The Role of Some Biostimulants in Improving the Productivity of Orange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Applied Treatments
2.2. The Applied Biostimulants
2.3. Vegetative Growth Parameters
2.4. Fruit Set %, Fruit Drop % and Fruit Number
2.5. Fruit Yield (ton/ha)
2.6. Fruit Quality
2.6.1. Physical Fruit Quality
2.6.2. Chemical Fruit Quality
2.7. Nutritional Status
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haokip, S.W.; Shankar, K.; Lalrinngheta, J. Climate change and its impact on fruit crops. J. Pharmacogn. Phytochem. 2020, 9, 435–438. [Google Scholar]
- Zhang, H.; Li, Y.; Zhu, J.-K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 2018, 4, 989–996. [Google Scholar] [CrossRef]
- Trueman, S.J.; Kämper, W.; Nichols, J.; Ogbourne, S.M.; Hawkes, D.; Peters, T.; Hosseini Bai, S.; Wallace, H.M. Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae). Ann. Bot. 2022, 129, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Katayama, N.; Bouam, I.; Koshida, C.; Baba, Y.G. Biodiversity and yield under different land-use types in orchard/vineyard landscapes: A meta-analysis. Biol. Conserv. 2019, 229, 125–133. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Remorini, D.; Pellegrini, E.; Landi, M.; Massai, R.; Nali, C.; Guidi, L.; Lorenzini, G. Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol. Plant. 2016, 157, 69–84. [Google Scholar] [CrossRef]
- Ghanbary, E.; Tabari Kouchaksaraei, M.; Mirabolfathy, M.; Modarres Sanavi, S.; Rahaie, M. Growth and physiological responses of Quercus brantii seedlings inoculated with Biscogniauxia mediterranea and Obolarina persica under drought stress. For. Pathol. 2017, 47, e12353. [Google Scholar]
- Brodribb, T.J.; McAdam, S.A. Evolution of the stomatal regulation of plant water content. Plant Physiol. 2017, 174, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Singh, A.; Debnath, K.; Kumar, N. Water absorption and mechanical behaviour of Borassus fruit fibre-reinforced composites. Emerg. Mater. Res. 2019, 9, 10–17. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. FAO Statistical Databases. 2022. Available online: https://www.fao.org/faostat/ (accessed on 22 August 2022).
- Karn, A.; Zhao, C.; Yang, F.; Cui, J.; Gao, Z.; Wang, M.; Wang, F.; Xiao, H.; Zheng, J. In-vivo biotransformation of citrus functional components and their effects on health. Crit. Rev. Food Sci. Nutr. 2021, 61, 756–776. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.; Sugiura, M.; Kato, M. Citrus and health. In The Genus Citrus; Wood-head Publishing: Cambridge, UK; Elsevier: Amsterdam, The Netherlands, 2020; pp. 495–511. [Google Scholar]
- Campobenedetto, C.; Mannino, G.; Beekwilder, J.; Contartese, V.; Karlova, R.; Bertea, C.M. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci. Rep. 2021, 11, 354. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M. The effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef]
- Sheng, Y.; Cheng, H.; Wang, L.; Shen, J.; Tang, M.; Liang, M.; Zhang, K.; Zhang, H.; Kong, Q.; Yu, M. Foliar spraying with compound amino acid-Iron fertilizer increases leaf fresh weight, photosynthesis, and Fe-S cluster gene expression in peach (Prunus persica (L.) Batsch). BioMed Res. Int. 2020, 2020, 2854795. [Google Scholar] [CrossRef] [PubMed]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2013, 1009, 29–35. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Francioso, O.; Tugnoli, V.; Nardi, S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J. Chem. Ecol. 2007, 33, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef] [PubMed]
