The Influence of Morphological Elements of Urban Gated Communities on Road Network Connectivity: A Study of 120 Samples of the Central Districts of Jinan, China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Study Area and Data Acquisition Method
3.2. Indicator Data
3.2.1. Morphological Elements of a Gated Community
3.2.2. Indicators of Connectivity in a Gated Community
- Dependent Variable 1: RD
- Dependent variable 2: D
3.3. Flowchart of This Work and Analysis Method Adopted
- Correlation analysis:
- Factor analysis:
- Multiple linear regression:
- LASSO regression:
4. Results and Analysis
4.1. Correlation Analysis Results
4.2. Factor Analysis Results
4.2.1. Factor Analysis of Independent Variables Related to RD
4.2.2. Factor Analysis of Independent Variables Related to D
4.3. Multiple Linear Regression Analysis Results
- Multiple linear regression of RD
- Multiple linear regression of D
4.4. LASSO Regression Analysis Results
- LASSO regression of RD
- LASSO regression of D
5. Discussion and Conclusions
5.1. Discussion
- T1: RD > 1.3, D > 250.
- T2: RD > 1.3, D < 250.
- T3: RD < 1.3, D > 250.
- T4: RD < 1.3, D < 250.
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamama, B.; Liu, J. What Is beyond the Edges? Gated Communities and Their Role in China’s Desire for Harmonious Cities. City Territ. Archit. 2020, 7, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Wu, Y.; Chu, G.; Wu, X. The Influence of Built-Environment Factors on Connectivity of Road Networks in Residential Areas: A Study Based on 204 Samples in Nanjing, China. Buildings 2023, 13, 301. [Google Scholar] [CrossRef]
- Urban Land Use Classification and Land Use Standards for Planning and Construction [with Explanatory Notes] GB50137-2011. Available online: https://www.soujianzhu.cn/NormAndRules/NormContent.aspx?id=625 (accessed on 17 June 2024).
- Chiu-Shee, C.; Ryan, B.D.; Vale, L.J. Ending Gated Communities: The Rationales for Resistance in China. Hous. Stud. 2023, 38, 1482–1511. [Google Scholar] [CrossRef]
- Baidu Maps. China Urban Traffic Report Q3 2023. Available online: https://jiaotong.baidu.com/cms/reports/traffic/2023Q3/index.html (accessed on 9 July 2024).
- Yu, P.; Yung, E.H.K.; Chan, E.H.W.; Wong, M.S.; Wang, S.; Chen, Y. An Integrated Approach for Examining Urban Fragmentation in Metropolitan Areas: Implications for Sustainable Urban Planning. J. Clean. Prod. 2023, 419, 138151. [Google Scholar] [CrossRef]
- Roitman, S.; Webster, C.; Landman, K. Methodological Frameworks and Interdisciplinary Research on Gated Communities. Int. Plan. Stud. 2010, 15, 3–23. [Google Scholar] [CrossRef]
- Adugbila, E.J.; Martinez, J.A.; Pfeffer, K. Road Infrastructure Expansion and Socio-Spatial Fragmentation in the Peri-Urban Zone in Accra, Ghana. Cities 2023, 133, 104154. [Google Scholar] [CrossRef]
- Zhang, W. Several Opinions of the State Council on Further Strengthening the Management of Urban Planning and Construction. Official Website of the Central People’s Government of the People’s Republic of China. Available online: https://www.gov.cn/zhengce/2016-02/21/content_5044367.htm (accessed on 9 July 2024).
