from the “Broadband China” Strategy. Appl. Econ. 2024, 56, 1363–1380. [Google Scholar] [CrossRef]
- Tu, M.; Zhang, B.; Xu, J.; Lu, F. Mass media, information and demand for environmental quality: Evidence from the “Under the Dome”. J. Dev. Econ. 2020, 143, 102402. [Google Scholar] [CrossRef]
Year | List of “Broadband China” Demonstration Cities |
---|---|
2014 | Beijing, Tianjin, Shanghai, Chang-Zhu-Tan Urban Agglomeration, Shijiazhuang, Dalian, Benxi, Yanbian Korean Autonomous Prefecture, Harbin, Daqing, Qingdao, Zibo, Weihai, Linyi, Zhengzhou, Luoyang, Wuhan, Wuhu, Anqing, Nanjing, Suzhou, Zhenjiang, Kunshan, Jinhua, Fuzhou (including Pingtan), Xiamen, Quanzhou, Nanchang, Shangrao, Guangzhou, Shenzhen, Zhongshan, Chengdu, Panzhihua, Guiyang, Yinchuan, Wuzhong, Aba Tibetan and Qiang Autonomous Prefecture, Alar |
2015 | Taiyuan, Hohhot, Ordos, Anshan, Panjin, Baishan, Dongying, Jining, Dezhou, Xinxiang, Yongcheng, Huangshi, Xiangyang, Yichang, Shiyan, Suizhou, Yueyang, Hefei, Tongling, Yangzhou, Jiaxing, Putian, Xinyu, Ganzhou, Shantou, Meizhou, Dongguan, Chongqing Jiangjin District, Chongqing Rongchang District, Mianyang, Neijiang, Yibin, Dazhou, Yuxi, Lanzhou, Zhangye, Guyuan, Zhongwei, Karamay |
2016 | Yantai, Zaozhuang, Shangqiu, Jiaozuo, Nanyang, Ezhou, Hengyang, Yiyang, Wuxi, Taizhou, Nantong, Hangzhou, Suzhou, Huangshan, Maanshan, Ji’an, Yulin, Haikou, Jiulongpo District, Beibei District, Ya’an, Luzhou, Nanchong, Zunyi, Lhasa, Linzhi, Wenshan Zhuang and Miao Autonomous Prefecture, Weinan, Wuwei, Jiuquan, Tianshui, Xining, Yangquan, Jinzhong, Wuhai, Baotou, Tongliao, Shenyang, Mudanjiang |
Year of Reform | |
---|---|
Age | 0.023 (0.263) |
Marry | 0.288 (0.113) |
Work | 0.009 (0.009) |
Num_living | 0.005 (0.017) |
Num_child | −0.491 (−1.253) |
LnCash_sav | −0.000 (−1.493) |
LnHouse | 0.111 (0.528) |
Multi_story | 0.156 (0.226) |
Observations | 31 |
R-squared | 0.109 |
Variable | Observations | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
HHEP | 17,397 | 126.545 | 499.528 | 0 | 15,151.516 |
HFEP | 17,219 | 607.114 | 3983.019 | 0 | 113,625 |
CC | 17,275 | 0.424 | 0.494 | 0 | 1 |
CH | 17,214 | 0.008 | 0.089 | 0 | 1 |
Broadband | 17,521 | 0.143 | 0.35 | 0 | 1 |
Age | 17,521 | 61.001 | 10.129 | 45 | 102 |
Marry | 17,521 | 0.779 | 0.415 | 0 | 1 |
Work | 17,521 | 0.706 | 0.456 | 0 | 1 |
Num_child | 17,521 | 2.843 | 1.438 | 0 | 10 |
Num_living | 17,521 | 3.206 | 1.72 | 1 | 16 |
Multi_story | 17,521 | 0.337 | 0.473 | 0 | 1 |
Cash_sav | 17,521 | 14, 830.761 | 92,519.966 | 0 | 10,018,000 |
House | 17,521 | 278,941.92 | 3,068,023 | 0 |
Dependent Variable | (1) HHEP | (2) HFEP | (3) HHEP | (4) HFEP | (5) HHEP | (6) HFEP |
---|---|---|---|---|---|---|
Broadband | 37.961 *** | 256.310 ** | 39.051 *** | 240.065 ** | 37.353 *** | 237.820 ** |
(2.660) | (2.572) | (2.727) | (2.494) | (2.616) | (2.469) | |
Age | −58.524 ** | 416.231 | −61.881 ** | 417.473 | ||
(−2.167) | (1.268) | (−2.282) | (1.271) | |||
Age2 | −0.004 | 0.635 | 0.007 | 0.573 | ||
(−0.042) | (1.022) | (0.083) | (0.923) | |||
Marry | 49.921 * | −106.589 * | 55.883 * | −132.101 ** | ||
(1.645) | (−1.779) | (1.848) | (−2.020) | |||
Work | −17.829 | −251.875 | −15.731 | −253.662 | ||