- Gümüş, İ.; Şeker, C. Influence of humic acid applications on modulus of rupture, aggregate stability, electrical conductivity, carbon and nitrogen content of a crusting problem soil. Solid Earth 2015, 6, 1231–1236. [Google Scholar] [CrossRef]
- Gerke, J. The central role of soil organic matter in soil fertility and carbon storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Yang, F.; Sui, L.; Tang, C.; Li, J.; Cheng, K.; Xue, Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances. Sci. Total Environ. 2021, 768, 145106. [Google Scholar] [CrossRef]
- Yasmeen, A.; Nouman, W.; Basra, S.M.A.; Wahid, A.; Hussain, N.; Afzal, I. Morphological and physiological response of tomato (Solanum lycopersicum L.) to natural and synthetic cytokinin sources: A comparative study. Acta Physiol. Plant. 2014, 36, 3147–3155. [Google Scholar] [CrossRef]
- Saini, R.K.; Sivanesan, I.; Keum, Y.-S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Hamad, G.M.; Mohamed, S.E.; Amar, M.H.; Al-Hindi, R.R. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food. Global Adv. Res. J. Agric. Sci. 2015, 4, 188–199. [Google Scholar]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness. 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Ahmed, M.E.; Maswada, H.F.; Xuan, T.D. Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch. Agron. Soil Sci. 2017, 63, 687–699. [Google Scholar] [CrossRef]
- Abou El-Yazied, A.; El-Gizawy, A.; Ragab, M.; Hamed, E. Effect of seaweed extract and compost treatments on growth, yield and quality of snap bean. J. Amer. Sci. 2012, 8, 1–20. [Google Scholar]
- Thomas, M.; Chauhan, D.; Patel, J.; Panchal, T. Analysis of biostimulants made by fermentation of Sargassum tenerimum seaweed. Int. J. Curr. Trop. Res 2013, 2, 405–407. [Google Scholar]
- Nazzal, M.M.K.; Al-Nuaymi, S.B.I. Effect of spraying cytokinin and seaweed extract on some flower growth traits of roselle Hibiscus Sabdariffa L. Plant Arch. 2019, 19, 1864–1867. [Google Scholar]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Mosa, W.F.; Salem, M.; Al-Huqail, A.; Ali, H. Application of glycine, folic acid, and moringa extract as bio-stimulants for enhancing the production of ‘Flame Seedless’ grape cultivar. Bioresources 2021, 16, 3391. [Google Scholar] [CrossRef]
- Rouphael, Y.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Bonini, P.; Cardarelli, M. Metabolomic responses of maize shoots and roots elicited by combinatorial seed treatments with microbial and non-microbial biostimulants. Front. Microbiol. 2020, 11, 664. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species–A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Stirk, W.A.; Rengasamy, K.R.; Kulkarni, M.G.; van Staden, J. Plant biostimulants from seaweed: An overview. In The Chemical Biology of Plant Biostimulants; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 31–55. [Google Scholar]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- World Bank Group. Egypt Country Climate and Development Report. CCDR Series; © World Bank, Washington, DC. 2022. License: CC BY-NC-ND. Available online: http://hdl.handle.net/10986/38245 (accessed on 8 November 2022).
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists International; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Lam, H.-H.; Dinh, T.-H.; Dang-Bao, T. Quantification of total sugars and reducing sugars of dragon fruit-derived sugar-samples by UV-Vis spectrophotometric method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 947, p. 012041. [Google Scholar] [CrossRef]
