Reducing Ammonia Emissions in Polish Agriculture, the Implementation of the NEC Directive, and the Context of Sustainable Development—Pilot Studies
Abstract
:1. Introduction
2. Materials and Methods
- General information about farm owners;
- General information about farms;
- The opinions and knowledge of agricultural producers regarding environmental protection;
- The knowledge of agricultural producers about ammonia emissions and related risks;
- The knowledge of agricultural producers about legal regulations regarding air protection and limiting air pollutant emissions;
- Activities undertaken on farms in terms of nitrogen management;
- Methods used on farms to reduce ammonia emissions in the field of livestock housing systems;
- Methods used on farms to reduce ammonia emissions in the field of farm animal feeding systems;
- Methods used on farms to reduce ammonia emissions in the field of the storage of natural fertilizers;
- Methods used on farms to reduce ammonia emissions during the application of natural fertilizers to fields;
- Methods used on farms to reduce ammonia emissions during the application of mineral nitrogen fertilizers to fields.
- Farm area: 0–40 ha, 40–80 ha, over 80 ha.
- Education: vocational, secondary, or higher.
- The application of nutritional reduction techniques.
- Time of incorporation for the slurry.
- Time of incorporation for the manure.
- Type of slurry application method used.
- Use of reduction methods during the application of urea.
3. Results and Discussion
3.1. General Knowledge about Environmental Protection
3.2. Legal Regulations about Ammonia Emissions
3.3. Feeding Methods for Ammonia Reduction
3.4. Animal Housing Methods for Ammonia Reduction
3.5. Low-Emission Manure Storage Systems
3.6. Low-Emission Manure and Urea Application Techniques
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Curran Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Bebkiewicz, K.; Boryń, E.; Chłopek, Z.; Doberska, A.; Kamola, E.; Kargulewicz, I.; Olecka, A.; Rutkowski, J.; Skośkiewicz, J.; Szczepański, K.; et al. Poland’s Informative Inventory Report 2023. Submission under the UNECE Convention on Long-Range Transboundary Air Pollution and Directive (EU) 2016/2284. Air Pollutant Emissions in Poland 1990–2021; National Centre for Emissions Management: Warsaw, Poland, 2023. [Google Scholar]
- Sutton, M.A.; Dragosits, U.; Tang, Y.S.; Fowler, D. Ammonia emissions from non-agricultural sources in the UK. Atmos. Environ. 2000, 34, 855–869. [Google Scholar] [CrossRef]
- Wu, C.; Wang, G.; Li, J.; Li, J.; Cao, C.; Ge, S.; Xie, Y.; Chen, J.; Liu, S.; Du, W.; et al. Non-agricultural sources dominate the atmospheric NH3 in Xi’an, a megacity in the semi-arid region of China. Sci. Total Environ. 2020, 722, 137756. [Google Scholar] [CrossRef]
- Insausti, M.; Timmis, R.; Kinnersley, R.; Rufino, M.C. Advances in sensing ammonia from agricultural sources. Sci. Total Environ. 2020, 706, 135124. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.G.; Webb, J.; Hutchings, N.D. New Emission Factors for Calculation of Ammonia Volatilization From European Livestock Manure Management Systems. Front. Sustain. Food Syst. 2019, 3, 101. [Google Scholar] [CrossRef]
- Werner, M.; Kryza, M.; Geels, C.; Ellermann, T.; Ambelas Skjøth, C. Ammonia concentrations over Europe—Application of the WRF-Chem model supported with dynamic emission. Pol. J. Environ. Stud. 2017, 26, 1323–1341. [Google Scholar] [CrossRef]
- Yunnen, C.; Changshi, X.; Jinxia, N. Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge. Pol. J. Environ. Stud. 2016, 25, 419–425. [Google Scholar] [CrossRef]
