Unveiling the Implications of Organic Nutrient Management Protocols on Soil Properties, Economic Sustainability, and Yield Optimization in Fenugreek Cultivation in Acidic Soils of Northeast India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Crop Husbandry
2.3. Soil Analysis
2.4. Quality Parameters Analyses
2.5. Financial Analysis and Assessment of Financial Indices
2.6. Resources Utilization Efficiencies
2.7. Statistical Analysis and Data Visualization
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Available Nutrients in the Soil
3.2.1. Macronutrients
3.2.2. Secondary and Micronutrients
3.3. Effect of Organic Nutrients on Qualitative Properties of Fenugreek
3.4. Financial and Resources Utilization Efficiencies Analysis
3.5. Correlation Analysis
3.6. Principal Components Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srinivasan, K. Fenugreek (Trigonella foenum–graecum L.): An overview. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2328–2343. [Google Scholar]
- Abeysekera, W.K.S.M.; Gopalakrishnan, L.; Vidanarachchi, J.K. Fenugreek (Trigonella foenum–graecum L.): A review of its nutritional, therapeutic, and industrial applications. J. Food Process. Preserv. 2017, 41, 13222. [Google Scholar]
- Srinivasan, K. Fenugreek (Trigonella foenum–graecum): A review of health beneficial physiological effects. Food Rev. Int. 2006, 22, 203–224. [Google Scholar] [CrossRef]
- Wani, S.A.; Kumar, P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci. 2018, 17, 97–106. [Google Scholar] [CrossRef]
- Ouzir, M.; El Bairi, K.; Amzazi, S. Toxicological properties of fenugreek (Trigonella foenum graecum). Food Chem. Toxicol. 2016, 96, 145–154. [Google Scholar] [CrossRef]
- Nair, R.M.; Pandey, A.K.; War, A.R.; Hanumantharao, B. Biotic and abiotic constraints in fenugreek production and their management strategies: A comprehensive appraisal. J. Plant Growth Reg. 2019, 38, 1148–1167. [Google Scholar]
- Lakshmi, B.V.; Suryanarayana, M.A.; Narayana Reddy, M.S. Effect of nitrogen and phosphorus on growth, yield and quality of fenugreek. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2400–2406. [Google Scholar]
- Singh, V.; Mishra, J.S.; Tomar, K.S.; Gupta, R.K.; Bhattacharya, B. Response of fenugreek (Trigonella foenum–graecum L.) to integrated nutrient management. J. Environ. Biol. 2021, 42, 603–607. [Google Scholar]
- Bulut, S.; Akinci, C. The role of low temperatures on root morphology and some physiological parameters in four fenugreek (Trigonella foenum–graecum L.) genotypes. Pak. J. Bot. 2010, 42, 2773–2781. [Google Scholar]
- Shastry, S.V.S.; Sanjay, K.; Mostafa, A.A. Nutrient Management for Sustainable Pulse Production. In Pulses: Crops for Sustainable Food Production and Health; Springer: Singapore, 2022; pp. 205–229. [Google Scholar]
- Kumar, A.; Kumar, A.; Pandey, S. Nutrient management in fenugreek (Trigonella foenum–graecum L.): A review. J. Plant Nutri. 2021, 44, 1297–1307. [Google Scholar]
- Yadav, B.S.; Gupta, A. Yield and quality of fenugreek (Trigonella foenum–graecum L.) as influenced by integrated nutrient management. J. Pharmacog. Phytochem. 2021, 10, 1745–1749. [Google Scholar]
- Raza, A.; Sinha, N.K.; Misra, R.N. Integrated nutrient management for sustainable crop production. In Integrated Nutrient Management for Sustainable Crop Production; Springer: Cham, Switzerland, 2022; pp. 1–19. [Google Scholar]