- Nielsen, S.S. Vitamin C determination by indophenol method. In Food Analysis Laboratory Manual. Food Science Text Series; Springer: Cham, Switzerland, 2017; pp. 143–146. [Google Scholar]
- Aquino, C.F.; Salomão, L.C.C.; Pinheiro-Sant’ana, H.M.; Ribeiro, S.M.R.; Siqueira, D.L.D.; Cecon, P.R. Carotenoids in the pulp and peel of bananas from 15 cultivars in two ripening stages. Rev. Ceres 2018, 65, 217–226. [Google Scholar] [CrossRef]
- Arrobas, M.; Afonso, S.; Rodrigues, M.Â. Diagnosing the nutritional condition of chestnut groves by soil and leaf analyses. Sci. Hortic. 2018, 228, 113–121. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant Meth. 2022, 18, 22. [Google Scholar] [CrossRef]
- Asch, J.; Johnson, K.; Mondal, S.; Asch, F. Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis. J. Plant Nutr. Soil Sci. 2022, 185, 308–316. [Google Scholar] [CrossRef]
- Snedecor, G.C.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 2021. [Google Scholar]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Hriciková, S.; Kožárová, I.; Hudáková, N.; Reitznerová, A.; Nagy, J.; Marcinčák, S. Humic substances as a versatile intermediary. Life 2023, 13, 858. [Google Scholar] [CrossRef]
- Cavalcante, I.; Silva, R.D.; Albano, F.; Lima, F.d.; Marques, A.D.S. Foliar spray of humic substances on seedling production of papaya (Pawpaw). J. Agron. 2011, 10, 118–122. [Google Scholar] [CrossRef]
- de Castro, T.A.v.T.; Berbara, R.L.L.; Tavares, O.C.H.; da Graca Mello, D.F.; Pereira, E.G.; de Souza, C.d.C.B.; Espinosa, L.M.; García, A.C. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem. 2021, 162, 171–184. [Google Scholar] [CrossRef]
- Trevisan, S.; Botton, A.; Vaccaro, S.; Vezzaro, A.; Quaggiotti, S.; Nardi, S. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ. Exp. Bot. 2011, 74, 45–55. [Google Scholar] [CrossRef]
- Ozfidan-Konakci, C.; Yildiztugay, E.; Bahtiyar, M.; Kucukoduk, M. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf. 2018, 155, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, T.; Singh, S.; Tuteja, N.; Prasad, R.; Singh, J. Potassium: A key modulator for cell homeostasis. J. Biotechnol. 2020, 324, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Tu, L.; He, Y.; Deng, J.; Wang, M.; Huang, H.; Li, Z.; Zhang, X. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. J. Experim. Bot. 2017, 68, 5161–5175. [Google Scholar] [CrossRef]
- Mosa, W.; EL-Megeed, N.; Paszt, L. The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of ‘Anna’ apple trees. Am. J. Exp. Agric. 2015, 8, 224–234. [Google Scholar] [CrossRef]
- Kishor, M.; Jayakumar, M.; Gokavi, N.; Mukharib, D.S.; Raghuramulu, Y.; Udayar Pillai, S. Humic acid as foliar and soil application improve the growth, yield and quality of coffee (cv. C× R) in W estern G hats of India. J. Sci. Food Agric. 2021, 101, 2273–2283. [Google Scholar] [CrossRef]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Li, Y. Research progress of humic acid fertilizer on the soil. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; p. 022004. [Google Scholar]
- Ferrara, G.; Brunetti, G. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera L.) cv Italia. Span. J. Agric. Res. 2010, 8, 817–822. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Sas-Paszt, L.; Mosa, W.F. Olive performance under the soil application of humic acid and the spraying of titanium and zinc nanoparticles under soil salinity stress. Horticulturae 2024, 10, 295. [Google Scholar] [CrossRef]
