Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang–Jingzhou–Jingmen–Enshi Urban Agglomeration in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Construction of the Indicator System
2.3. Method
2.3.1. Standardization Method
2.3.2. Entropy Weight Method
2.3.3. Robustness Analysis
2.3.4. Calculation of Urban Resilience Index
2.3.5. Getis–Ord Gi* Model
2.3.6. Factor Contribution Model
2.3.7. CA-Markov Model
2.4. Data Sources
3. Results
3.1. Results of the Robustness Analysis
3.2. Spatial-Temporal Differentiation Characteristics of Urban Resilience
3.3. Driving Factors of Urban Resilience
3.4. Modeling Changes in Urban Resilience in the Future
4. Discussion
5. Conclusions
- (1)
- The urban resilience of the YJJE urban agglomeration increased at a rate of 3.25%/a and continues to rise, with the differences among cities narrowing over the period of 2010–2023. Meanwhile, the urban resilience values of the regional centers have consistently remained higher than those of county-level cities near mountainous areas. A marked heterogeneity was discerned, with Xiling, Wujiagang, Xiaoting, Yidu, Zhijiang, Dianjun, Dangyang, Yuan’an, Yiling, and Duodao being the hot spots of urban resilience, and Hefeng, Jianli, Shishou, and Wufeng being the cold spots of urban resilience. In 2023, all the prefecture-level cities and 27 county-level cities within the YJJE reached the medium level or higher than medium level of urban resilience.
- (2)
- The total amount of urban social retail, park green space area, financial expenditure per capita, urban disposable income per capita, GDP per capita, and number of buses per 10,000 people stood out as the key influencing elements in relation to urban resilience.
- (3)
- The urban resilience among cities within the YJJE will reach the medium level or higher than medium level in 2030. Xiling, Wujiagang, Xiaoting, Zhijiang, Dianjun, Dangyang, and Yuan’an are high-value agglomerations of urban resilience, while Jianli is a low-value agglomeration of urban resilience.
- (4)
- Policymakers could focus on several crucial aspects, which include reinforcing the openness level, amplifying the governmental support for finance, strengthening the economic coordination or integration, improving the social security and supply, and advancing regional environment conservation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webber, S.; Leitner, H.; Sheppard, E. Wheeling Out Urban Resilience: Philanthrocapitalism, Marketization, and Local Practice. Ann. Am. Assoc. Geogr. 2021, 111, 343–363. [Google Scholar] [CrossRef]
- Tang, J.; Heinimann, H.; Han, K.; Luo, H.; Zhong, B. Evaluating resilience in urban transportation systems for sustainability: A systems-based Bayesian network model. Transp. Res. Part C Emerg. Technol. 2020, 121, 102840. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Peng, Q.; Yin, Y. Resilience assessment of an urban rail transit network: A case study of Chengdu subway. Phys. A Stat. Mech. Appl. 2022, 586, 126517. [Google Scholar] [CrossRef]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, add2622. [Google Scholar] [CrossRef]
- Jouni, K.; Juha-Pekka, S. Quantifying the relationship of resilience and eco-efficiency in complex adaptive energy systems. Ecol. Econ. 2015, 120, 83–92. [Google Scholar]
- Shi, C.; Guo, N.; Zhu, X.; Wu, F. Assessing Urban Resilience from the Perspective of Scaling Law: Evidence from Chinese Cities. Land 2022, 11, 1803. [Google Scholar] [CrossRef]
- Deng, H.; Liu, K. Spatiotemporal Evolution of Urban Resilience and Spatial Spillover Effects in Guangdong Province, China. Land 2023, 12, 1800. [Google Scholar] [CrossRef]
- Suárez, M.; Benayas, J.; Justel, A.; Sisto, R.; Montes, C.; Sanz-Casado, E. A holistic index-based framework to assess urban resilience: Application to the Madrid Region, Spain. Ecol. Indic. 2024, 166, 112293. [Google Scholar] [CrossRef]
- Yang, X.D.; Li, H.L.; Zhang, J.Y.; Niu, S.Y.; Miao, M.M. Urban economic resilience within the Yangtze River Delta urban agglomeration: Exploring spatially correlated network and spatial heterogeneity. Sustain. Cities Soc. 2024, 103, 105270. [Google Scholar] [CrossRef]
- Shi, C.C.; Lu, J.J. Unlocking Economic Resilience: A New Methodological Approach and Empirical Examination under Digital Transformation. Land 2024, 13, 621. [Google Scholar] [CrossRef]
- Gyucha, A.; Derby, L.A.; Solinis, C.R.; Piland, N.C.; Alberti, M. Editorial: Shaping the future: Urban resilience and socio-ecological systems through time. Front. Ecol. Evol. 2024, 12, 1392723. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Holland, N.; Nelson, J. Optimizing smart grid performance: A stochastic approach to renewable energy integration. Sustain. Cities Soc. 2024, 111, 105533. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Gnatz, D.M.; Wilhelmi, O.; Hayden, M. Urban Sustainability and Resilience: From Theory to Practice. Sustainability 2016, 8, 1224. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H. Progress and prospect of urban resilience research. Prog. Geogr. 2020, 39, 1717–1731. [Google Scholar] [CrossRef]