- Patel, H.K.; Patel, H.R.; Patel, S.M.; Patel, G.N. Nutrient management in fenugreek (Trigonella foenum–graecum L.) for sustainable production. Int. J. Chem. Stud. 2020, 8, 2415–2418. [Google Scholar]
- Malik, M.A.; Raza, A.; Sana, M. Role of Biofertilizers in Sustainable Crop Production. In Integrated Nutrient Management for Sustainable Crop Production; Springer: Cham, Switzerland, 2021; pp. 121–141. [Google Scholar]
- Kalaivanan, D.; Sudhir, E. Integrated nutrient management for sustainable production of fenugreek (Trigonella foenum–graecum L.). Ind. J. Agric. Sci. 2020, 90, 1561–1565. [Google Scholar]
- Belete, Y.; Kebede, S.A.; Wortmann, C.S. Integrated nutrient management in fenugreek (Trigonella foenum–graecum L.) production in the central rift valley of Ethiopia. Nutr. Cycl. Agroecosyst. 2020, 116, 289–301. [Google Scholar]
- Shrestha, J.; Arjun Yadav, R.; Amgain, L.P.; Sharma, J. Effects of organic nutrient sources on growth and yield of fenugreek. J. Plant Nutr. 2018, 41, 2211–2219. [Google Scholar]
- Singh, H.; Dhaliwal, G.S.; Mahal, J.S. Mineral Nutrition of Fenugreek (Trigonella foenum–graecum L.). Crop Res. 2007, 34, 21–25. [Google Scholar]
- Verma, Y.K.; Singh, A.K.; Joshi, D.C. Potassium Deficiency in Fenugreek (Trigonella foenum–graecum L.). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2023–2031. [Google Scholar]
- Singh, A.K.; Verma, S.K.; Yadav, R.K.; Verma, Y.K. Nutrient Uptake and Utilization by Fenugreek (Trigonella foenum–graecum L.) as Affected by Farmyard Manure and Fertilizer Application. Legume Res. 2019, 42, 590–596. [Google Scholar]
- Kumar, A.; Sharma, R.; Rani, S. Effect of organic amendments on fenugreek production in acidic soils. J. Agron. Crop Sci. 2020, 206, 783–792. [Google Scholar]
- Bhat, N.A.; Rattan, R.; Singh, J. Role of vermicompost in sustainable agriculture. J. Soil Sci. Plant Nutr. 2018, 18, 1–14. [Google Scholar]
- Singh, H.; Kumar, V.; Yadav, A. Nutrient management strategies for improving fenugreek yield. Hortic. Sci. 2019, 56, 205–213. [Google Scholar]
- Khan, M.S.; Bibi, A.; Hussain, M. Impact of compost on fenugreek growth and yield. Agric. Sci. 2017, 8, 321–328. [Google Scholar]
- Verma, Y.K.; Singh, A.K.; Yadav, R.K.; Sharma, S.K. Effect of integrated nutrients management on growth, yield, productivity and profitability of Fenugreek (Trigonella foenum–graecum L.). Pharma J. 2021, 10, 1622–1628. [Google Scholar]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Dar, G.H.; Bhat, R.A.; Mehmood, M.A.; Hakeem, K.R. Microbiota and Biofertilizers; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 2. [Google Scholar] [CrossRef]
- Fetzer, J.; Frossard, E.; Kaiser, K.; Hagedorn, F. Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils seasonal patterns and effects of fertilization. Biogeosciences 2022, 19, 1527–1546. [Google Scholar] [CrossRef]
- Lian, J.; Wang, H.; Deng, Y.; Xu, M.; Liu, S.; Zhou, B.; Jangid, K.; Duan, Y. Impact of long-term application of manure and inorganic fertilizers on common soil bacteria in different soil types. Agric. Ecosyst. Environ. 2022, 337, 108044. [Google Scholar] [CrossRef]
- Ashihara, H. Trigonelline (N–methylnicotinic acid) Biosynthesis and its Biological Role in Plants. Nat. Prod. Communi. 2008, 3, 1423–1428. [Google Scholar] [CrossRef]