- Abbassy, M.M.; Salem, M.Z.; Rashad, N.M.; Afify, S.M.; Salem, A.Z. Nutritive and biocidal properties of agroforestry trees of Moringa oleifera Lam., Cassia fistula L., and Ceratonia siliqua L. as non-conventional edible vegetable oils. Agrofor. Syst. 2020, 94, 1567–1579. [Google Scholar] [CrossRef]
- Nasir, M.; Khan, A.S.; Basra, S.A.; Malik, A.U. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’mandarin. Sci. Hortic. 2016, 210, 227–235. [Google Scholar] [CrossRef]
- Abd Rani, N.Z.; Husain, K.; Kumolosasi, E. Moringa genus: A review of phytochemistry and Pharmacology. Front. Pharmacol. 2018, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Tanveer, M.U.; Liaqat, M.; Dole, J.M. Comparison of corm soaks with preharvest foliar application of moringa leaf extract for improving growth and yield of cut Freesia hybrida. Sci. Hortic. 2019, 254, 21–25. [Google Scholar] [CrossRef]
- Ali, E.; Hassan, F.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. South Afric. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Nawaz, M.; Rehman, H.U. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environm. Sci. Pollut. Res. 2017, 24, 27601–27612. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Abou Elezz, A.; Khalid, M.F. Hydropriming with moringa leaf extract mitigates salt stress in wheat seedlings. Agriculture 2021, 11, 1254. [Google Scholar] [CrossRef]
- Ibrahim, M.U.; Khaliq, A.; Hussain, S.; Haq, M.Z.U. Alleviation of drought stress and mediated antioxidative defense in wheat through moringa leaf extract hormesis. Arab. J. Geosci. 2023, 16, 118. [Google Scholar] [CrossRef]
- Arif, Y.; Bajguz, A.; Hayat, S. Moringa oleifera extract as a natural plant biostimulant. J. Plant Growth Regul. 2023, 42, 1291–1306. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Basra, S.M.; Lovatt, C.J. Exogenous applications of moringa leaf extract and cytokinins improve plant growth, yield, and fruit quality of cherry tomato. HortTechnology 2016, 26, 327–337. [Google Scholar] [CrossRef]
- Meireles, D.; Gomes, J.; Lopes, L.; Hinzmann, M.; Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 2020, 20, 495–515. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Ali, M.M.; Ben Hifaa, A.B.; Mosa, W.F. Influence of spraying some biostimulants on yield, fruit quality, oil fruit content and nutritional status of olive (Olea europaea L.) under salinity. Horticulturae 2023, 9, 825. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Hepworth, G.; McClintock, D.; McClinock, R. Effect of seaweed extract application on wine grape yield in Australia. J. Appl. Phycol. 2021, 33, 1883–1891. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Li, J.; Van Gerrewey, T.; Geelen, D. A meta-analysis of biostimulant yield effectiveness in field trials. Fron. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef] [PubMed]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; Van der Werf, A.; Karlova, R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant Cell Environ. 2022, 45, 2537–2553. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patel, J. Seaweed extract: Biostimulator of plant defense and plant productivity. Int. J. Environ. Sci. Technol. 2020, 17, 553–558. [Google Scholar] [CrossRef]
- Mattner, S.W.; Milinkovic, M.; Arioli, T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol. 2018, 30, 2943–2951. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, Z.; Yang, J.; Zhou, W.; Wu, Q.; Shen, H.; Ao, J. Seaweed extract enhances drought resistance in sugarcane via modulating root configuration and soil physicochemical properties. Ind Crops Prod. 2023, 194, 116321. [Google Scholar] [CrossRef]