- Fang, B.; Shi, F. Research Progress and Prospects of Road Network Connectivity Measurement Methods—How to Promote Neighborhood System in China from the Perspective of Normative Development. Int. Urban Plan. 2019, 34, 72–78. [Google Scholar] [CrossRef]
- Ge, X.; Han, D. Sustainability-Oriented Configurational Analysis of the Street Network of China’s Superblocks: Beyond Marshall’s Model. Front. Archit. Res. 2020, 9, 858–871. [Google Scholar] [CrossRef]
- Salat, S.; Labbé, F.; Nowacki, C.; Walker, G. Cities and Forms: On Sustainable Urbanism; CSTB Urban Morphology Laboratory, Hermann: Paris, France, 2011; ISBN 978-2-7056-8111-1. [Google Scholar]
- Scoppa, M.; Anabtawi, R. Connectivity in Superblock Street Networks: Measuring Distance, Directness, and the Diversity of Pedestrian Paths. Sustainability 2021, 13, 13862. [Google Scholar] [CrossRef]
- Sharifi, A. Resilient Urban Forms: A Review of Literature on Streets and Street Networks. Build. Environ. 2019, 147, 171–187. [Google Scholar] [CrossRef]
- Siddiqui, A.; Verma, A. Influence of Connectivity of Streets on the Urban Form and Sprawl. In Proceedings of the Sixth International Conference of Transportation Research Group of India, Tiruchirappalli, India, 14–17 December 2021; Devi, L., Errampalli, M., Maji, A., Ramadurai, G., Eds.; Springer Nature: Singapore, 2023; Volume 273, pp. 53–73. [Google Scholar]
- Row, A.T.; Jacobs, J. Review of The Death and Life of Great American Cities. Yale Law J. 1962, 71, 1597. [Google Scholar] [CrossRef]
- Alexander, C. A City Is Not a Tree: 50th Anniversary Edition; Sustasis Press/Off the Common Books: Amherst, MA, USA, 2017. [Google Scholar]
- Repairing the American Metropolis—ProQuest. Available online: https://www.proquest.com/openview/5c94443b97641d5ac9ba98b405e4200c/1?pq-origsite=gscholar&cbl=37272 (accessed on 9 July 2024).
- Sreelekha, M.G.; Krishnamurthy, K.; Anjaneyulu, M.V.L.R. Interaction between Road Network Connectivity and Spatial Pattern. Procedia Technol. 2016, 24, 131–139. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, H.; Liu, Y.; Xie, G.; Wan, W. Flood Impacts on Urban Road Connectivity in Southern China. Sci. Rep. 2022, 12, 16866. [Google Scholar] [CrossRef] [PubMed]
- Sreelekha, M.G.; Karuppanagounder, K.; Anjaneyulu, M.V.L.R. Spatial Analysis of Road Transport System; Department of Civil Engineering, National Institute of Technology Calicut: Kerala, India, 2021. [Google Scholar]
- Miah, M.M.; Mattingly, S.P.; Hyun, K.K. Evaluation of Bicycle Network Connectivity Using Graph Theory and Level of Traffic Stress. J. Transp. Eng. Part A Syst. 2023, 149, 04023080. [Google Scholar] [CrossRef]
- Tong, P.; Du, W.; Yan, Y.; Li, J. Quantifying Bus Accessibility and Mobility for Urban Branches: A Reliability Modeling Approach. Sustainability 2023, 15, 15770. [Google Scholar] [CrossRef]
- Daniel, C.B.; Saravanan, S.; Mathew, S. GIS Based Road Connectivity Evaluation Using Graph Theory. In Transportation Research; Mathew, T.V., Joshi, G.J., Velaga, N.R., Arkatkar, S., Eds.; Springer: Singapore, 2020; pp. 213–226. [Google Scholar]
- Li, J. A Study and Application of Street Connectivity Measurement from the Perspective of Walking and Travelling. Master’s Thesis, Chongqing University, Chongqing, China, 2017. [Google Scholar]
- Etukudoh, E.A.; Adefemi, A.; Ilojianya, V.I.; Umoh, A.A.; Ibekwe, K.I.; Nwokediegwu, Z.Q. A Review of Sustainable Transportation Solutions: Innovations, Challenges, and Future Directions. World J. Adv. Res. Rev. 2024, 21, 1440–1452. [Google Scholar] [CrossRef]
