Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analysis
Abstract
1. Introduction
2. Methods
2.1. Materials
2.2. Sample Preparation and Marshall Properties
2.3. Indirect Tensile Fatigue Test
2.4. Statistical Modeling and Soft Computing Approaches
2.4.1. Response Surface Methodology
2.4.2. Artificial Neural Network
2.4.3. Model Efficiency Comparison Parameters
3. Results and Discussion
3.1. Conventional Testing for POPIC-Modified Bitumen
3.2. Volumetric and Marshall Characteristics of Modified Bituminous Concrete Mixes
3.3. Fatigue Life Analysis of POPIC-MB Bituminous Concrete Samples Utilizing the S-Nf Relationship
3.4. Influence of Stress Levels and POPIC Content on Bituminous Concrete Fatigue Life
3.5. RSM Statistical Approach
3.5.1. Model Fit Analysis and Validation Parameter
3.5.2. RSM Diagnostic Plot Analysis
3.5.3. Synergistic Variables’ Effects on Fatigue Life Response
3.5.4. Multi-Objective Optimization and Validation of RSM Models
3.6. Soft Computing Approach
3.6.1. The Artificial Neural Network (ANN) Approach
3.6.2. JMP Pro
3.6.3. MATLAB
3.7. Model Performance Evaluation Assessment
3.8. Statistical Measures for the Developed Models
3.9. Predictive Model Data Variability, Validation, and Comparison
3.9.1. Violin Plots
3.9.2. Taylors Model Comparison
3.9.3. Model External Validation
3.10. Developed Model Summary, Assumptions, and Limitations
4. Conclusions
- ⮚
- A high degree of agreement was observed between predicted and actual values, indicating the efficacy of statistical models in predicting fatigue life under specific conditions. Also, the study highlights the superiority of a statistically based machine learning approach, particularly the ANNs, over conventional methods like RSM.
- ⮚
- The results indicate that POPIC-MAB bituminous concrete exhibits a longer fatigue life at lower stress levels and temperatures, with temperature exerting a greater influence than stress and POPIC content. Additionally, the study identifies the optimal improvement in logarithmic fatigue life for POPIC-MB bituminous concrete at 7.5% POPIC, 11.706 °C, and a stress level of 0.2.
- ⮚
- The ANN model accurately predicts the POPIC-MB bituminous logarithmic fatigue life by capturing complicated nonlinear connections. This is demonstrated by its close alignment with the actual laboratory results, low error percentages, and high R2 values.
- ⮚
- Comparing parity, Taylor, and violin plots, JMP pro and MATLAB-based ANN models, as well as the RSM model, show unbiased prediction accuracy. In terms of accuracy and dataset alignment, the JMP pro-based ANN model performs better.
- ⮚
- Study limitations include a focus on specific stress, temperature, and POPIC content ranges, limiting generalization, and potential variations in real-world performance due to external factors influencing field conditions.
- ⮚
- Future research should evaluate the impact of environmental variables on POPIC-MBC performance, including long-term durability and performance under varying traffic and weather situations. Furthermore, additional studies with different binder modifiers may improve the model’s adaptability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
RSM | Response surface methodology |
PWD | Public Work Department |
POPIC | Pulverized oil palm industry clinker |
CCD | Central Composite Design |
POPIC-MB | Pulverized oil palm industry clinker-modified bitumen |
ANN | Artificial Neural Network |
JMP | John’s Macintosh Project |
POPIC-MBC | Pulverized oil palm industry clinker-modified bituminous concrete |
OBC | Optimal bitumen content |
AC14 | Asphalt concrete with a nominal maximum aggregate size of 14 mm |
IQR | Interquartile range (IQR) |
ITSR | ITS ratio |
ANOVA | Analysis of Variance |
CV | Coefficient of variance |
SD | Standard deviation |
RASE | Root Average Square Error |
A. P | Adequate precision |
R2 | Coefficient of determination |
RMSE | Root mean square error |
MRE | Mean relative error |
BSD | Bulk specific density |
VMAs | Voids filled with mineral aggregates |
VFBs | Voids filled with bitumen |
AVs | Air voids |
References
- Buritatum, A.; Suddeepong, A.; Horpibulsuk, S.; Akkharawongwhatthana, K.; Yaowarat, T.; Hoy, M.; Bunsong, C.; Arulrajah, A. Improved performance of asphalt concretes using bottom ash as an alternative aggregate. Sustainability 2022, 14, 7033. [Google Scholar] [CrossRef]
- Khorshidi, M.; Goli, A.; Orešković, M.; Khayambashi, K.; Ameri, M. Performance evaluation of asphalt mixtures containing different proportions of alternative materials. Sustainability 2023, 15, 13314. [Google Scholar] [CrossRef]
- Jain, S.; Chandrappa, A.K.; Neelancherry, R. Utilization of Agricultural Wastes and By-Products in Asphalt: A Critical Review. In Agricultural Waste to Value-Added Products: Bioproducts and its Applications; Springer: Singapore, 2024; pp. 207–227. [Google Scholar]