- Mosa, W.F.; Sas-Paszt, L.; Gornik, K.; Ali, H.M.; Salem, M.Z. Vegetative growth, yield, and fruit quality of guava (Psidium guajava L.) cv. maamoura as affected by some biostimulants. Bioresources 2021, 16, 7379. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, V.; Sharma, S.; Rana, N.; Kumar, V.; Sharma, U.; Almutairi, K.F.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Gudeta, K. Seaweed extract as a biostimulant agent to enhance the fruit growth, yield, and quality of kiwifruit. Horticulturae 2023, 9, 432. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Sas-Paszt, L.; Saad, R.M.; Abada, H.S.; Ayoub, A.; Mosa, W.F.A. Biostimulants and nano-potassium on the yield and fruit quality of date palm. Horticulturae 2023, 9, 1137. [Google Scholar] [CrossRef]
Season | Sand% | Silt% | Clay% | Textural Class | Organic Matter % | pH | CaCO3% | EC (dS/m) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | 56.3 | 22 | 21.7 | Sandy loam | 0.45 | 8.00 | 4.85 | 1.95 | ||||||
2023 | 54.55 | 24.8 | 20.65 | Sandy loam | 0.61 | 7.80 | 4.75 | 1.85 | ||||||
Season | Soluble Anions (meq/L) | Soluble Cations (meq/L) | Available Nutrients (mg/kg) | |||||||||||
Macronutrients | Micronutrients | |||||||||||||
HCO3− | Cl− | SO4−− | Ca++ | Mg++ | Na+ | K+ | N | P | K | Fe | Zn | Mn | ||
2022 | 9.80 | 4.50 | 5.18 | 7.20 | 5.46 | 4.02 | 3.22 | 128 | 14 | 205 | 2.1 | 0.37 | 1.8 | |
2023 | 9.52 | 4.11 | 5.30 | 7.50 | 4.90 | 3.90 | 3.25 | 130 | 19 | 213 | 2.5 | 0.4 | 1.9 |
Year | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|
Months | Minimum Temperature (°C) | Maximum Temperature (°C) | Average Relative Humidity (%) | Precipitation (mm) | Minimum Temperature (°C) | Maximum Temperature (°C) | Average Relative Humidity (%) | Precipitation (mm) |
January | 9.20 | 16.66 | 71.30 | 72.10 | 11.89 | 20.35 | 72.73 | 31.70 |
February | 9.65 | 18.19 | 71.32 | 14.50 | 10.61 | 18.87 | 68.77 | 48.70 |
March | 9.84 | 18.93 | 67.50 | 61.10 | 12.75 | 23.43 | 63.57 | 19.00 |
April | 13.98 | 27.70 | 58.60 | 0.70 | 14.39 | 26.33 | 59.06 | 16.00 |
May | 17.27 | 30.54 | 60.45 | 3.80 | 17.36 | 30.53 | 59.56 | 0.40 |
June | 21.44 | 34.72 | 61.80 | 1.20 | 20.98 | 35.63 | 60.92 | 2.40 |
July | 22.82 | 37.01 | 61.45 | 2.10 | 23.70 | 37.93 | 61.01 | 0.00 |
August | 24.06 | 38.35 | 61.56 | 0.60 | 24.36 | 38.00 | 60.61 | 0.00 |
September | 23.07 | 33.34 | 60.56 | 1.10 | 24.05 | 34.80 | 60.11 | 0.60 |
October | 20.48 | 28.77 | 62.91 | 3.00 | 21.30 | 30.15 | 65.05 | 4.30 |
November | 16.99 | 24.41 | 63.58 | 2.70 | 18.05 | 26.89 | 63.62 | 5.00 |
Soil Addition | Foliar Spray | Shoot Length (cm) | Shoot Diameter (cm) | Chlorophyll Content (SPAD) | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 9.14 g | 9.45 e | 0.11 f | 0.12 c | 71.54 d | 71.24 e |
0.2% SWE + 2% MLE | 9.22 g | 9.75 de | 0.11 f | 0.13 bc | 71.72 d | 72.08 e | |
0.3% SWE + 4% MLE | 9.55 fg | 10.10 de | 0.12 def | 0.13 bc | 74.04 cd | 74.92 cd | |
0.4% SWE + 6% MLE | 10.17 def | 10.42 cd | 0.13 cdef | 0.14 bc | 75.24 bc | 76.80 bc | |
1 kg HA | 0 SWE + 0 MLE | 9.35 g | 9.92 de | 0.11 f | 0.13 bc | 73.78 cd | 73.64 de |
0.2% SWE + 2% MLE | 10.35 cde | 10.52 cd | 0.14 bcde | 0.14 bc | 75.40 bc | 77.70 bc | |
0.3% SWE + 4% MLE | 10.77 bcde | 11.02 bc | 0.13 bcdef | 0.14 bc | 76.05 bc | 78.32 b | |
0.4% SWE + 6% MLE | 10.92 bcd | 11.17 bc | 0.14 bcd | 0.14 bc | 76.65 bc | 78.52 b | |
2 Kg HA | 0 SWE + 0 MLE | 10.07 ef | 10.14 de | 0.12 ef | 0.13 bc | 74.12 cd | 76.54 bc |
0.2% SWE + 2% MLE | 11.12 bc | 11.42 b | 0.15 bc | 0.15 b | 77.08 bc | 78.84 b | |