- Ball, M.E.E.; Smyth, S.; Beattie, V.E.; McCracken, K.J.; McCormack, U.; Muns, R.; Gordon, F.J.; Bradford, R.; Reid, L.A.; Magowan, E. The Environmental Impact of Lowering Dietary Crude Protein in Finishing Pig Diets—The Effect on Ammonia, Odour and Slurry Production. Sustainability 2022, 14, 12016. [Google Scholar] [CrossRef]
- Baldini, C.; Borgonovo, F.; Gardoni, D.; Guarino, M. Comparison among NH3 and GHGs emissive patterns from different housing solutions of dairy farms. Atmos. Environ. 2016, 141, 60–66. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, B.; Erisman, J.W.; Reis, S.; Fang, Y.; Lu, X.; Zhang, X. PM2.5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut. 2016, 218, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-de-Santiago, D.E.; Ovejero, J.; Antúnez, M.; Bosch-Serra, A.D. Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area. Sustainability 2024, 16, 238. [Google Scholar] [CrossRef]
- Cattaneo, M.; Tayà, C.; Burgos, L.; Morey, L.; Noguerol, J.; Provolo, G.; Cerrillo, M.; Bonmatí, A. Assessing Ammonia and Greenhouse Gas Emissions from Livestock Manure Storage: Comparison of Measurements with Dynamic and Static Chambers. Sustainability 2023, 15, 15987. [Google Scholar] [CrossRef]
- Prosser, J.I.; Hink, L.; Gubry-Rangin, C.; Nicol, G.W. Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Glob. Chang. Biol. 2020, 26, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Bougouin, A.; Leytem, A.; Dijkstra, J.; Dungan, R.S.; Kebreab, E. Nutritional and Environmental Effects on Ammonia Emissions from Dairy Cattle Housing: A Meta-Analysis. J. Environ. Qual. 2016, 45, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Walczak, J.; Jarosz, Z.; Jugowar, J.L.; Krawczyk, W.; Mielcarek, P.; Skowrońska, M. Implementation of the NEC Directive and BAT Conclusions Regarding the Reduction of Ammonia Emissions from Agriculture; Fundacja na rzecz Rozwoju Polskiego Rolnictwa, Wydawnictwo Naukowe SCHOLAR: Warsaw, Poland, 2019; Available online: https://www.fdpa.org.pl/wdrazanie-dyrektywy-nec-oraz-konkluzji-bat-w-zakresie-redukcji-emisji-amoniaku-z-rolnictwa-1 (accessed on 15 March 2024). (In Polish)
- Hou, Y.; Velthof, G.L.; Oenema, O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Glob. Chang. Biol. 2015, 21, 1293–1312. [Google Scholar] [CrossRef] [PubMed]
- Ershadi, S.Z.; Dias, G.; Heidari, M.D.; Nathan Pelletier, N. Improving nitrogen use efficiency in crop-livestock systems: A review of mitigation technologies and management strategies, and their potential applicability for egg supply chains. J. Clean. Prod. 2020, 265, 121671. [Google Scholar] [CrossRef]
- Yan, X.; Ying, Y.; Li, K.; Zhang, Q.; Wang, K. A review of mitigation technologies and management strategies for greenhouse gas and air pollutant emissions in livestock production. J. Environ. Manag. 2024, 352, 120028. [Google Scholar] [CrossRef]
- Jarosz, Z.; Faber, A.; Walczak, J.; Sowula-Skrzyńska, E.; Borecka, A.; Krawczyk, W.; Tyra, M.; Pieszka, M.; Knapik, J.; Połtowicz, K.; et al. Advisory Code of Good Agricultural Practice on the Reduction of Ammonia Emissions; Wydawnictwo ITP, Ministerstwo Rolnictwa i Rozwoju Wsi: Warsaw, Poland, 2019. Available online: https://www.gov.pl/web/rolnictwo/kodeks-dobrej-praktyki-rolniczej-w-zakresie-ograniczania-emisji-amoniaku (accessed on 15 March 2024). (In Polish)
- Piwowar, A. Farming Practices for Reducing Ammonia Emissions in Polish Agriculture. Atmosphere 2020, 11, 1353. [Google Scholar] [CrossRef]
- Sajeev, E.P.M.; Winiwarter, W.; Amon, B. Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Berrocoso, J.F.D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 2016, 212, 18–26. [Google Scholar] [CrossRef]