- Wang, L.; Wei, J.; Wu, W.; Zhang, X.; Xu, X.; Yan, X. Technical development and long-term performance observations of long-life asphalt pavement: A case study of Shandong Province. J. Road Eng. 2022, 2, 369–389. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Sha, A.; Huang, Y.; Shan, J.; Li, P. Design of a novel road pavement using steel and plastics to enhance performance, durability and construction efficiency. Materials 2021, 14, 482. [Google Scholar] [CrossRef] [PubMed]
- Abdelmagid, A.A.; Qiu, Y. Repurposing agricultural waste: The effectiveness of peanut husk ash in improving asphalt mixture properties. Constr. Build. Mater. 2024, 411, 134476. [Google Scholar] [CrossRef]
- Sudarsanan, N.; Kim, Y.R. A critical review of the fatigue life prediction of asphalt mixtures and pavements. J. Traffic Transp. Eng. 2022, 9, 808–835. [Google Scholar] [CrossRef]
- Cardoso, J.; Ferreira, A.; Almeida, A.; Santos, J. Incorporation of plastic waste into road pavements: A systematic literature review on the fatigue and rutting performances. Constr. Build. Mater. 2023, 407, 133441. [Google Scholar] [CrossRef]
- Jelušič, P.; Gücek, S.; Žlender, B.; Gürer, C.; Varga, R.; Bračko, T.; Taciroğlu, M.V.; Korkmaz, B.E.; Yarcı, Ş.; Macuh, B. Potential of Using Waste Materials in Flexible Pavement Structures Identified by Optimization Design Approach. Sustainability 2023, 15, 13141. [Google Scholar] [CrossRef]
- Bujanga, M.; Bakiea, N.A.; Bujanga, U.H.; Kiana, L.S.; Juslia, E.A.; Azahara, W.N.A.W. Characteristics of Oil Palm Fruit Ash as Binder in Asphaltic Concrete. J. Kejuruter. 2023, 35, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Chen, R.S.; Padzil, F.N.M.; Moosavi, S.; Mou’ad, A.T.; Loh, S.K.; Idris, Z. Potential valorization of oil palm fiber in versatile applications towards sustainability: A review. Ind. Crops Prod. 2023, 199, 116763. [Google Scholar] [CrossRef]
- Hamada, H.M.; Al-Attar, A.; Shi, J.; Yahaya, F.; Al Jawahery, M.S.; Yousif, S.T. Optimization of sustainable concrete characteristics incorporating palm oil clinker and nano-palm oil fuel ash using response surface methodology. Powder Technol. 2023, 413, 118054. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Siti-Dina, R.P.; Leng, S.T.K.; Er, A.; Show, P.L. Circular bioeconomy in palm oil industry: Current practices and future perspectives. Environ. Technol. Innov. 2023, 30, 103050. [Google Scholar] [CrossRef]
- Awoh, E.T.; Kiplagat, J.; Kimutai, S.K.; Mecha, A.C. Current trends in palm oil waste management: A comparative review of Cameroon and Malaysia. Heliyon 2023, 9, e21410. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Di, N.; Liu, F. Research on compressive fatigue performance of fibre reinforced asphalt concrete based on response surface methodology. Int. J. Microstruct. Mater. Prop. 2023, 16, 380–392. [Google Scholar] [CrossRef]
- Jankovic, A.; Chaudhary, G.; Goia, F. Designing the design of experiments (DOE)–An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build. 2021, 250, 111298. [Google Scholar] [CrossRef]
- Rout, M.D.; Shubham, K.; Biswas, S.; Sinha, A.K. An integrated evaluation of waste materials containing recycled asphalt fine aggregates using central composite design. Asian J. Civ. Eng. 2024, 25, 1007–1025. [Google Scholar] [CrossRef]
- Singh, P.; Singh, N.P.; Himanshi; Mishra, J.K.; Olawuyi, O.A.; Arinkoola, A.O.; Osuolale, O.M.; Adebanjo, A.U.; Dixit, S. Optimization, Modelling and Evaluation of Marshall Stability of Asphaltic Concrete with Agricultural and Industrial Wastes through Response Surface Method. In Proceedings of the International Conference on Advanced Computing and Intelligent Technologies; Springer: Singapore, 2023; pp. 151–164. [Google Scholar]
- Asadi, S.; Shafabakhsh, G. Experimental and statistical investigation on the performance of asphalt overlays reinforced with geocomposite in controlling the reflective cracks under different loadings and temperatures. SN Appl. Sci. 2023, 5, 202. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Muhammad, A. Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures. Constr. Build. Mater. 2022, 324, 126618. [Google Scholar] [CrossRef]
- Badini, S.; Regondi, S.; Pugliese, R. Unleashing the power of artificial intelligence in materials design. Materials. 2023, 16, 5927. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H. Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Comput. Sci. 2022, 3, 158. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guan, J.; Ding, L.; You, Z.; Lee, V.C.; Hasan, M.R.M.; Cheng, X. Research and applications of artificial neural network in pavement engineering: A state-of-the-art review. J. Traffic Transp. Eng. 2021, 8, 1000–1021. [Google Scholar] [CrossRef]
- Hoang, H.-G.T.; Nguyen, T.-A.; Nguyen, H.-L.; Ly, H.-B. Neural network approach for GO-modified asphalt properties estimation. Case Stud. Constr. Mater. 2022, 17, e01617. [Google Scholar]
- Guan, M.; Guo, M.; Liu, X.; Du, X.; Tan, Y. Effect of Multifactor Coupling Aging on Rheological Properties of Asphalt Binders and Correlations between Various Rheological Indexes. J. Mater. Civ. Eng. 2024, 36, 04024088. [Google Scholar] [CrossRef]
- JKR/SPJ/rev2005; Standard Specification for Road Works. Jabatan Kerja Raya: Kuala Lumpur, Malaysia, 2008.