(−1.393) | (−1.578) | (−1.235) | (−1.581) | |||
Num_child | −16.984 * | 68.558 * | ||||
(−1.819) | (1.702) | |||||
Num_living | −0.363 | 29.359 | ||||
(−0.092) | (1.154) | |||||
Multi_story | 58.560 *** | 98.087 | ||||
(5.098) | (1.267) | |||||
LnCash_sav | 0.785 | 2.870 | ||||
(0.446) | (0.167) | |||||
LnHouse | −0.359 | −8.323 | ||||
(−0.363) | (−0.946) | |||||
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Household fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 17,397 | 17,219 | 17,397 | 17,219 | 17,397 | 17,219 |
R-squared | 0.003 | 0.001 | 0.004 | 0.002 | 0.007 | 0.002 |
Unmatched | Mean | Bias | t-Test | ||||
---|---|---|---|---|---|---|---|
Variable | Matched | Treated | Control | Bias (%) | Reduction (%) | t | p > |t| |
Age | U | 61.517 | 60.746 | 7.6 | 4.59 | 0 | |
M | 61.517 | 61.652 | −1.3 | 82.6 | −0.67 | 0.504 | |
Age2 | U | 3888.5 | 3791.4 | 7.5 | 4.54 | 0 | |
M | 3888.5 | 3904.5 | −1.2 | 83.5 | −0.62 | 0.533 | |
Marry | U | 0.778 | 0.782 | −0.9 | −0.55 | 0.585 | |
M | 0.778 | 0.772 | 1.3 | −47.5 | 0.67 | 0.501 | |
Work | U | 0.708 | 0.707 | 0.3 | 0.2 | 0.843 | |
M | 0.708 | 0.706 | 0.4 | −12.5 | 0.19 | 0.851 | |
Num_child | U | 2.802 | 2.859 | −3.9 | −2.36 | 0.018 | |
M | 2.802 | 2.813 | −0.8 | 80.9 | −0.38 | 0.702 | |
Num_living | U | 3.090 | 3.254 | −9.5 | −5.77 | 0 | |
M | 3.090 | 3.078 | 0.7 | 92.9 | 0.35 | 0.727 | |
Multi_story | U | 0.367 | 0.325 | 8.8 | 5.34 | 0 | |
M | 0.367 | 0.367 | −0.1 | 99.1 | −0.04 | 0.97 | |
LnCash_sav | U | 6.748 | 6.549 | 6.2 | 3.72 | 0 | |
M | 6.748 | 6.697 | 1.6 | 74.1 | 0.81 | 0.417 | |
LnHouse | U | 8.608 | 8.917 | −7.1 | −4.34 | 0 | |
M | 8.608 | 8.620 | −0.3 | 96.3 | −0.13 | 0.896 |
Dependent Variable | (1) HHEP | (2) HFEP |
---|---|---|
Broadband | 37.439 *** | 237.397 ** |
(2.620) | (2.463) | |
Control variables | Yes | Yes |
Year fixed effect | Yes | Yes |
Household fixed effect | Yes | Yes |
Observations | 17,389 | 17,211 |
R-squared | 0.007 | 0.002 |
Dependent Variable | (1) HHEP | (2) HFEP |
---|---|---|
Dfalse_4 | −30.951 (−1.426) | 213.326 (1.190) |
Control variables | Yes | Yes |
Year fixed effect | Yes | Yes |
Household fixed effect | Yes | Yes |
Observations | 17,397 | 17,219 |
R-squared | 0.006 | 0.002 |
Dependent Variable | (1) HHEP | (2) HFEP |
---|---|---|
Broadband | 36.762 *** (2.582) | 263.066 ** (2.572) |
Low_Carbon | 60.022 * (1.758) | −2907.797 *** (−2.738) |
Control variables | Yes | Yes |
Year fixed effect | Yes | Yes |
Household fixed effect | Yes | Yes |
Observations | 17,397 | 17,219 |
R-squared | 0.007 | 0.012 |
Dependent Variable | (1) CH | (2) CC |
---|---|---|
Broadband | 0.007 ** (2.004) | 0.007 (0.539) |
Control variables | Yes | Yes |
Year fixed effect | Yes | Yes |
Household fixed effect | Yes | Yes |
Observations | 17,214 | 17,275 |
R-squared | 0.015 | 0.100 |
Low Human Capital | High Human Capital | |||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | (1) HHEP | (2) HFEP | (3) CH | (4) CC | (5) HHEP | (6) HFEP | (7) CH | (8) CC |
Broadband | 14.905 (0.887) | 193.897 (1.270) | 0.003 (0.632) | −0.014 (−0.728) | 62.231 *** (2.632) | 267.833 ** (2.446) | 0.012 ** (2.157) | 0.031 (1.549) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Household fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 9301 | 9184 | 9257 | 9241 | 8096 | 8035 | 7957 | 8034 |