- Cui, S.; Cao, G.; Zhu, X. Effects of Straw Return Duration on Soil Carbon Fractions and Wheat Yield in Rice–Wheat Cropping System. Sustainability 2024, 16, 754. [Google Scholar] [CrossRef]
- Mohite, D.D.; Chavan, S.S.; Jadhav, V.S.; Kanase, T.; Kadam, M.A.; Singh, S.A. Vermicomposting: A holistic approach for sustainable crop production, nutrient-rich biofertilizer, and environmental restoration. Discov. Sustain. 2024, 5, 60. [Google Scholar] [CrossRef]
- Kumar, V.R.; Fathima, F.; Jaishree, R.; Priya, G. Vermicomposting—An Effective Method for Sustainable Agriculture and Environmental Impact. In Sustainable and Cleaner Technologies for Environmental Remediation. Environmental Science and Engineering; Jeyaseelan, A., Murugasen, K., Sivashanmugam, K., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Chatterjee, R.; Debnath, A.; Mishra, S. Vermicompost and Soil Health. In Soil Health. Soil Biology; Giri, B., Varma, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 59. [Google Scholar] [CrossRef]
- Singh, M.; Gupta, R.; Sharma, N. Water management strategies for improving fenugreek productivity in arid regions. Agric. Water Manag. J. 2017, 19, 214–223. [Google Scholar]
- Reddy, P.V.; Rao, V.V.; Naik, P.L. Comparative analysis of irrigation methods and their influence on fenugreek yield. J. Agric. Eng. Technol. 2019, 23, 110–119. [Google Scholar]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis. Soil Science Society of America & American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar] [CrossRef]
- Chesnin, L.; Yein, C.H. Turbidimetric determination of available sulphur. Soil Sci. Soc. Am. Proceed. 1950, 15, 149–151. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Berger, K.C.; Truog, E. Boron Determination in Soils and Plants. Industr. Eng. Chem. Analyt. Ed. 1939, 11, 540545. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Bhupenchandra, I.; Basumatary, A.; Dutta, S.; Das, A.; Choudhary, A.K.; Lal, R.; Sharma, A.D.; Sen, A.; Prabhabati, Y.; Sahoo, M.R. Repercussions of fertilization with boron and enriched organic manure on soil chemical characteristics, boron and phosphorus fractions, and French bean productivity in an acidic Inceptisol of eastern Himalaya. Sci. Hort. 2024, 324, 112589. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. Association of Official Analysis Chemists International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adams, M.; Berset, C.; Kessler, M.; Hamburger, M. Medicinal herbs for the treatment of rheumatic disorders—A survey of European herbals from the 16th and 17th century. J. Ethnopharmacol. 2011, 137, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Bhupenchandra, I.; Chongtham, S.K.; Basumatary, A.; Singh, A.H.; Das, A.; Choudhary, A.K.; Kamei, G.; Sinyorita, S.; Singh, L.K.; Devi, E.L.; et al. Changes in soil properties, productivity and profitability as influenced by the adoption of site–specific integrated crop management technology in turmeric (Curcuma longa L.) in Eastern Himalayan acidic Inceptisol. Ind. Crop. Prod. 2022, 180, 114745. [Google Scholar] [CrossRef]
- Mishra, S.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R. Multivariate statistical data analysis– principal component analysis. Int. J. Livestock Res. 2017, 7, 60–78. [Google Scholar]