- ASTM D6927; Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- BS-EN-12697-24; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 24: Resistance to Fatigue. British Standards: London, UK, 2012; Volume 24.
- Wahhab, H.I.A.A.; Rafiq, W.; Khaliludin, M. Modeling and design optimization of dense graded modified crumb rubber asphalt mixtures using response surface methodology. Constr. Build. Mater. 2024, 435, 136895. [Google Scholar] [CrossRef]
- Najjar, S.; Mohammadzadeh Moghaddam, A.; Sahaf, A.; Mohammadaliha, M. Predicting fracture behavior (mixed-modes I/III) of cement asphalt mortar under fatigue and static loading conditions using response surface method. Fatigue Fract. Eng. Mater. Struct. 2024, 47, 781–817. [Google Scholar] [CrossRef]
- Jalota, S.; Suthar, M. Machine learning models to predict mechanical performance properties of modified bituminous mixes: A comprehensive review. Asian J. Civ. Eng. 2024, 25, 1–18. [Google Scholar] [CrossRef]
- Singh, P.; Adebanjo, A.; Shafiq, N.; Razak, S.N.A.; Kumar, V.; Farhan, S.A.; Adebanjo, I.; Singh, A.; Dixit, S.; Singh, S. Development of performance-based models for green concrete using multiple linear regression and artificial neural network. Int. J. Interact. Des. Manuf. 2023, 18, 2945–2956. [Google Scholar] [CrossRef]
- Wei, X.; Makhloof, D.; Ren, X. Analytical Models of Concrete Fatigue: A State-of-the-Art Review. CMES-Comput. Model. Eng. Sci. 2023, 134, 9–34. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, L.; Wang, Y.; Liu, L.; Chen, X. Fatigue test setups and analysis methods for asphalt mixture: A state-of-the-art review. J. Road Eng. 2022, 2, 279–308. [Google Scholar] [CrossRef]
- Ge, D.; Ju, Z.; Duan, D.; Lyu, S.; Lu, W.; Liu, C. Normalized fatigue properties of asphalt mixture at various temperatures. J. Road Eng. 2023, 3, 279–287. [Google Scholar] [CrossRef]
- Abdulmawjoud, A.A. Evaluation of fatigue characteristics of reclaimed asphalt pavement mixtures through dissipated energy. Int. J. Pavement Res. Technol. 2023, 16, 237–245. [Google Scholar] [CrossRef]
- Archilla, A.R.; Rayapeddi Kumar, J.K.; Prozzi, J.A. Fatigue Failure Criterion: Comparing Maximum Phase Angle with Minimum Curvature of Stiffness Curve. In Airfield and Highway Pavements 2023; ASCE: Reston, VA, USA, 2023; pp. 200–212. [Google Scholar]
- Alnaqbi, A.J.; Zeiada, W.; Al-Khateeb, G.; Abttan, A.; Abuzwidah, M. Predictive models for flexible pavement fatigue cracking based on machine learning. Transp. Eng. 2024, 16, 100243. [Google Scholar] [CrossRef]
- Elkut, F.; Hamzah, M. Investigation of the Fatigue Performance of Sustainable Asphalt Pavement. J. Pure Appl. Sci. 2023, 22, 67–71. [Google Scholar] [CrossRef]
- Niazi, R.; Hamzehloo, M.; Mahdavi, H. Optimizing the Physical Properties of Bitumen for Hot Areas with Recycled Additives. Iran. J. Chem. Chem. Eng. 2024, 43, 1199–1216. [Google Scholar]
- Mansourian, A.; Shabani, S.; Siamardi, K. Evaluation of fracture energy and durability properties of pavement concrete incorporating blends of durable and non-durable limestone Aggregates: RSM modelling and optimization. Theor. Appl. Fract. Mech. 2024, 131, 104374. [Google Scholar] [CrossRef]