- Marshall, W.E.; Garrick, N.W. Does Street Network Design Affect Traffic Safety? Accid. Anal. Prev. 2011, 43, 769–781. [Google Scholar] [CrossRef]
- Chang, K.-H.; Sheu, J.-B.; Chen, Y.J.; Chang, C.-H.; Liu, C.-H. Practice-Based Post-Disaster Road Network Connectivity Analysis Using a Data-Driven Percolation Theory-Based Method. Transp. Res. Part E Logist. Transp. Rev. 2023, 171, 103022. [Google Scholar] [CrossRef]
- Shen, Z.; Ji, C.; Lu, S. Transportation Network Resilience Response to the Spatial Feature of Hazards. Transp. Res. Part D Transp. Environ. 2024, 128, 104121. [Google Scholar] [CrossRef]
- Poole, A.C.; McCutcheon, J.C.; Toohy, K.; Burraston, B. Testing the Impact of Road Network Connectivity on Criminal Lethality. Homicide Stud. 2018, 22, 277–295. [Google Scholar] [CrossRef]
- Algahtany, M.; Kumar, L.; Barclay, E. The Impact of Road Networks on Crime Rates in Saudi Arabia. Int. J. Rural Criminol. 2019, 4, 292–311. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Li, S.; Liu, Y. How Road Network Transformation May Be Associated with Reduced Carbon Emissions: An Exploratory Analysis of 19 Major Chinese Cities. Sustain. Cities Soc. 2023, 95, 104575. [Google Scholar] [CrossRef]
- Postorino, M.N.; Mantecchini, L. Connectivity Carbon and Noise Levels in the Airport Neighbourhood. Transp. Policy 2019, 79, 204–212. [Google Scholar] [CrossRef]
- Boeing, G.; Pilgram, C.; Lu, Y. Urban Street Network Design and Transport-Related Greenhouse Gas Emissions around the World. Transp. Res. Part D Transp. Environ. 2024, 127, 103961. [Google Scholar] [CrossRef]
- Sun, G.; Wallace, D.; Webster, C. Unravelling the Impact of Street Network Structure and Gated Community Layout in Development-Oriented Transit Design. Land Use Policy 2020, 90, 104328. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.; Millard-Ball, A. Global Trends toward Urban Street-Network Sprawl. Proc. Natl. Acad. Sci. USA 2020, 117, 1941–1950. [Google Scholar] [CrossRef]
- The Impact of Gated Community on Connectivity & Accessibility Wang Qing a Thesis Submitted for the Degree of Master of Arts. Available online: https://usercontent.cljtscd.com/scholar?q=cache:SZpxsEn8zpwJ:scholar.google.com/+urban+connectivity+and+gated+communities&hl=zh-CN&as_sdt=0,5 (accessed on 13 August 2024).
- Paul, S.; Roy, D.; Sarkar, B.C. GIS-Based Road Network Connectivity Assessment and Its Impact on Agricultural Characteristics Using Graph Theory: A Block-Level Study in the Hill Area of Darjeeling District, West Bengal. In Advancement of GI-Science and Sustainable Agriculture: A Multi-Dimensional Approach; Das, J., Halder, S., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 243–255. ISBN 978-3-031-36825-7. [Google Scholar]
- Sarkar, T.; Sarkar, D.; Mondal, P. Road Network Accessibility Analysis Using Graph Theory and GIS Technology: A Study of the Villages of English Bazar Block, India. Spat. Inf. Res. 2021, 29, 405–415. [Google Scholar] [CrossRef]
- Merchán, D.; Winkenbach, M.; Snoeck, A. Quantifying the Impact of Urban Road Networks on the Efficiency of Local Trips. Transp. Res. Part A Policy Pract. 2020, 135, 38–62. [Google Scholar] [CrossRef]
- Derrible, S.; Kennedy, C. Applications of Graph Theory and Network Science to Transit Network Design. Transp. Rev. 2011, 31, 495–519. [Google Scholar] [CrossRef]
- Hillier, B.; Leaman, A.; Stansall, P.; Bedford, M. Space Syntax. Environ. Plan. B Plan. Des. 1976, 3, 147–185. [Google Scholar] [CrossRef]