- Spiehs, M.J.; Whitney, M.H.; Shurson, G.C.; Nicolai, R.E.; Renteria Flores, J.A.; Parker, D.B. Odor and gas emissions and nutrient excretion from pigs fed diets containing dried distillers grains with solubles. Appl. Eng. Agric. 2012, 28, 431–437. [Google Scholar] [CrossRef]
- Le Dinh, P.; van der Peet-Schwering, C.M.C.; Ogink, N.W.M.; Aarnink, A.J.A. Effect of diet composition on excreta composition and ammonia emissions from growing-finishing pigs. Animals 2022, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Hafner, S.D.; Pacholski, A.; Bittman, S.; Burchill, W.; Bussink, W.; Chantigny, M.; Carozzi, M.; Génermont, S.; Häni, C.; Hansen, M.N.; et al. The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis. Agric. For. Meteorol. 2018, 258, 66–79. [Google Scholar] [CrossRef]
- Van der Weerden, T.J.; Noble, A.; de Klein, C.A.M.; Hutchings, N.; Thorman, R.E.; Alfaro, M.A.; Amon, B.; Beltran, I.; Grace, P.; Hassouna, M.; et al. Ammonia and nitrous oxide emission factors for excreta deposited by livestock and land-applied manure. J. Environ. Qual. 2021, 50, 1005–1023. [Google Scholar] [CrossRef] [PubMed]
Parameter | Share in the Study (%) |
---|---|
Age of respondents | |
18–35 years old | 27 |
35–60 years old | 63 |
>60 years old | 10 |
Gender of respondents | |
Women | 87 |
Men | 13 |
Education level of respondents | |
Primary | 0 |
Vocational school | 4 |
Vocational school agricultural | 14 |
Secondary | 17 |
Secondary agricultural | 41 |
Higher | 7 |
Higher agricultural | 17 |
Production profile | |
Crop production | 10 |
Livestock production | 0 |
Crop and livestock production | 90 |
Total farm area (ha) | |
0–20.00 | 17 |
20.01–40.00 | 36 |
40.01–60.00 | 7 |
60.01–80.00 | 10 |
80.01–100.00 | 7 |
>100 | 13 |
No data | 10 |
Livestock housing | |
Cattle | 11 |
Swine | 56 |
Poultry | 4 |
Cattle and swine | 15 |
Cattle and poultry | 7 |
Swine and poultry | 7 |
Question | % of Correct Answers |
---|---|
What is the maximum annual dose of manure used in agriculture? | 40 |
Is it possible to store solid manure directly on arable land? | 70 |
When can mineral nitrogen fertilizers and slurry or other liquid manures be used on arable land? | 40 |
When can solid manure be used on arable land? | 57 |
When can mineral nitrogen fertilizers and slurry or other liquid manures be used on permanent crops, perennial crops, and permanent grasslands? | 40 |
When can solid manure be used on permanent crops, perennial crops, and permanent grasslands? | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielcarek-Bocheńska, P.; Rzeźnik, W. Reducing Ammonia Emissions in Polish Agriculture, the Implementation of the NEC Directive, and the Context of Sustainable Development—Pilot Studies. Sustainability 2024, 16, 7145. https://doi.org/10.3390/su16167145
Mielcarek-Bocheńska P, Rzeźnik W. Reducing Ammonia Emissions in Polish Agriculture, the Implementation of the NEC Directive, and the Context of Sustainable Development—Pilot Studies. Sustainability. 2024; 16(16):7145. https://doi.org/10.3390/su16167145
Chicago/Turabian StyleMielcarek-Bocheńska, Paulina, and Wojciech Rzeźnik. 2024. "Reducing Ammonia Emissions in Polish Agriculture, the Implementation of the NEC Directive, and the Context of Sustainable Development—Pilot Studies" Sustainability 16, no. 16: 7145. https://doi.org/10.3390/su16167145
APA StyleMielcarek-Bocheńska, P., & Rzeźnik, W. (2024). Reducing Ammonia Emissions in Polish Agriculture, the Implementation of the NEC Directive, and the Context of Sustainable Development—Pilot Studies. Sustainability, 16(16), 7145. https://doi.org/10.3390/su16167145