0.3% SWE + 4% MLE | 11.35 b | 11.55 b | 0.15 b | 0.15 b | 78.25 b | 79.41 b | |
0.4% SWE + 6% MLE | 12.02 a | 12.32 a | 0.17 a | 0.17 a | 80.88 a | 82.66 a | |
LSD0.05 | 0.58 | 0.57 | 0.01 | 0.02 | 2.34 | 2.34 |
Soil Application | Foliar Spray | Fruit Set % | Fruit Drop % | Fruit Number | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 3.67 f | 4.16 g | 85.32 a | 80.68 a | 247.75 f | 248.25 f |
0.2% SWE + 2% MLE | 3.74 f | 4.18 g | 83.57 ab | 79.56 ab | 249.50 ef | 248.50 f | |
0.3% SWE + 4% MLE | 4.18 de | 4.42 efg | 80.52 b | 78.47 ab | 251.50 ef | 258.00 f | |
0.4% SWE + 6% MLE | 4.23 cde | 4.55 def | 75.44 c | 74.76 cd | 253.50 def | 259.75 ef | |
1 kg HA | 0 SWE + 0 MLE | 4.06 e | 4.30 fg | 82.07 ab | 79.69 ab | 250.00 ef | 252.00 f |
0.2% SWE + 2% MLE | 4.31 bcd | 4.65 de | 75.42 c | 73.53 cde | 257.75 cde | 270.75 de | |
0.3% SWE + 4% MLE | 4.36 bcd | 4.77 cd | 73.47 cd | 72.78 cde | 262.50 cd | 274.75 cd | |
0.4% SWE + 6% MLE | 4.41 bc | 4.93 bc | 73.03 cd | 71.61 def | 264.00 c | 275.75 cd | |
2 kg HA | 0 SWE + 0 MLE | 4.17 de | 4.44 efg | 79.80 b | 76.38 bc | 251.50 ef | 255.25 f |
0.2% SWE + 2% MLE | 4.44 bc | 5.06 b | 71.45 cd | 70.77 ef | 278.50 b | 284.25 bc | |
0.3% SWE + 4% MLE | 4.50 b | 5.11 b | 71.44 cd | 68.88 fg | 285.75 b | 291.00 b | |
0.4% SWE + 6% MLE | 4.73 a | 5.40 a | 70.14 d | 66.98 g | 305.25 a | 309.25 a | |
LSD0.05 | 0.15 | 0.23 | 3.93 | 3.50 | 8.83 | 11.31 |
Soil Addition | Foliar Spray | Fruit Weight (g) | Fruit Yield (kg/tree) | Yield (ton/h) | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 277.50 g | 283.00 h | 69.38 i | 70.33 g | 26.64 i | 27.01 g |
0.2% SWE + 2% MLE | 283.75 fg | 285.25 h | 70.74 i | 71.88 g | 27.16 i | 27.60 g | |
0.3% SWE + 4% MLE | 290.50 ef | 294.50 fg | 71.97 ghi | 75.99 f | 27.63 ghi | 29.18 f | |
0.4% SWE + 6% MLE | 294.75 de | 304.50 e | 77.37 ef | 77.91 f | 29.71 ef | 29.92 f | |
1 kg HA | 0 SWE + 0 MLE | 281.25 g | 291.50 g | 71.36 hi | 72.38 g | 27.40 hi | 27.79 g |
0.2% SWE + 2% MLE | 300.00 cd | 305.25 e | 74.85 fg | 82.44 e | 28.74 fg | 31.66 e | |
0.3% SWE + 4% MLE | 302.25 cd | 313.25 d | 77.91 de | 86.07 d | 29.92 de | 33.05 d | |
0.4% SWE + 6% MLE | 305.75 bc | 316.00 d | 80.72 d | 87.12 d | 30.99 d | 33.45 d | |
2 Kg HA | 0 SWE + 0 MLE | 291.75 e | 298.00 f | 73.95 gh | 77.41 f | 28.39 gh | 29.72 f |
0.2% SWE + 2% MLE | 302.50 cd | 323.25 c | 84.18 c | 91.90 c | 32.33 c | 35.29 c | |
0.3% SWE + 4% MLE | 310.25 b | 330.00 b | 88.63 b | 96.03 b | 34.03 b | 36.88 b | |
0.4% SWE + 6% MLE | 320.00 a | 336.00 a | 97.66 a | 103.91 a | 37.50 a | 39.90 a | |
LSD0.05 | 7.21 | 5.08 | 2.92 | 3.53 | 1.12 | 1.36 |
Soil Application | Foliar Spray | Fruit Volume (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 299.75 f | 303.75 g | 8.27 g | 8.72 e | 7.87 f | 8.38 f |
0.2% SWE + 2% MLE | 300.50 f | 303.75 g | 8.38 f | 8.86 cde | 8.00 e | 8.42 ef | |
0.3% SWE + 4% MLE | 312.50 e | 315.00 ef | 8.43 ef | 8.92 bcd | 7.99 e | 8.52 d | |
0.4% SWE + 6% MLE | 315.25 de | 325.25 d | 8.53 de | 8.90 cde | 8.12 d | 8.49 de | |
1 kg HA | 0 SWE + 0 MLE | 302.25 f | 312.50 f | 8.40 f | 8.79 de | 7.92 ef | 8.36 f |
0.2% SWE + 2% MLE | 320.00 cd | 325.00 d | 8.57 d | 8.98 bc | 8.17 cd | 8.47 de | |
0.3% SWE + 4% MLE | 322.75 c | 334.50 c | 8.64 d | 9.09 b | 8.22 c | 8.48 de | |
0.4% SWE + 6% MLE | 325.00 bc | 337.25 c | 8.75 c | 9.34 a | 8.32 b | 8.55 cd | |
2 Kg HA | 0 SWE + 0 MLE | 311.50 e | 318.50 e | 8.45 ef | 8.95 bcd | 8.10 d | 8.53 d |
0.2% SWE + 2% MLE | 324.00 bc | 345.75 b | 8.84 bc | 9.38 a | 8.34 b | 8.64 b | |