- Topcu, M.; Southworth, M. A Comparative Study of the Morphological Characteristics of Residential Areas in San Francisco. A/Z ITU J. Fac. Archit. 2014, 11, 173–189. [Google Scholar]
- Marshall, S. Line Structure Representation for Road Network Analysis. J. Transp. Land Use 2016, 9, 29–64. [Google Scholar] [CrossRef]
- Hess, P.M. Measures of connectivity [Streets: Old paradigm, new investment]. Places 1997, 11, 58–65. [Google Scholar]
- Stangl, P. Overcoming Flaws in Permeability Measures: Modified Route Directness. J. Urban. Int. Res. Placemaking Urban Sustain. 2019, 12, 1–14. [Google Scholar] [CrossRef]
- Handy, S.; Paterson, R.G.; Butler, K. Planning for Street Connectivity: Getting from Here to There; American Planning Association: Chicago, IL, USA, 2003. [Google Scholar]
- Daghash, F.; Anabtawi, R.; Byon, Y.-J.; Alawadi, K. Exploring the Limitations of Pedestrian Route Directness: A Correlation between Sensitivity and Radius Variability. Buildings 2023, 13, 2612. [Google Scholar] [CrossRef]
- Choi, D.; Ewing, R. Effect of Street Network Design on Traffic Congestion and Traffic Safety. J. Transp. Geogr. 2021, 96, 103200. [Google Scholar] [CrossRef]
- Stangl, P. The US Pedestrian Plan: Linking Practice and Research. Plan. Pract. Res. 2011, 26, 289–305. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Sugiyama, T.; Lamb, K.E.; Villanueva, K.; Owen, N. Street Connectivity and Walking for Transport: Role of Neighborhood Destinations. Prev. Med. 2014, 66, 118–122. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Lian, T.; Frank, L.D. Walking (In)Convenience: An In-Depth Study of Pedestrian Detours to Daily Facilities. J. Am. Plan. Assoc. 2024, 1–16. [Google Scholar] [CrossRef]
- Schön, P.; Heinen, E.; Rangul, V.; Sund, E.R.; Manum, B. The Impact of Street Network Connectivity on Active School Travel: Norway’s HUNT Study. Environ. Plan. B Urban Anal. City Sci. 2024, 23998083241235978. [Google Scholar] [CrossRef]
- Randall, T.A.; Baetz, B.W. Evaluating Pedestrian Connectivity for Suburban Sustainability. J. Urban Plan. Dev. 2001, 127, 1–15. [Google Scholar] [CrossRef]
- Tong, H. A Study on the Openness of Jinan Residential Area Based on the Evaluation of Road Network Structure Elements. Master’s Thesis, Shandong University, Jinan, China, 2021. [Google Scholar]
- Traffic Institute of China Academy of Planning. Road Network Density Monitoring Report for Major Cities in China 2020. Available online: http://mp.weixin.qq.com/s?__biz=MjM5Nzc3MjYwMQ==&mid=2650663832&idx=1&sn=514c4586a81c0c607836ebb1a9febb41&chksm=bedda7ce89aa2ed8dc90309691a00ca4d55bcc87adff807da415f912eabeeb06551fdcbf3a4a#rd (accessed on 14 July 2024).
- Traffic Institute of China Academy of Planning. Road Network Density Monitoring Report for Major Cities in China 2021. Available online: http://mp.weixin.qq.com/s?__biz=MjM5Nzc3MjYwMQ==&mid=2650682567&idx=1&sn=11635f81826c7400373a3b31dcafa8e1&chksm=bede789189a9f18797c8eb3687c97344c42b93a3e0140cf009e34fb7b2a3a17b259490e50fd4#rd (accessed on 14 July 2024).
- Road Network Density and Operation Status Monitoring Report of Major Cities in China (2022). Urban Rural. Constr. 2023, 70–80. Available online: https://kns.cnki.net/kcms2/article/abstract?v=VKFFl0Cm57aFoE380fMcJTDMBW8Ifcpt6SExUdehZhYjtJ--RvfGkhK-VIxlsgK4NrD9ZOZul7CG5OvMtrmy7wrwb3dfSs43ocOU59CqIGaOdOgA7AMuCsyYSX8CfN0ElB_NBxYDNDguryy-61G9Iw==&uniplatform=NZKPT&language=CHS (accessed on 14 July 2024).