- Zhou, Q.; Qiao, Y.; Zhang, H.; Zhou, S. How does college scale affect urban resilience? Spatiotemporal evidence from China. Sustain. Cities Soc. 2022, 85, 104084. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Ilıcak, Ö.; Feyzioğlu, O. A Review of Urban Resilience Literature. Sustain. Cities Soc. 2022, 77, 103579. [Google Scholar] [CrossRef]
- Mote, S.; Rivas, J.; Kalnay, E.; Asrar, G.R.; Busalacchi, A.J.; Cahalan, R.F.; Cane, M.A.; Colwell, R.R.; Feng, K.; Franklin, R.; et al. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems. Natl. Sci. Rev. 2016, 3, 470–494. [Google Scholar]
- Marjolein, S.; Bas, W. Building up resilience in cities worldwide: Rotterdam as participant in the 100 Resilient Cities Programme. Cities 2017, 61, 109–116. [Google Scholar]
- Si, Y.; Liang, L.; Zhou, W. An Evaluation of Urban Resilience Using Structural Equation Modeling from Practitioners’ Perspective: An Empirical Investigation in Huangshi City, China. Sustainability 2024, 16, 7031. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Du, M. Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China. Land 2022, 11, 1470. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Walker, B.H.; Anderies, J.M.; Kinzig, A.P.; Ryan, P. Exploring resilience in social-ecological systems through comparative studies and theory development: Introduction to the special issue. Ecol. Soc. 2006, 11, 12. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Global Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Alexander, D.E. Resilience and Disaster Risk Reduction: An Etymological Journey. Nat. Hazards Earth Syst. Sci. 2013, 13, 2707–2716. [Google Scholar] [CrossRef]
- Ma, F.; Wang, Z.H.; Sun, Q.P.; Yuen, K.F.; Zhang, Y.X.; Xue, H.F.; Zhao, S.M. Spatial–Temporal Evolution of Urban Resilience and Its Influencing Factors: Evidence from the Guanzhong Plain Urban Agglomeration. Sustainability 2020, 12, 2593. [Google Scholar] [CrossRef]
- Ma, X.; Chen, X.; Du, Y.; Zhu, X.; Dai, Y.; Li, X.; Zhang, R.; Wang, Y. Evaluation of Urban Spatial Resilience and Its Influencing Factors: Case Study of the Harbin–Changchun Urban Agglomeration in China. Sustainability 2022, 14, 2899. [Google Scholar] [CrossRef]
- Wardekker, J.A.; de Jong, A.; Knoop, J.M.; van der Sluijs, J.P. Operationalising a resilience approach to adapting an urban delta to uncertain climate changes. Technol. Forecast. Soc. Chang. 2010, 77, 987–998. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, M.; Zhang, J. Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle. Sustainability 2022, 14, 10585. [Google Scholar] [CrossRef]
- Cui, P.; Li, D. A SNA-based methodology for measuring the community resilience from the perspective of social capitals: Take Nanjing, China as an example. Sustain. Cities Soc. 2020, 53, 101880. [Google Scholar] [CrossRef]
- Suárez, M.; Gómez-Baggethun, E.; Benayas, J.; Tilbury, D. Towards an urban resilience Index: A case study in 50 Spanish cities. Sustainability 2016, 8, 774. [Google Scholar] [CrossRef]
- Xun, X.; Yuan, Y. Research on the urban resilience evaluation with hybrid multiple attribute TOPSIS method: An example in China. Nat. Hazards 2020, 103, 557–577. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, J.; Zhang, L. The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities. Sustain. Cities Soc. 2022, 86, 104160. [Google Scholar] [CrossRef]
- Liu, L.; Lei, Y.; Fath, B.D.; Hubacek, K.; Yao, H.; Liu, W. The spatio-temporal dynamics of urban resilience in China’s capital cities. J. Clean. Prod. 2022, 379, 134400. [Google Scholar] [CrossRef]
- Liu, L.; Luo, Y.; Pei, J.; Wang, H.; Li, J.; Li, Y. Temporal and spatial differentiation in urban resilience and its influencing factors in Henan Province. Sustainability 2021, 13, 12460. [Google Scholar] [CrossRef]
- Qin, W.; Lin, A.; Fang, J.; Wang, L.; Li, M. Spatial and temporal evolution of community resilience to natural hazards in the coastal areas of China. Nat. Hazards 2017, 89, 331–349. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- James, S.; Ron, M. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar]
- Chen, Y.; Su, X.; Zhou, Q. Study on the spatiotemporal evolution and influencing factors of urban resilience in the yellow river basin. Int. J. Environ. Res. Public Health 2021, 18, 10231. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Christian, R.; Thomas, S. CPGPRC (Central People’s Government of the People’s Republic of China). Notification by the Standard of State Council on Adjusting the Urban Scale. Available online: https://www.gov.cn/zhengce/content/2014-11/20/content_9225.htm (accessed on 22 March 2024).