- Xu, W.; Shah, Y.I.; Xu, S.; Wang, S.; Zhang, K.; Fan, X.; Liu, B. Multi-objective optimization of cold mix materials based on response surface methodology. Constr. Build. Mater. 2024, 435, 136782. [Google Scholar] [CrossRef]
- Kedar, H.N.; Aware, R.; Repale, G.; Pankaj, T.; Sangale, P. Optimizing industrial waste in road construction: A response surface methodology approach. J. Build. Pathol. Rehabil. 2024, 9, 59. [Google Scholar] [CrossRef]
- Boudermine, H.; Boumaaza, M.; Belaadi, A.; Bourchak, M.; Bencheikh, M. Performance analysis of biochar and W. Robusta palm waste reinforced green mortar using response surface methodology and machine learning methods. Constr. Build. Mater. 2024, 438, 137214. [Google Scholar] [CrossRef]
- Raza, M.S.; Sharma, S.K. Optimizing porous asphalt mix design for permeability and air voids using response surface methodology and artificial neural networks. Constr. Build. Mater. 2024, 442, 137513. [Google Scholar] [CrossRef]
- Kursuncu, B.; Gencel, O.; Bayraktar, O.Y.; Shi, J.; Nematzadeh, M.; Kaplan, G. Optimization of foam concrete characteristics using response surface methodology and artificial neural networks. Constr. Build. Mater. 2022, 337, 127575. [Google Scholar] [CrossRef]
- Pratap, B.; Mondal, S.; Rao, B.H. Prediction of compressive strength of bauxite residue-based geopolymer mortar as pavement composite materials: An integrated ANN and RSM approach. Asian J. Civ. Eng. 2023, 25, 597–607. [Google Scholar] [CrossRef]
- Alyaseen, A.; Siva Rama Prasad, C.V.; Poddar, A.; Kumar, N.; Mostafa, R.R.; Almohammed, F.; Sihag, P. Application of soft computing techniques for the prediction of splitting tensile strength in bacterial concrete. J. Struct. Integr. Maint. 2023, 8, 26–35. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Mahdy, M. Mechanical Properties And Microstructure Of High-Strength Alkali-Activated Concrete Including High-Volumes Of Waste Brick Powder Using Response Surface Methodology. J. Al-Azhar Univ. Eng. Sect. 2024, 19, 25–50. [Google Scholar]
- Rondinella, F.; Oreto, C.; Abbondati, F.; Baldo, N. Laboratory investigation and machine learning modeling of road pavement asphalt mixtures prepared with construction and demolition waste and rap. Sustainability 2023, 15, 16337. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Alhussian, H.; Abdulkadir, S.J.; Giustozzi, F.; Jakarni, F.M.; Yusoff, N.I.M. Predicting the rutting parameters of nanosilica/waste denim fiber composite asphalt binders using the response surface methodology and machine learning methods. Constr. Build. Mater. 2023, 363, 129871. [Google Scholar] [CrossRef]
- Khan, M.I.; Khan, N.; Hashmi, S.R.Z.; Yazid, M.R.M.; Yusoff, N.I.M.; Azfar, R.W.; Ali, M.; Fediuk, R. Prediction of compressive strength of cementitious grouts for semi-flexible pavement application using machine learning approach. Case Stud. Constr. Mater. 2023, 19, e02370. [Google Scholar] [CrossRef]