- Bhupenchandra, I.; Basumatary, A.; Dutta, S.; Singh, A.H.; Singh, L.K.; Bora, S.S.; Devi, S.H.; Bhagowati, S. Effect of boron fertilization on soil chemical properties, nutrients status in the soil and yield of crops under cauliflower–cowpea okra sequence in North East India. Commun. Soil Sci. Plant Anal. 2021, 52, 1301–1326. [Google Scholar] [CrossRef]
- Kage, H.; Alt, C.; Stutzel, H. Aspects of nitrogen use efficiency of cauliflower I. A simulation modelling–based analysis of nitrogen availability under field conditions. J. Agric. Sci. 2003, 141, 1–6. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Subler, S.; Edwards, C.A.; Bachman, G.; Metzger, J.D. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 2002, 46, 579–590. [Google Scholar] [CrossRef]
- Suthar, S. Vermicomposting research: Current status and future prospects. In Proceedings of the International Conference on Environmental Research and Technology (ICERT 2008), Singapore, 28–30 May 2008; pp. 26–28. [Google Scholar]
- Bandyopadhyay, P.K.; Saha, S.; Mallick, S. Comparison of soil physical properties between a permanent fallow and a long-term rice-wheat cropping with inorganic and organic inputs in the humid subtropics of eastern India. Commun. Soil Sci. Plant Anal. 2011, 42, 435–449. [Google Scholar] [CrossRef]
- Yazdani, M.; Akram, M.; Aslam, M. Effects of vermicompost and different levels of nitrogen on soil bulk density, porosity and soil moisture retention at different growth stages of maize. Soil Environ. 2019, 38, 91–98. [Google Scholar]
- Gabhane, V.V.; Ramteke, P.; Chary, G.R.; Patode, R.S.; Ganvir, M.M.; Chorey, A.; Tupe, A.R. Effects of long-term nutrient management in semi–arid vertisols on soil quality and crop productivity in a cotton–green gram intercropping system. Field Crop. Res. 2023, 303, 109115. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2016. [Google Scholar]
- Maguire, R.O.; Sims, J.T.; Tisdale, S.L. Phosphorus bioavailability in calcareous soils amended with poultry litter or poultry litter ash. J. Environ. Qual. 2014, 29, 115–121. [Google Scholar]
- Gutiérrez Miceli, F.A.; Moguel Zamudio, B.; Abud Archila, M.; Ramirez Villanueva, D.A.; Dendooven, L.; Vázquez–Marrufo, G. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef]
- Ravindran, B.; Sivakumar, N. Vermicomposting: A Sustainable Solution for Solid Waste Management; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Saha, U.K.; Mina, B.L.; Rattan, R.K. Liming and nutrient management effects on soil properties and crop productivity in an acid Alfisol of Mizoram. J. Ind. Soc. Soil Sci. 2012, 60, 217–224. [Google Scholar]
- Garg, P.; Gupta, A. Effect of vermicompost and NPK fertilizer on growth, yield and quality of tomato (Solanum lycopersicum L.). Int. J. Chem. Stud. 2017; 5, 1518–1521. [Google Scholar]
- Abrol, V.; Sharma, S.; Kadyan, M. Effect of Vermicompost and Chemical Fertilizers on Soil Properties, Growth and Yield of Wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1693–1698. [Google Scholar]
- Rajkhowa, D.J.; Bhuyan, R.B.; Gogoi, P.; Nath, S.K. Effect of vermicompost and biofertilizer on growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Int. J. Chem. Stud. 2019, 7, 2277–2282. [Google Scholar]