- China Academy of Planning: Monitoring Report on Road Network Density and Operation Status of Major Cities in China in 2023. Internet Data Information Network-199IT, Chinese Internet Data Research Information Centre-199IT 2023. Available online: https://www.199it.com/archives/1617425.html (accessed on 14 July 2024).
- Baidu Maps. Baidu Maps China City Traffic Report 2023.Pdf. Available online: https://jiaotong.baidu.com/cms/reports/traffic/2023/%E7%99%BE%E5%BA%A6%E5%9C%B0%E5%9B%BE2023%E5%B9%B4%E4%B8%AD%E5%9B%BD%E5%9F%8E%E5%B8%82%E4%BA%A4%E9%80%9A%E6%8A%A5%E5%91%8A.pdf (accessed on 14 July 2024).
- Planning and Design Standards for Urban Residential Areas (GB50180-2018). Available online: https://www.soujianzhu.cn/NormAndRules/NormContent.aspx?id=362 (accessed on 16 July 2024).
- Alawadi, K.; Anabtawi, R.; Ismail, I.; Alshehhi, M. From Local to Global: Uniting Neighborhood Planning Units for More Efficient Walks. Transp. Res. Interdiscip. Perspect. 2024, 23, 101014. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; Association for Computing Machinery: New York, NY, USA, 2022; Volume 45, pp. 287–290. ISBN 978-1-4503-9773-5. [Google Scholar]
- Yamín, D.; Medaglia, A.L.; Akkinepally, A.P. Reliable Routing Strategies on Urban Transportation Networks. Transp. Sci. 2024, 58, 377–393. [Google Scholar] [CrossRef]
- Marić, I.; Avdić, A.; Avdić, B. (PDF) Derivation of Critical Infrastructure Accessibility Index Using GIS-MCDA and Network Analysis: Case Study of Sarajevo. In Proceedings of the 10th International Conference on Geographical Information Systems Theory, Applications and Management, Angers, France, 1–3 May 2024; pp. 15–25. [Google Scholar]
- Strzalka, A.; Malicki, J.; Blachowski, J. Least-Cost-Path and Closest Facility Analysis for Generating District Heating Networks on a Communal Level. Appl. Sci. 2024, 14, 763. [Google Scholar] [CrossRef]
- Kuang, L.; Hu, H.; Xiang, S.; Zhang, H.; Liu, G.; Tai, R.; Wang, L.; Sheng, Y. Social Network and Related Factors in Older People with Sensory Impairment in the Community: Using Principal Component Analysis. Geriatr. Nur. 2024, 57, 109–116. [Google Scholar] [CrossRef]
- Ranstam, J.; Cook, J.A. LASSO Regression. Br. J. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Walters, D.; Brown, L. Design First; Routledge: London, UK, 2004; ISBN 978-0-08-047712-1. [Google Scholar]
- Lu, J.; Wang, W. Urban Road Network Planning Indicator System. J. Transp. Eng. 2004, 4, 62–67. Available online: https://transport.chd.edu.cn/en/article/id/200404016 (accessed on 10 July 2024).