- Usman, A.; Sutanto, M.H.; Napiah, M.; Zoorob, S.E.; Yaro, N.S.A.; Khan, M.I. Comparison of performance properties and prediction of regular and gamma-irradiated granular waste polyethylene terephthalate modified asphalt mixtures. Polymers 2021, 13, 2610. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Johari, M.A.M.; Amin, M.N.; Khan, M.I.; Iqbal, M. Optimization of colloidal nano-silica based cementitious mortar composites using RSM and ANN approaches. Results Eng. 2023, 20, 101390. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Alhussian, H.; Abdulkadir, S.J.; Sutanto, M.; Mabrouk, G.; Bilema, M.; Milad, A.; Abdulrahman, H. Computational modelling for predicting rheological properties of composite modified asphalt binders. Case Stud. Constr. Mater. 2023, 19, e02651. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Alhussian, H.; Abdulkadir, S.J.; Giustozzi, F.; Napiah, M.; Jagadeesh, A.; Sutanto, M.; Memon, A.M. Utilization of response surface methodology and machine learning for predicting and optimizing mixing and compaction temperatures of bio-modified asphalt. Case Stud. Constr. Mater. 2023, 18, e02073. [Google Scholar] [CrossRef]
- Adebanjo, A.U.; Shafiq, N.; Razak, S.N.A.; Kumar, V.; Farhan, S.A.; Singh, P.; Abubakar, A.S. Design and modeling the compressive strength of high-performance concrete with silica fume: A soft computing approach. Soft Comput. 2024, 28, 6059–6083. [Google Scholar] [CrossRef]
Chemical Composition | Oxide Content (%) |
---|---|
Fe2O3 | 4.82 |
SiO2 | 63.87 |
Al2O3 | 3.96 |
MgO | 2.98 |
SO3 | 2.07 |
CaO | 7.84 |
P2O5 | 2.94 |
K2O | 6.78 |
TiO2 | 1.86 |
Properties | Standards | Unit | Material | Range | Test Value |
---|---|---|---|---|---|
Absorption | ASTM C 127 | % | Coarse aggregate | <2% | 0.67 |
ASTM C128 | % | Fine aggregate | <2% | 1.08 | |
Abrasion loss | ASTM C131 | % | Coarse aggregate | <30% | 23.48 |
Specific gravity | ASTM C 127 | g/m3 | Coarse aggregate | - | 2.73 |
ASTM C 128 | g/m3 | Fine aggregate | - | 2.68 | |
ASTM C188 | g/m3 | Filler | - | 3.12 | |
Penetration | ASTM D5 | dmm | Bitumen | 60–70 | 65 |
Softening point | ASTMD36 | °C | 49–56 | 50.26 | |
Specific gravity | ASTM D70 | - | 1.01–1.05 | 1.029 | |
Ductility | ASTMD113 | cm | >100 | 125 | |
Color | Dark grey | - | POPIC | ||
Moisture content | ASTM D2216 | % | - | 0.94 | |
Specific surface area | ASTM C1274 | m2/g | - | 1.0843 | |
Loss of ignition | ASTM C311 | % | - | 6.97 | |
Specific gravity | ASTM C188 | - | 2.59 |
Mix Design | Input Factors | Responses | ||
---|---|---|---|---|
POPIC (%) | Temperature (°C) | Stress Level (MPa) | Logarithmic Fatigue Life | |
1 | 4 | 20 | 0.3 | 3.684 |
2 | 4 | 20 | 0.3 | 3.781 |
3 | 0 | 35 | 0.2 | 3.544 |
4 | 0 | 5 | 0.2 | 5.392 |
5 | 8 | 5 | 0.2 | 5.484 |
6 | 0 | 20 | 0.3 | 3.383 |
7 | 0 | 5 | 0.4 | 4.927 |
8 | 8 | 5 | 0.4 | 5.321 |
9 | 0 | 5 | 0.2 | 5.173 |
10 | 4 | 20 | 0.2 | 4.259 |
11 | 4 | 35 | 0.3 | 3.395 |
12 | 0 | 35 | 0.4 | 2.949 |
13 | 8 | 5 | 0.4 | 5.261 |
14 | 4 | 20 | 0.3 | 3.691 |
15 | 4 | 20 | 0.3 | 3.911 |
16 | 4 | 20 | 0.3 | 3.813 |
17 | 4 | 20 | 0.3 | 3.723 |
18 | 8 | 35 | 0.2 | 3.831 |
19 | 8 | 5 | 0.2 | 5.484 |
20 | 4 | 5 | 0.3 | 5.209 |
21 | 8 | 35 | 0.4 | 3.636 |
22 | 4 | 20 | 0.4 | 3.193 |
23 | 0 | 5 | 0.4 | 4.858 |
24 | 8 | 20 | 0.3 | 3.868 |
25 | 0 | 35 | 0.4 | 2.896 |
26 | 8 | 35 | 0.4 | 3.086 |
27 | 8 | 35 | 0.2 | 3.842 |
28 | 0 | 35 | 0.2 | 3.934 |
Blend Type | Specific Gravity | Penetration (dmm) | Softening Point (°C) | Ductility (cm) | Storage Stability (°C) |
---|---|---|---|---|---|