0.3% SWE + 4% MLE | 330.50 b | 350.25 b | 8.92 b | 9.39 a | 8.40 ab | 8.62 bc | |
0.4% SWE + 6% MLE | 341.25 a | 356.50 a | 9.15 a | 9.51 a | 8.46 a | 8.73 a | |
LSD0.05 | 6.52 | 5.31 | 0.11 | 0.16 | 0.09 | 0.08 |
Soil Addition | Foliar Spray | Fruit Firmness (kg/cm2) | Carotine (mg/100 g) | Juice % | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 0.94 g | 0.96 f | 3.13 g | 3.19 g | 47.31 e | 48.05 h |
0.2% SWE + 2% MLE | 0.96 fg | 1.01 ef | 3.22 efg | 3.24 fg | 50.40 d | 50.65 g | |
0.3% SWE + 4% MLE | 1.03 de | 1.03 de | 3.28 defg | 3.37 efg | 51.57 d | 53.38 ef | |
0.4% SWE + 6% MLE | 1.13 c | 1.09 cd | 3.33 cdef | 3.44 de | 52.23 cd | 54.87 cde | |
1 kg HA | 0 SWE + 0 MLE | 1.01 ef | 1.01 ef | 3.18 fg | 3.31 efg | 51.56 d | 51.57 fg |
0.2% SWE + 2% MLE | 1.14 bc | 1.14 bc | 3.37 bcde | 3.41 def | 52.02 cd | 55.05 cde | |
0.3% SWE + 4% MLE | 1.14 bc | 1.16 ab | 3.41 abcd | .45 de | 54.79 bc | 55.61 bcd | |
0.4% SWE + 6% MLE | 1.19 ab | 1.20 ab | 3.43 abcd | 3.59 d | 56.29 ab | 56.05 bc | |
2 kg HA | 0 SWE + 0 MLE | 1.07 d | 1.07 cde | 3.30 def | 3.45 de | 52.50 cd | 53.75 de |
0.2% SWE + 2% MLE | 1.20 a | 1.22 a | 3.47 abc | 3.83 c | 56.67 ab | 56.60 bc | |
0.3% SWE + 4% MLE | 1.22 a | 1.21 a | 3.51 ab | 4.11 b | 57.06 ab | 57.26 b | |
0.4% SWE + 6% MLE | 1.23 a | 1.23 a | 3.56 a | 4.30 a | 58.81 a | 59.85 a | |
LSD0.05 | 0.05 | 0.06 | 0.15 | 0.18 | 2.64 | 1.91 |
Soil Addition | Foliar Spraying | TSS % | Acidity % | VC (mg/100 mL) | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 11.92 f | 12.20 g | 2.00 a | 1.90 a | 40.20 d | 41.00 g |
0.2% SWE + 2% MLE | 12.25 e | 12.37 fg | 1.89 ab | 1.82 ab | 40.27 d | 41.25 fg | |
0.3% SWE + 4% MLE | 12.32 de | 12.55 def | 1.78 bc | 1.75 bcd | 42.50 cd | 43.50 def | |
0.4% SWE + 6% MLE | 12.40 de | 12.70 cdef | 1.75 bcd | 1.68 cdef | 43.00 c | 44.25 cde | |
1 kg HA | 0 SWE + 0 MLE | 12.27 de | 12.45 efg | 1.78 bc | 1.78 bc | 42.50 cd | 42.25 efg |
0.2% SWE + 2% MLE | 12.42 cde | 12.77 bcde | 1.71 cde | 1.65 defg | 43.50 bc | 45.25 cd | |
0.3% SWE + 4% MLE | 12.60 bcd | 12.82 abcd | 1.68 cdef | 1.63 defg | 45.00 abc | 45.75 cd | |
0.4% SWE + 6% MLE | 12.72 bc | 12.87 abcd | 1.60 def | 1.62 efg | 45.50 ab | 46.25 bc | |
2 Kg HA | 0 SWE + 0 MLE | 12.37 de | 12.70 cdef | 1.76 bcd | 1.73 bcde | 42.75 c | 44.00 cde |
0.2% SWE + 2% MLE | 12.75 ab | 12.90 abc | 1.55 ef | 1.61 efg | 45.75 ab | 48.25 ab | |
0.3% SWE + 4% MLE | 12.82 ab | 13.05 ab | 1.51 f | 1.57 fg | 45.87 ab | 48.75 a | |
0.4% SWE + 6% MLE | 13.05 a | 13.12 a | 1.51 f | 1.53 g | 46.25 a | 49.25 a | |
LSD0.05 | 0.30 | 0.31 | 0.15 | 0.11 | 2.29 | 2.25 |
Soil Addition | Foliar Spraying | Total Sugars % | Reduced Sugars % | Non Reduced Sugars % | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 9.01 e | 9.46 h | 5.26 e | 5.65 g | 3.75 d | 3.81 c |
0.2% SWE + 2% MLE | 9.06 e | 9.85 gh | 5.27 e | 5.78 fg | 3.78 d | 4.08 bc | |
0.3% SWE + 4% MLE | 9.72 d | 9.88 gh | 5.44 de | 6.14 de | 4.28 bc | 3.74 c | |
0.4% SWE + 6% MLE | 9.84 d | 10.34 efg | 5.55 d | 6.31 d | 4.29 bc | 4.13 bc | |
1 kg HA | 0 SWE + 0 MLE | 9.55 d | 9.87 gh | 5.31 e | 5.94 ef | 4.23 bcd | 3.93 bc |
0.2% SWE + 2% MLE | 9.90 d | 10.59 def | 6.03 c | 6.59 c | 3.87 cd | 4.12 bc | |
0.3% SWE + 4% MLE | 10.33 c | 10.81 cde | 6.12 c | 6.72 c | 4.20 bcd | 4.21 abc | |
0.4% SWE + 6% MLE | 10.52 c | 11.05 bcd | 6.15 c | 6.96 b | 4.37 abc | 4.26 abc | |
2 kg HA | 0 SWE + 0 MLE | 9.762 d | 10.10 fg | 5.61 d | 6.15 d | 4.15 bcd | 4.06 bc |
0.2% SWE + 2% MLE | 10.93 b | 11.33 bc | 6.61 b | 7.08 b | 4.32 bc | 4.39 abc | |