Morphological Elements | Indicators | Calculation Method or Data Source | Formulas | Unit |
---|---|---|---|---|
Basic Information (I) | Number of buildings (I1) | https://jinan.anjuke.com/ (accessed on 9 March 2024) | RCS | |
Building density (I2) | — | |||
Basic Form (S) | Length (S1) | Caculated by GIS | — | m |
Width (S2) | ||||
Length-width ratio (S3) | Ratio of the long side of GC to its short side | — | ||
Perimeter (S4) | Caculated by GIS | — | m | |
Area (S5) | hm2 | |||
Perimeter-area ratio (S6) | Ratio of perimeter to area of GC | — | ||
Entrance and Exit (E) | Quantity (E1) | Caculated by GIS | — | RCS |
Width (E2) | Sum of the widths of all entrances to the GC | m | ||
Urban road width (E3) | Sum of the widths of urban roads connected to all entrances and exits of GC | |||
Degree of articulation (E4) | Ratio of the width of all entrances to the width of its connecting urban roads | — | ||
Internal Road Network (R/N) | Total road length (R1) | Caculated by GIS | km | |
Road network density (R2) | Ratio of total length of road network to area of GC | km/km2 | ||
Road area (R3) | Sum of the products of road width and road length within GC | hm2 | ||
Road area ratio (R4) | Ratio of road area to area of GC | — | ||
X-intersection (N1) | Number of X-intersections | — | PCS | |
T-intersection (N2) | Number of T-intersections | |||
cul-de-sacs (N3) | Number of cul-de-sacs | |||
Intersection density (N4) | Ratio of number of intersections to area of GC | — | ||
Number of nodes (N5) | Number of all nodes | PCS |
The Index Name | Value | |
---|---|---|
Kaiser–Meyer–Olkin measure | 0.621 | |
Spheroid test of Bartlett | Approximate chi square | 816.722 |
df | 66 | |
Sig. | <0.001 |
Initial Eigenvalue | Extraction of the Sum of Squares of Loads | Sum of Squared Rotating Loads | |||||||
---|---|---|---|---|---|---|---|---|---|
Ingredients | Total | Percentage of Variance | Cumulative | Total | Percentage of Variance | Cumulative | Total | Percentage of Variance | Cumulative |
1 | 6.088 | 50.73 | 50.73 | 6.088 | 50.73 | 50.73 | 5.621 | 46.839 | 46.839 |
2 | 2.593 | 21.606 | 72.336 | 2.593 | 21.606 | 72.336 | 2.641 | 22.008 | 68.847 |
3 | 1.057 | 8.807 | 81.143 | 1.057 | 8.807 | 81.143 | 1.496 | 12.296 | 81.143 |
4 | 0.822 | 6.846 | 87.990 | ||||||
5 | 0.703 | 5.859 | 93.849 | ||||||
6 | 0.366 | 3.046 | 96.895 | ||||||
7 | 0.213 | 1.777 | 98.673 | ||||||
8 | 0.101 | 0.838 | 99.511 | ||||||
9 | 0.024 | 0.197 | 99.708 | ||||||
10 | 0.017 | 0.144 | 99.852 | ||||||
11 | 0.016 | 0.134 | 99.985 | ||||||
12 | 0.002 | 0.015 | 1000 |
Index | Component | ||
---|---|---|---|
F1 | F2 | F3 | |
R1 | 0.971 | 0.059 | 0.162 |
N5 | 0.969 | 0.125 | 0.096 |
S5 | 0.931 | −0.263 | 0.204 |
N2 | 0.864 | 0.201 | 0.075 |
R3 | 0.844 | 0.119 | 0.314 |
I1 | 0.827 | −0.199 | 0.198 |
N1 | 0.733 | 0.229 | 0.147 |
R2 | 0.11 | 0.939 | −0.025 |
N4 | 0.143 | 0.922 | −0.06 |
R4 | −0.098 | 0.818 | 0.232 |
E4 | 0.133 | 0.069 | 0.818 |
I2 | −0.364 | −0.025 | −0.712 |
The Index Name | Value | |
---|---|---|
Kaiser–Meyer–Olkin measure | 0.823 | |
Spheroid test of Bartlett | Approximate chi square | 945.427 |
df | 91 | |
Sig. | <0.001 |
Initial Eigenvalue | Extraction of the Sum of Squares of Loads | Sum of Squared Rotating Loads | |||||||
---|---|---|---|---|---|---|---|---|---|