Reference | 1.029 | 65 | 50.26 | 123 | 0.18 |
2% POPIC | 1.032 | 61 | 50.97 | 110 | 0.84 |
4% POPIC | 1.039 | 58 | 51.09 | 96 | 1.45 |
6% POPIC | 1.045 | 55 | 51.24 | 82 | 1.58 |
8% POPIC | 1.054 | 53 | 51.33 | 75 | 1.76 |
Type of Mix | BSD | AV (%) | VMA (%) | VFB (%) | Stability (kN) | Flow (mm) | OBC (%) |
---|---|---|---|---|---|---|---|
Reference | 2.376 | 4.07 | 15.39 | 72.03 | 10.96 | 3.32 | 5.18 |
2% POPIC | 2.382 | 3.88 | 15.08 | 73.01 | 11.35 | 3.14 | 5.07 |
4% POPIC | 2.393 | 3.76 | 14.95 | 73.98 | 13.97 | 3.01 | 4.96 |
6% POPIC | 2.398 | 3.48 | 14.87 | 74.87 | 15.08 | 2.84 | 4.91 |
8% POPIC | 2.401 | 3.37 | 14.72 | 75.16 | 14.21 | 2.86 | 4.94 |
JKR Limits | - | 3–5 | >14 | 70–80 | >8 | 2–5 | 4–6 |
Temp. (°C) | Mixture Type | Sample Diameter/ Height | Stiffness (MPa) | Stress Level (MPa) | Maximum Tensile Strain (×106) | Cycles to Failure (Nf) | Logarithmic Fatigue Life |
---|---|---|---|---|---|---|---|
5 | Reference | 101.1/50.73 | 3725.65 | 0.2 | 347.01 | 210,377 | 5.323 |
100.95/51.81 | 3445.38 | 0.3 | 520.21 | 106,414 | 5.027 | ||
101.2/51.42 | 3236.84 | 0.4 | 711.05 | 66,988 | 4.826 | ||
4% POPIC | 101.01/50.97 | 3161.57 | 0.2 | 405.41 | 293,089 | 5.467 | |
100.94/50.96 | 2371.01 | 0.3 | 760.32 | 174,984 | 5.243 | ||
101.2/51.54 | 1394.43 | 0.4 | 1089.78 | 128,529 | 5.109 | ||
8% POPIC | 100.36/50.34 | 2242.03 | 0.2 | 570.05 | 320,627 | 5.506 | |
100.74/50.91 | 1768.12 | 0.3 | 1020.19 | 223,357 | 5.349 | ||
101.4/51.01 | 1489.01 | 0.4 | 1560.11 | 191,866 | 5.283 | ||
20 | Reference | 101.3/51.89 | 2483.77 | 0.2 | 227.47 | 100,540 | 5.002 |
101/52.01 | 2294.15 | 0.3 | 344.81 | 23,341 | 4.368 | ||
100.8/51.92 | 2157.86 | 0.4 | 471.38 | 13,183 | 4.120 | ||
4% POPIC | 100.97/51.37 | 2106.35 | 0.2 | 268.25 | 121,152 | 5.083 | |
100.84/51.81 | 1579.34 | 0.3 | 500.87 | 28,957 | 4.462 | ||
101.2/41.94 | 1394.43 | 0.4 | 729.37 | 20,654 | 4.315 | ||
8% POPIC | 100.59/51.37 | 1492.91 | 0.2 | 378.47 | 139,124 | 5.143 | |
100.98/51.25 | 1168.69 | 0.3 | 676.86 | 34,610 | 4.539 | ||
101.1/50.93 | 981.93 | 0.4 | 1035.78 | 25,642 | 4.409 | ||
35 | Reference | 101.84/51.65 | 1656.72 | 0.2 | 148.95 | 5433 | 3.735 |
101.27/51.42 | 1531.03 | 0.3 | 231.07 | 1840 | 3.265 | ||
101.53/51.29 | 1431.78 | 0.4 | 320.01 | 771 | 2.887 | ||
4% POPIC | 101.04/50.72 | 1398.91 | 0.2 | 181.91 | 7362 | 3.867 | |
101.02/50.89 | 1048.89 | 0.3 | 329.97 | 2917 | 3.465 | ||
100.9/51.01 | 933.03 | 0.4 | 497.13 | 1426 | 3.154 | ||
8% POPIC | 100.87/50.71 | 991.03 | 0.2 | 247.98 | 7780 | 3.891 | |
101.13/51.15 | 773.21 | 0.3 | 459.04 | 3598 | 3.556 | ||
100.67/50.99 | 659.91 | 0.4 | 681.76 | 2051 | 3.312 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Model | 18.57 | 9 | 2.06 | 74.10 | <0.0001 | Significant |
A—POPIC | 0.4223 | 1 | 0.4223 | 15.17 | 0.0011 | |
B—Temperature | 14.22 | 1 | 14.22 | 510.58 | <0.0001 | |
C—Stress level | 1.29 | 1 | 1.29 | 46.28 | <0.0001 | |
AB | 0.0010 | 1 | 0.0010 | 0.0368 | 0.8501 | |
AC | 0.0724 | 1 | 0.0724 | 2.60 | 0.1243 | |
BC | 0.1257 | 1 | 0.1257 | 4.51 | 0.0477 | |
A2 | 0.0085 | 1 | 0.0085 | 0.3054 | 0.5873 | |
B2 | 1.09 | 1 | 1.09 | 39.07 | <0.0001 | |
C2 | 0.0058 | 1 | 0.0058 | 0.2098 | 0.6524 | |
Residual | 0.5011 | 18 | 0.0278 | |||