- Reuter, C.; Spielhofer, T. Towards social resilience: A quantitative and qualitative survey on citizens’ perception of social media in emergencies in Europe. Technol. Forecast. Soc. Chang. 2017, 121, 168–180. [Google Scholar] [CrossRef]
- Ranasinghe, U.; Jefferies, M.; Davis, P.; Pillay, M. Resilience Engineering Indicators and Safety Management: A Systematic Review. Saf. Health Work 2020, 11, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Urban resilience system development measurement: Based on an empirical study of 288 Chinese cities. Urban Dev. Stud. 2021, 28, 93–100. [Google Scholar]
- Perch-Nielsen, S.L. The vulnerability of beach tourism to climate change: An index approach. Clim. Chang. 2010, 100, 579–606. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Kondyli, J. Measurement and evaluation of sustainable development: A composite indicator for the islands of the North Aegean region, Greece. Environ. Impact Asses. 2011, 30, 347–356. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Li, T.; Singh, R.K.; Pandey, R.; Liu, H.D.; Cui, L.Z.; Xu, Z.H.; Xia, A.Q.; Wang, F.; Tang, L.; Wu, W.C.; et al. Enhancing sustainable livelihoods in the Three Rivers Headwater Region: A geospatial and obstacles context. Ecol. Indic. 2023, 156, 111134. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Argany, M.; Jelokhani-Niaraki, M.; Arsanjani, J.J. A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities 2019, 93, 120–135. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.C.; Wang, L.; Zhang, P.T. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Wu, X.; Zhang, Y.L.; Gao, J.G. Assessment of Changes in the Value of Ecosystem Services in the Koshi River Basin, Central High Himalayas Based on Land Cover Changes and the CA-Markov Model. J. Resour. Ecol. 2017, 8, 67–76. [Google Scholar]
- Liu, N.; Wang, S.; Su, F.; Ye, J. Research on coupling coordination of China’s New-Type Urbanization and urban resilience—Taking Yangtze River Economic Belt as an example. Sustainability 2023, 15, 456. [Google Scholar] [CrossRef]
- Tang, D.C.; Li, J.N.; Zhao, Z.Q.; Boamah, V.; Lansana, D.D. The influence of industrial structure transformation on urban resilience based on 110 prefecture-level cities in the Yangtze River. Sustain. Cities Soc. 2023, 96, 104621. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.N.; Mu, H.R.; Miao, J.C.; Li, W.X.; Li, M.F. Assessment of urban resilience and subsystem coupling coordination in the Beijing-Tianjin-Hebei urban agglomeration. Sustain. Cities Soc. 2024, 100, 105058. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, S.; Chen, X.; Lei, Z.; Zhou, X. Spatio-Temporal Evolution and Influencing Factors of the Resilience of Tourism Environmental Systems in the Yangtze River Economic Belt of China. Sustainability 2023, 15, 10527. [Google Scholar] [CrossRef]
- Lee, C.C.; Yan, J.Y.; Li, T. Ecological resilience of city clusters in the middle reaches of Yangtze river. J. Clean. Prod. 2024, 443, 141082. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Peng, C.; Chen, P.; Zhang, M.J. Conflict or synergy? Analysis of economic-social- infrastructure-ecological resilience and their coupling coordination in the Yangtze River economic Belt, China. Ecol. Indic. 2022, 142, 109194. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lv, L. Urban Resilience and Its Links to City Size: Evidence from the Yangtze River Economic Belt in China. Land 2023, 12, 2131. [Google Scholar] [CrossRef]