- Sarwar, G.; Schmeisky, H.; Hussain, N.; Muhammad, S.; Ibrahim, M.; Safdar, E. Improvement of soil physical and chemical properties with compost application in rice wheat cropping system. Pak. J. Bot. 2008, 40, 275–282. [Google Scholar]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.J.; Simpson, A.J.; Kingery, W.L. Solid–State 13 C Nuclear Magnetic Resonance (NMR) Analysis of Soil Organic Matter. Ref. Modul. Earth Syst. Environ. Sci. 2017. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, R.R. Effect of organic manures on growth, yield and quality of fenugreek (Trigonella foenum–graecum L.). Bioscan 2015, 10, 371–375. [Google Scholar]
- Verma, A.K.; Singh, R.P.; Singh, D.P. Growth, yield and quality of fenugreek as influenced by nitrogen, phosphorus and bio-fertilizers. Indian J. Hort. 2011, 28, 101–105. [Google Scholar]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Gederts, I. Review on Physiological Effects of Vermicomposts on Plants. Biol. Compost. 2020, 1, 63–86. [Google Scholar]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Metzger, J.D.; Lucht, C. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia 2006, 50, 15–23. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Paramesha, M.; Priyanka, N.; Crassina, K.; Shetty, N.P. Evaluation of diosgenin content from eleven different Indian varieties of fenugreek and fenugreek leaf powder fortified bread. J. Food Sci. Technol. 2021, 58, 4746–47541. [Google Scholar] [CrossRef]
- Raju, J.; Rao, C.V. Diosgenin, a steroid saponin constituent of yams and fenugreek: Emerging evidence for applications in medicine. In Bioactive Compounds in Phytomedicine; Intech Open: Rijeka, Croatia, 2012; pp. 125–142. [Google Scholar]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Welch, C.; Metzger, J.D. Influences of vermicompost on field strawberries: 1. Effects on growth and yields. Bioresour. Technol. 2004, 93, 145–153. [Google Scholar] [CrossRef]
- Acharya, S.N.; Thomas, J.E.; Basu, S.K. Fenugreek: An “old world” crop for the “new world”. Biodiversity 2010, 11, 45–56. [Google Scholar] [CrossRef]
Organic Inputs | pH | OC | N | P2O5 | K2O | Ca | Mg | S | Fe |
---|---|---|---|---|---|---|---|---|---|
(%) | |||||||||
FYM | 6.8 | 14.1 | 0.84 | 0.38 | 0.51 | 0.87 | 0.42 | 0.35 | 0.24 |
VC | 6.5 | 16.6 | 1.43 | 2.26 | 1.21 | 1.57 | 0.51 | 0.26 | 0.92 |
Treatments | Plant Height (cm) | Days to First Flowering | No. of Primary Branches | No. of Secondary Branches | No. of Pods/Plant | Days to Maturity | No. of Seeds/Pod | Seed Yield/ Plot (g) | Seed Yield (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|
T1 | 25.15 c | 43.29 b | 3.33 c | 6.33 c | 19.56 c | 130.23 e | 3.44 c | 42.67 d | 840 e |
T2 | 27.22 c | 44.63a b | 3.49 b | 8.33 b | 23.67 c | 133.11 d | 5.10 b | 51.67 d | 1060 d |
T3 | 29.44 b | 45.82a b | 3.84 b | 10.67 ab | 28.89 b | 140.95 c | 5.11 b | 58.11 c | 1198 c |
T4 | 30.78 b | 46.23 a | 3.88 b | 11.33 a | 31.11 ab | 142.71 b | 6.78 a | 67.33 b | 1325 b |
T5 | 32.33 a | 46.71 a | 4.56 a | 11.67 a | 33.33 a | 147.66 a | 7.01 a | 74.21 a | 1498 a |
SE | 1.27 | 0.62 | 0.21 | 1.02 | 2.51 | 3.19 | 0.65 | 5.58 | 112.34 |
Mean | 28.95 | 45.33 | 3.82 | 9.67 | 21.71 | 138.93 | 5.49 | 54.73 | 12.32 |
Treatments | Physicochemical Properties | Available Macronutrients | Secondary | DTPA Micronutrients | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD (Mg m–3) | Soil pH | SOC (%) | SOC Stock (Mg ha−1) | N | P | K | Ca | Mg | S | Fe | Mn | Cu | Zn | Available B | |
(kg ha−1) | (mg kg−1) | ||||||||||||||
T1 | 1.32 a | 5.44 ab | 1.19 c | 23.20 bc | 407.52 e | 14.22 d | 439.41 e | 0.55 c | 0.28 c | 15.23 d | 13.11 c | 10.11 d | 1.14 d | 0.38 b | 0.23 c |