Lack of Fit | 0.2066 | 5 | 0.0413 | 1.82 | 0.1774 | Insignificant |
Pure Error | 0.2946 | 13 | 0.0227 | |||
Cor Total | 19.07 | 27 |
Model Parameter | Values |
---|---|
Standard deviation | 0.167 |
Mean | 4.130 |
Coefficient of variance | 4.040 |
Adequate precision | 26.262 |
0.974 | |
Adjusted | 0.961 |
Predicted | 0.924 |
Factor | POPIC (%) | Temperature (°C) | Stress Level (Mpa) | Logarithmic Fatigue Life |
---|---|---|---|---|
Range | 0–8 | 5–25 | 0.2–0.4 | 2.896–5.484 |
Goal | Maximize | In range | In range | Maximize |
Exp. Run | Logarithmic Fatigue Life | ||||||
---|---|---|---|---|---|---|---|
Actual | RSM | ANN | |||||
JMP pro | MATLAB | ||||||
Predicted | APE (%) | Predicted | APE (%) | Predicted | APE (%) | ||
1 | 3.684 | 3.982 | 8.089 | 3.832 | 4.017 | 3.892 | 5.646 |
2 | 3.781 | 3.491 | 7.670 | 3.694 | 2.301 | 3.991 | 5.554 |
3 | 3.544 | 3.932 | 10.948 | 3.737 | 5.446 | 3.732 | 5.305 |
4 | 5.392 | 5.984 | 10.979 | 5.222 | 3.153 | 5.924 | 9.866 |
5 | 5.484 | 6.281 | 14.533 | 5.613 | 2.352 | 5.981 | 9.063 |
6 | 3.383 | 3.743 | 10.641 | 3.528 | 4.286 | 3.903 | 15.371 |
7 | 4.927 | 4.432 | 10.047 | 4.838 | 1.806 | 4.432 | 10.047 |
8 | 5.321 | 4.792 | 9.9421 | 5.082 | 4.492 | 4.974 | 6.521 |
9 | 5.173 | 5.924 | 14.518 | 5.324 | 2.919 | 5.524 | 6.785 |
10 | 4.259 | 3.751 | 11.928 | 4.056 | 4.766 | 3.911 | 8.171 |
11 | 3.395 | 3.972 | 16.996 | 3.473 | 2.297 | 3.972 | 16.996 |
12 | 2.949 | 2.491 | 15.531 | 2.692 | 8.715 | 2.491 | 15.531 |
13 | 5.261 | 5.982 | 13.705 | 5.487 | 4.296 | 5.782 | 9.903 |
14 | 3.691 | 3.141 | 14.901 | 3.938 | 6.692 | 3.141 | 14.901 |
15 | 3.911 | 3.339 | 14.625 | 3.819 | 2.352 | 3.539 | 9.512 |
16 | 3.813 | 3.144 | 17.545 | 3.937 | 3.252 | 3.144 | 17.545 |
17 | 3.723 | 3.135 | 15.794 | 3.935 | 5.694 | 3.135 | 15.794 |
18 | 3.831 | 3.192 | 16.680 | 3.993 | 4.229 | 3.392 | 11.459 |
19 | 5.484 | 6.283 | 14.570 | 5.714 | 4.194 | 5.013 | 8.589 |
20 | 5.209 | 4.641 | 10.904 | 5.447 | 4.569 | 4.671 | 10.328 |
21 | 3.636 | 3.217 | 11.524 | 3.313 | 8.883 | 3.217 | 11.524 |
22 | 3.193 | 3.516 | 10.116 | 3.512 | 9.991 | 3.506 | 9.803 |
23 | 4.858 | 4.304 | 11.404 | 4.963 | 2.161 | 4.434 | 8.728 |
24 | 3.868 | 3.456 | 10.651 | 3.635 | 6.024 | 3.356 | 13.237 |
25 | 2.896 | 2.553 | 11.844 | 2.994 | 3.384 | 2.553 | 11.844 |
26 | 3.086 | 3.812 | 23.526 | 3.319 | 7.550 | 4.012 | 30.006 |
27 | 3.842 | 3.389 | 11.791 | 3.992 | 3.904 | 3.489 | 9.188 |
28 | 3.934 | 3.287 | 16.446 | 3.835 | 2.517 | 3.729 | 5.211 |
Statistical Metrics | Logarithmic Fatigue Life Models | ||
---|---|---|---|
RSM | JMP pro | MATLAB | |
MRE | 357.846 | 126.243 | 312.427 |
RMSE | 3.757 | 1.245 | 3.094 |
R2 | 0.979 | 0.998 | 0.984 |
Standard deviation | 1.112 | 0.857 | 0.958 |
Mean | 4.041 | 4.178 | 4.030 |
Variance | 1.236 | 0.734 | 0.918 |
Coefficient of variance | 27.51 | 20.51 | 23.77 |
Run | POPIC (%) | Temp. (°C) | Stress Level (MPa) | Logarithmic Fatigue Life | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Actual | Values for Predictive Models | |||||||||
RSM | APE | JMP Pro | APE | MATLAB | APE | |||||
1 | 2 | 15 | 0.25 | 4.285 | 4.152 | 3.20 | 4.176 | 2.61 | 4.163 | 2.93 |
2 | 3.5 | 25 | 0.45 | 3.215 | 3.129 | 2.75 | 3.187 | 0.87 | 3.179 | 1.13 |