- Wang, X.; Peng, W.J.; Xiong, H.P. Spatial-temporal evolution and driving factors of rural resilience in the urban agglomerations in the middle reaches of the Yangtze River, China. Environ. Sci. Pollut. R. 2024, 31, 25076–25095. [Google Scholar] [CrossRef]
- Lin, Y.Z.; Peng, C.; Shu, J.F.; Zhai, W.; Cheng, J.Q. Spatiotemporal characteristics and influencing factors of urban resilience efficiency in the Yangtze River Economic Belt, China. Environ. Sci. Pollut. R. 2022, 29, 39807–39826. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Zheng, Y.H.; Xiang, P.C. Deciphering the spatial and temporal evolution of urban anthropogenic resilience within the Yangtze River Delta urban agglomeration. Sustain. Cities Soc. 2023, 88, 104274. [Google Scholar] [CrossRef]
Domains | Indicators | Unit | Variable |
---|---|---|---|
Economy | GDP per capita | CNY 10,000 | a1 |
resilience | The proportion of tertiary industry in GDP | % | a2 |
Savings deposit per capita | CNY 10,000 | a3 | |
Financial expenditure per capita | CNY 10,000 | a4 | |
Total amount of urban social retail | CNY 10,000 | a5 | |
Total fixed asset investment | CNY 10,000 | a6 | |
Ecology | Greening coverage rate of built-up area | % | b1 |
resilience | Proportion of days with air quality index (AQI) < 100 in a year | % | b2 |
Park green space area | ha | b3 | |
Treatment rate of living waste in city | % | b4 | |
Comprehensive utilization rate of general industrial solid waste | % | b5 | |
Domestic sewage treatment rate | % | b6 | |
Society | Urban disposable income per capita | CNY 10,000 | c1 |
resilience | Number of hospital beds per 10,000 people | per 10,000 people | c2 |
The investments on education | CNY 10,000 | c3 | |
Grain yield per capita | kg | c4 | |
Number of medical technical personnel per 10,000 people | per 10,000 people | c5 | |
Public management and social organization personnel per 10,000 people | per 10,000 people | c6 | |
Infrastructure | Number of buses per 10,000 people | per 10,000 people | d1 |
resilience | Per capita power supply | kw·h/person | d2 |
Road area per capita | m2/person | d3 | |
Density of urban drainage pipes | km/km2 | d4 | |
Per capita water supply | m3/person | d5 | |
Gas penetration rate | % | d6 |
Level | Low | Relatively Low | Medium | Relatively High | High |
---|---|---|---|---|---|
Urban resilience value | [0.0, 0.2) | [0.2, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.0] |
Name | 2010 | 2015 | 2020 | 2023 |
---|---|---|---|---|
Yichang | 0.379 | 0.427 | 0.461 | 0.496 |
Jingzhou | 0.294 | 0.350 | 0.401 | 0.450 |
Jingmen | 0.356 | 0.422 | 0.456 | 0.504 |
Enshi | 0.276 | 0.350 | 0.395 | 0.430 |
YJJE urban agglomeration | 0.331 | 0.390 | 0.430 | 0.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Hu, Z.; Han, X.; Chen, L.; Li, Z. Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang–Jingzhou–Jingmen–Enshi Urban Agglomeration in China. Sustainability 2024, 16, 7090. https://doi.org/10.3390/su16167090
Zhao Z, Hu Z, Han X, Chen L, Li Z. Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang–Jingzhou–Jingmen–Enshi Urban Agglomeration in China. Sustainability. 2024; 16(16):7090. https://doi.org/10.3390/su16167090
Chicago/Turabian StyleZhao, Zhilong, Zengzeng Hu, Xu Han, Lu Chen, and Zhiyong Li. 2024. "Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang–Jingzhou–Jingmen–Enshi Urban Agglomeration in China" Sustainability 16, no. 16: 7090. https://doi.org/10.3390/su16167090
APA StyleZhao, Z., Hu, Z., Han, X., Chen, L., & Li, Z. (2024). Evaluation of Urban Resilience and Its Influencing Factors: A Case Study of the Yichang–Jingzhou–Jingmen–Enshi Urban Agglomeration in China. Sustainability, 16(16), 7090. https://doi.org/10.3390/su16167090