T2 | 1.21 ab | 5.51 a | 1.33 b | 23.25 bc | 429.38 d | 14.48 c | 452.41 d | 0.68 bc | 0.40 b | 19.20 c | 18.55 b | 16.11 c | 1.62 c | 0.51 a | 0.45 b |
T3 | 1.18 ab | 5.58 a | 1.42 ab | 23.94 bc | 443.18 c | 15.54 b | 464.27 c | 0.72 bc | 0.52 ab | 20.21 c | 19.22 b | 19.44 b | 1.85 b | 0.53 a | 0.48 b |
T4 | 1.14 ab | 5.67 a | 1.46 ab | 24.09 b | 457.89 b | 16.68 ab | 477.66 b | 0.86 b | 0.65 ab | 22.41 b | 21.54 b | 20.23 b | 1.92 b | 0.58 a | 0.52 ab |
T5 | 1.02 b | 5.72 a | 1.55 a | 25.13 a | 472.66 a | 17.32 a | 498.18 a | 0.98 a | 0.75 a | 25.23 a | 25.42 a | 22.01 a | 2.05 a | 0.62 a | 0.58 a |
SE | 0.05 | 0.05 | 0.06 | 0.35 | 11.27 | 0.60 | 10.16 | 0.07 | 0.08 | 1.67 | 2.01 | 2.10 | 0.16 | 0.04 | 0.06 |
Mean | 1.17 | 5.69 | 1.39 | 23.92 | 442.13 | 15.65 | 466.39 | 0.76 | 0.52 | 20.46 | 19.56 | 17.58 | 1.72 | 0.52 | 0.45 |
Initial | 1.33 | 5.40 | 1.17 | 23.07 | 403.24 | 14.20 | 434.60 | 0.55 | 0.26 | 15.14 | 13.08 | 10.09 | 1.12 | 0.36 | 0.22 |
Treatments | Gross Return | Cost of Cash Inputs | Net Return | Benefit–Cost Ratio | Monetary Efficiency (₹ ha−1 day−1) | Production Efficiency (kg−1 ha−1 day−1) |
---|---|---|---|---|---|---|
(₹ ha−1) | ||||||
T1 | 100,800 | 46,000 | 54,800 | 2.19 | 609 | 9.30 |
T2 | 127,200 | 55,000 | 72,200 | 2.31 | 802 | 11.8 |
T3 | 143,760 | 60,400 | 83,360 | 2.38 | 926 | 13.3 |
T4 | 159,000 | 66,000 | 93,000 | 2.41 | 1033 | 14.7 |
T5 | 179,760 | 72,450 | 107,310 | 2.48 | 1192 | 16.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tania, C.; Bhupenchandra, I.; Devi, C.P.; Phonglosa, A.; Sonia, C.; Singh, M.N.; Chandramani, P.; Devi, Y.P.; Devi, H.L.; Dasgupta, M.; et al. Unveiling the Implications of Organic Nutrient Management Protocols on Soil Properties, Economic Sustainability, and Yield Optimization in Fenugreek Cultivation in Acidic Soils of Northeast India. Sustainability 2024, 16, 7241. https://doi.org/10.3390/su16167241
Tania C, Bhupenchandra I, Devi CP, Phonglosa A, Sonia C, Singh MN, Chandramani P, Devi YP, Devi HL, Dasgupta M, et al. Unveiling the Implications of Organic Nutrient Management Protocols on Soil Properties, Economic Sustainability, and Yield Optimization in Fenugreek Cultivation in Acidic Soils of Northeast India. Sustainability. 2024; 16(16):7241. https://doi.org/10.3390/su16167241
Chicago/Turabian StyleTania, Chongtham, Ingudam Bhupenchandra, Chingakham Premabati Devi, Amit Phonglosa, Chongtham Sonia, Mangsatabam Norjit Singh, Phuritsabam Chandramani, Yumnam Prabhabati Devi, Hidangmayum Lembisana Devi, Madhumita Dasgupta, and et al. 2024. "Unveiling the Implications of Organic Nutrient Management Protocols on Soil Properties, Economic Sustainability, and Yield Optimization in Fenugreek Cultivation in Acidic Soils of Northeast India" Sustainability 16, no. 16: 7241. https://doi.org/10.3390/su16167241
APA StyleTania, C., Bhupenchandra, I., Devi, C. P., Phonglosa, A., Sonia, C., Singh, M. N., Chandramani, P., Devi, Y. P., Devi, H. L., Dasgupta, M., Wahengbam, E. D., Devi, M. P., Sahoo, B. B., & Sahoo, M. R. (2024). Unveiling the Implications of Organic Nutrient Management Protocols on Soil Properties, Economic Sustainability, and Yield Optimization in Fenugreek Cultivation in Acidic Soils of Northeast India. Sustainability, 16(16), 7241. https://doi.org/10.3390/su16167241