3 | 6.5 | 40 | 0.00 | 4.978 | 5.161 | 3.54 | 5.053 | 1.48 | 5.107 | 2.53 |
4 | 8 | 10 | 0.15 | 5.148 | 5.027 | 2.41 | 5.096 | 1.02 | 5.072 | 1.49 |
5 | 5.5 | 25 | 0.10 | 4.465 | 4.278 | 4.37 | 4.369 | 2.19 | 4.357 | 2.48 |
Reference | Approach | Input Factors | Responses | |
---|---|---|---|---|
[51] | RSM and various machine learning models using MATLAB | Waste denim fiber and nano-silica | Rutting parameter | RSM > 0.80 Decision tree regression > 0.99 |
[52] | ANN | Water–cement ratio and superplasticizer | Flow value and compressive strength | ANN > 0.984 |
[53] | RSM and ANN | Waste plastic dosage and temperature | Rutting and stiffness modulus of mixtures | ANN > 0.99 RSM > 0.97 |
[54] | RSM and ANN | Colloidal nano-silica content and surface area | Compressive strength at different aging period | RSM > 0.86 Gaussian process regression > 0.925 |
[55] | RSM and various machine learning algorithms | Nano-silica and denim fiber | Complex modulus, phase angle, and rutting parameter | RSM > 0.97 Gaussian process regression > 0.99 |
[46] | RSM and ANN | Marble powder and rice husk ash | Porosity, thermal conductivity, and compressive and flexural strength | RSM > 0.93 ANN > 0.96 |
[20] | RSM and ANN | Palm waste content and temperature | Rutting and stiffness performance of mixtures | RSM > 0.99 ANN > 0.99 |
[56] | RSM and various machine learning methods | Crude oil palm and pyrolyzed tire oil | Shear velocity blending and compacting temperature | RSM > 0.82 Forest regression > 0.93 |
[57] | RSM and ANN | Cement, water–binder ratio, aggregates, and silica fume | Compressive strength at 7 and 28 days | ANN > 0.912 RSM > 0.892 |
[45] | RSM and ANN | Aggregate gradation and compaction level | Air void and permeability | RSM > 0.83 ANN > 0.85 |
[44] | RSM and ANN | Washingtonia robusta palm waste and biochar | Water absorption, porosity, and compressive and flexural strength | ANN > 0.98 RSM > 0.91 |
Present study | RSM and ANN approach using different software | POPIC content, temperature, and stress level | Fatigue life | RSM > 0.97 ANN > 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliyu Yaro, N.S.; Sutanto, M.H.; Habib, N.Z.; Usman, A.; Tanjung, L.E.; Bello, M.S.; Noor, A.; Birniwa, A.H.; Jagaba, A.H. Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analysis. Sustainability 2024, 16, 7078. https://doi.org/10.3390/su16167078
Aliyu Yaro NS, Sutanto MH, Habib NZ, Usman A, Tanjung LE, Bello MS, Noor A, Birniwa AH, Jagaba AH. Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analysis. Sustainability. 2024; 16(16):7078. https://doi.org/10.3390/su16167078
Chicago/Turabian StyleAliyu Yaro, Nura Shehu, Muslich Hartadi Sutanto, Noor Zainab Habib, Aliyu Usman, Liza Evianti Tanjung, Muhammad Sani Bello, Azmatullah Noor, Abdullahi Haruna Birniwa, and Ahmad Hussaini Jagaba. 2024. "Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analysis" Sustainability 16, no. 16: 7078. https://doi.org/10.3390/su16167078
APA StyleAliyu Yaro, N. S., Sutanto, M. H., Habib, N. Z., Usman, A., Tanjung, L. E., Bello, M. S., Noor, A., Birniwa, A. H., & Jagaba, A. H. (2024). Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analysis. Sustainability, 16(16), 7078. https://doi.org/10.3390/su16167078