Ingredients | Total | Percentage of Variance | Cumulative | Total | Percentage of Variance | Cumulative | Total | Percentage of Variance | Cumulative |
1 | 8.715 | 62.247 | 62.247 | 8.715 | 62.247 | 62.247 | 8.460 | 60.429 | 60.429 |
2 | 2.656 | 18.974 | 81.221 | 2.656 | 18.974 | 81.221 | 2.911 | 20.793 | 81.221 |
3 | 0.774 | 5.53 | 86.751 | ||||||
4 | 0.569 | 4.067 | 90.819 | ||||||
5 | 0.365 | 2.606 | 93.425 | ||||||
6 | 0.289 | 2.066 | 95.491 | ||||||
7 | 0.197 | 1.41 | 96.901 | ||||||
8 | 0.157 | 1.123 | 98.024 | ||||||
9 | 0.117 | 0.836 | 98.86 | ||||||
10 | 0.076 | 0.542 | 99.403 | ||||||
11 | 0.043 | 0.304 | 99.707 | ||||||
12 | 0.023 | 0.167 | 99.874 | ||||||
13 | 0.011 | 0.078 | 99.952 | ||||||
14 | 0.007 | 0.048 | 100 |
Index | Component | |
---|---|---|
F1 | F2 | |
S5 | 0.976 | 0.104 |
R1 | 0.963 | 0.087 |
S4 | 0.955 | −0.02 |
N5 | 0.932 | 0.133 |
S1 | 0.89 | −0.102 |
R3 | 0.874 | 0.117 |
I1 | 0.856 | 0.07 |
S2 | 0.823 | 0.309 |
N2 | 0.814 | 0.113 |
S6 | −0.774 | −0.268 |
N3 | 0.707 | 0.047 |
E3 | 0.123 | 0.963 |
E1 | −0.062 | 0.946 |
E2 | 0.224 | 0.917 |
Model | Standardized Coefficients | t | Sig. | Collinear Statistics | ||
---|---|---|---|---|---|---|
Standard Error | Beta | Permission | VIF | |||
(constant) | 0.024 | 57.324 | <0.001 | |||
F1 | 0.025 | −0.373 | −3.117 | 0.003 | 1.000 | 1.000 |
F2 | 0.025 | −0.406 | −3.393 | 0.002 | 1.000 | 1.000 |
F3 | 0.025 | −0.329 | −2.746 | 0.009 | 1.000 | 1.000 |
Model | Standardized Coefficients | t | Sig. | Collinear Statistics | ||
---|---|---|---|---|---|---|
Standard Error | Beta | Permission | VIF | |||
(constant) | 7.006 | 30.397 | <0.001 | |||
F1 | 7.085 | 0.702 | 8.675 | <0.001 | 1.000 | 1.000 |
F2 | 7.085 | −0.482 | −5.962 | <0.001 | 1.000 | 1.000 |
Type | Condition | Case 1 | Case 2 | Case 3 |
---|---|---|---|---|
T1 | RD > 1.3 D > 250 | Meili Xinju | Shengfu Garden | Guohua Yinxiang |
T2 | RD > 1.3 D < 250 | Golden Age | Xingfu Jiayuan | Hengda garden-east |
T3 | RD < 1.3 D > 250 | Dongli Garden | Jianda Garden | Shida new Village |
T4 | RD < 1.3 D < 250 | Steel Garden-east | Ginza Garden | Emerald Bund |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Zhao, J.; Deng, Q.; Wang, S.; Che, C.; Chen, Y. The Influence of Morphological Elements of Urban Gated Communities on Road Network Connectivity: A Study of 120 Samples of the Central Districts of Jinan, China. Sustainability 2024, 16, 8095. https://doi.org/10.3390/su16188095
Hao X, Zhao J, Deng Q, Wang S, Che C, Chen Y. The Influence of Morphological Elements of Urban Gated Communities on Road Network Connectivity: A Study of 120 Samples of the Central Districts of Jinan, China. Sustainability. 2024; 16(18):8095. https://doi.org/10.3390/su16188095
Chicago/Turabian StyleHao, Xinxin, Jilong Zhao, Qingtan Deng, Siyu Wang, Canyi Che, and Yuxiang Chen. 2024. "The Influence of Morphological Elements of Urban Gated Communities on Road Network Connectivity: A Study of 120 Samples of the Central Districts of Jinan, China" Sustainability 16, no. 18: 8095. https://doi.org/10.3390/su16188095
APA StyleHao, X., Zhao, J., Deng, Q., Wang, S., Che, C., & Chen, Y. (2024). The Influence of Morphological Elements of Urban Gated Communities on Road Network Connectivity: A Study of 120 Samples of the Central Districts of Jinan, China. Sustainability, 16(18), 8095. https://doi.org/10.3390/su16188095