R-squared | 0.004 | 0.002 | 0.015 | 0.095 | 0.012 | 0.005 | 0.017 | 0.109 |
Poverty | Non-Poverty | |||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | (1) HHEP | (2) HFEP | (3) CH | (4) CC | (5) HHEP | (6) HFEP | (7) CH | (8) CC |
Broadband | 13.553 (0.472) | 302.135 (1.580) | 0.005 (0.841) | −0.031 (−1.006) | 76.977 ** (2.221) | 454.531 (1.519) | 0.006 (0.704) | 0.071 ** (2.325) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Household fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 5578 | 5525 | 5519 | 5534 | 6202 | 6166 | 6116 | 6140 |
R-squared | 0.010 | 0.008 | 0.008 | 0.074 | 0.014 | 0.007 | 0.024 | 0.146 |
Small-Size Family | Large-Size Family | |||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | (1) HHEP | (2) HFEP | (3) CH | (4) CC | (5) HHEP | (6) HFEP | (7) CH | (8) CC |
Broadband | 27.043 (1.545) | 172.924 (1.385) | −0.001 (−0.202) | 0.002 (0.142) | 81.622 ** (2.168) | 49.805 (0.182) | 0.027 ** (2.417) | 0.028 (0.812) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Household fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 11,335 | 11,219 | 11,266 | 11,243 | 6062 | 6000 | 5948 | 6032 |
R-squared | 0.008 | 0.002 | 0.015 | 0.095 | 0.016 | 0.005 | 0.020 | 0.080 |
One-Story | Multi-Story | |||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | (1) HHEP | (2) HFEP | (3) CH | (4) CC | (5) HHEP | (6) HFEP | (7) CH | (8) CC |
Broadband | 27.496 (1.288) | 210.004 (1.565) | −0.005 ** (−2.115) | −0.028 (−1.628) | 43.460 ** (2.285) | 349.717 * (1.839) | 0.019 ** (2.495) | 0.074 *** (2.872) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Household fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 11,525 | 11,415 | 11,371 | 11,435 | 5872 | 5804 | 5843 | 5840 |
R-squared | 0.009 | 0.004 | 0.007 | 0.080 | 0.005 | 0.007 | 0.012 | 0.104 |
Dependent Variable | (1) Green Innovation | (2) Energy Efficiency | (3) Environmental Awareness |
---|---|---|---|
Broadband | 305.850 *** (4.359) | 2.273 ** (2.065) | 29.082 *** (4.083) |
Control variables | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes |
Observations | 2842 | 2807 | 2086 |
R-squared | 0.467 | 0.333 | 0.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhang, Y.; Wang, X. Has the Development of Broadband Infrastructure Improved Household Energy Consumption in Rural China? Sustainability 2024, 16, 8606. https://doi.org/10.3390/su16198606
He Z, Zhang Y, Wang X. Has the Development of Broadband Infrastructure Improved Household Energy Consumption in Rural China? Sustainability. 2024; 16(19):8606. https://doi.org/10.3390/su16198606
Chicago/Turabian StyleHe, Zongyue, Yanhong Zhang, and Xiqian Wang. 2024. "Has the Development of Broadband Infrastructure Improved Household Energy Consumption in Rural China?" Sustainability 16, no. 19: 8606. https://doi.org/10.3390/su16198606
APA StyleHe, Z., Zhang, Y., & Wang, X. (2024). Has the Development of Broadband Infrastructure Improved Household Energy Consumption in Rural China? Sustainability, 16(19), 8606. https://doi.org/10.3390/su16198606