0.3% SWE + 4% MLE | 11.28 b | 11.62 b | 6.77 b | 7.11 b | 4.52 ab | 4.67 ab | |
0.4% SWE + 6% MLE | 11.89 a | 12.21 a | 7.07 a | 7.33 a | 4.83 a | 4.88 a | |
LSD0.05 | 0.38 | 0.56 | 0.18 | 0.20 | 0.44 | 0.65 |
Soil Addition | Foliar Spraying | N % | P % | K % | |||
---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 1.41 h | 1.53 i | 0.30 h | 0.39 g | 1.38 f | 1.40 g |
0.2% SWE + 2% MLE | 1.45 h | 1.55 i | 0.33 gh | 0.40 fg | 1.38 f | 1.41 g | |
0.3% SWE + 4% MLE | 1.59 f | 1.66 gh | 0.40 f | 0.43 ef | 1.40 f | 1.46 ef | |
0.4% SWE + 6% MLE | 1.61 ef | 1.73 ef | 0.43 ef | 0.47 d | 1.48 de | 1.50 de | |
1 kg HA | 0 SWE + 0 MLE | 1.52 g | 1.62 h | 0.35 g | 0.42 efg | 1.40 f | 1.42 fg |
0.2% SWE + 2% MLE | 1.68 de | 1.74 ef | 0.45 de | 0.48 d | 1.50 de | 1.52 d | |
0.3% SWE + 4% MLE | 1.70 cd | 1.79 de | 0.48 cd | 0.52 c | 1.53 d | 1.61 c | |
0.4% SWE + 6% MLE | 1.75 c | 1.84 cd | 0.48 cd | 0.54 bc | 1.56 cd | 1.65 c | |
2 kg HA | 0 SWE + 0 MLE | 1.60 f | 1.70 fg | 0.40 f | 0.45 de | 1.45 ef | 1.50 de |
0.2% SWE + 2% MLE | 1.83 b | 1.88 c | 0.50 c | 0.55 bc | 1.62 c | 1.72 b | |
0.3% SWE + 4% MLE | 1.87 b | 1.94 b | 0.55 b | 0.58 b | 1.69 b | 1.76 b | |
0.4% SWE + 6% MLE | 1.95 a | 2.01 a | 0.59 a | 0.61 a | 1.77 a | 1.84 a | |
LSD0.05 | 0.06 | 0.06 | 0.03 | 0.03 | 0.07 | 0.05 |
Soil Addition | Foliar Spraying | Fe ppm | Zn ppm | Mn ppm | B ppm | ||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
Zero HA | 0 SWE + 0 MLE | 143.50 g | 146 g | 40.25 g | 43.25 g | 38.00 g | 41.00 h | 44.00 f | 43.50 h |
0.2% SWE + 2% MLE | 146.75 f | 149.5 f | 41.25 fg | 44.00 g | 38.50 g | 41.25 h | 45.50 ef | 45.50 gh | |
0.3% SWE + 4% MLE | 148.75 f | 150 f | 44.75 e | 47.50 efg | 40.00 g | 45.90 fg | 47.00 e | 47.75 fg | |
0.4% SWE + 6% MLE | 152.75 e | 156.5 d | 46.50 de | 48.75 ef | 46.25 ef | 47.50 f | 50.75 d | 50.00 ef | |
1 kg HA | 0 SWE + 0 MLE | 147.25 f | 150.75 f | 43.75 ef | 45.75 fg | 39.50 g | 42.75 gh | 46.00 ef | 47.00 fg |
0.2% SWE + 2% MLE | 156.75 d | 159 d | 47 de | 50.25 de | 48.00 de | 50.50 e | 51.00 d | 51.75 de | |
0.3% SWE + 4% MLE | 157.00 d | 165 c | 47.75 de | 52.75 cd | 50.25 cd | 52.50 de | 54.00 c | 54.00 cd | |
0.4% SWE + 6% MLE | 161.75 c | 162.75 c | 49.25 d | 54.25 c | 50.75 cd | 54.50 cd | 53.25 cd | 55.00 c | |
2 kg HA | 0 SWE + 0 MLE | 148.75 f | 153.5 e | 45.25 e | 45.50 fg | 43.50 f | 44.50 fgh | 47.25 e | 47.75 fg |
0.2% SWE + 2% MLE | 159.75 cd | 164.5 c | 53.00 c | 56.00 c | 53.00 c | 56.75 bc | 58.25 b | 58.50 b | |
0.3% SWE + 4% MLE | 168.5 b | 172.25 b | 56.75 b | 59.25 b | 56.00 b | 59.15 b | 59.00 b | 60.25 b | |
0.4% SWE + 6% MLE | 173.5 a | 176 a | 61.75 a | 62.50 a | 60.25 a | 62.75 a | 62.50 a | 63.50 a | |
LSD0.05 | 2.80 | 2.57 | 2.77 | 3.02 | 2.95 | 2.86 | 2.07 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, K.F.; Sas-Paszt, L.; Mosa, W.F.A. The Role of Some Biostimulants in Improving the Productivity of Orange. Sustainability 2024, 16, 7131. https://doi.org/10.3390/su16167131
Almutairi KF, Sas-Paszt L, Mosa WFA. The Role of Some Biostimulants in Improving the Productivity of Orange. Sustainability. 2024; 16(16):7131. https://doi.org/10.3390/su16167131
Chicago/Turabian StyleAlmutairi, Khalid F., Lidia Sas-Paszt, and Walid F. A. Mosa. 2024. "The Role of Some Biostimulants in Improving the Productivity of Orange" Sustainability 16, no. 16: 7131. https://doi.org/10.3390/su16167131
APA StyleAlmutairi, K. F., Sas-Paszt, L., & Mosa, W. F. A. (2024). The Role of Some Biostimulants in Improving the Productivity of Orange. Sustainability, 16(16), 7131. https://doi.org/10.3390/su16167131