Spatiotemporal Variations in Urban Wetlands in Kazakhstan: A Case of the Taldykol Lake System in Astana City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preparation
3. Methodology
3.1. Development of LULC Classification
3.2. Spectral Indices
3.3. LULC Change Analysis
3.4. Classification Accuracy Assessment
3.5. Land Surface Temperature Retrieval
4. Results
4.1. Accuracy Assessment of LULC
4.2. Changes in LULC Types
4.3. Changes in Taldykol Lakes
4.4. LST and LULC Changes
4.5. LST and Changes in the NDVI and MNDWI
5. Discussion
5.1. Effects of Anthropogenic Impact on LULC
5.2. Anthropogenic Impact on Taldykol and Kishi Taldykol Lakes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LULC 2002 (km2) | LULC 1992 (km2) | Changes in 1992–2002 | |||||||
LULC type | Barren | Vegetation | Grassland | Urban | Water | Total | km2 | % | |
Barren | 28.6 | 10.7 | 22.9 | 14.9 | 0.0 | 77.0 | 222.0 | 288 | |
Vegetation | 146.8 | 556.5 | 138.7 | 3.0 | 0.8 | 845.0 | 144.8 | 17 | |
Grassland | 121.0 | 421.0 | 339.0 | 19.6 | 2.0 | 902.6 | −401.6 | −44.5 | |
Urban | 0.0 | 0.0 | 0.0 | 85.8 | 0.0 | 85.8 | 37.2 | 43 | |
Water | 2.6 | 1.7 | 0.7 | 0.1 | 18.5 | 23.6 | −2.2 | −9 | |
Total | 299.0 | 989.8 | 501.0 | 123.0 | 21.4 | 1934 | - | - | |
LULC 2010 (km2) | LULC 2002 (km2) | Changes in 2002–2010 | |||||||
Barren | Vegetation | Grassland | Urban | Water | Total | km2 | % | ||
Barren | 152.6 | 7.6 | 130.9 | 5.7 | 1.7 | 299 | 274.3 | 92 | |
Vegetation | 216.5 | 148.1 | 571.6 | 50.0 | 1.0 | 987 | −765.2 | −78 | |
Grassland | 190.0 | 38.6 | 188.7 | 82.3 | 1.5 | 501 | 422.4 | 84 | |
Urban | 13.5 | 26.1 | 30.8 | 52.5 | 1.0 | 125 | 67.0 | 54 | |
Water | 0.3 | 1.5 | 1.6 | 1.4 | 17.7 | 23 | 0.3 | 1.2 | |
Total | 572.9 | 222.0 | 923.6 | 192.0 | 22.8 | 1934 | - | - | |
LULC 2022 (km2) | LULC 2010 (km2) | Changes in 2010–2022 | |||||||
Barren | Vegetation | Grassland | Urban | Water | Total | km2 | % | ||
Barren | 344 | 30.2 | 151.2 | 45.8 | 1.7 | 573.0 | 37.0 | 6.5 | |
Vegetation | 16.2 | 121.8 | 68.8 | 12.5 | 2.8 | 222.0 | 154.0 | 69.4 | |
Grassland | 214.0 | 208.6 | 456.1 | 42.4 | 3.3 | 924.0 | −189.0 | −20 | |
Urban | 34.9 | 10.4 | 55.0 | 88.0 | 3.7 | 192.0 | 2.0 | 1 | |
Water | 1.58 | 5.1 | 3.9 | 5.2 | 7.1 | 22.8 | −4.2 | −18.3 | |
Total | 610.0 | 376.0 | 735.0 | 194.0 | 18.6 | 1934 | - | - |
Appendix B
Class | Water | Barren | Urban | Grassland | Vegetation |
---|---|---|---|---|---|
Mean LST, 1992 (°C) | 23.8 | 31.1 | 28.9 | 29.5 | 31.7 |
Mean LST, 2022 (°C) | 27.2 | 28.5 | 29.9 | 28.5 | 29.3 |
Std. deviation, 1992 | 2.4 | 4.9 | 3.2 | 3.9 | 2.8 |
Std. deviation, 2022 | 3.2 | 3.3 | 2.6 | 3.0 | 2.5 |
LST (°C), 1992 | |||||
---|---|---|---|---|---|
Class | MIN | Q1 | Median | Q3 | Max |
Water | 18.4 | 21.9 | 23.7 | 25.4 | 32.9 |
Barren | 18.4 | 28.8 | 32.5 | 34.9 | 40.3 |
Urban | 18.8 | 26.7 | 29.6 | 31.2 | 38.4 |
Grassland | 18.4 | 27.1 | 30.0 | 32.5 | 39.2 |
Vegetation | 15.6 | 27.8 | 28.5 | 31.0 | 44.5 |
LST (°C), 2022 | |||||
Water | 18.9 | 23.9 | 25.5 | 27.5 | 36.2 |
Barren | 18.8 | 29.1 | 29.1 | 30.4 | 37.0 |
Urban | 19.0 | 28.4 | 30.0 | 31.7 | 37.2 |
Grassland | 18.6 | 26.6 | 28.7 | 30.7 | 37.2 |
Vegetation | 18.9 | 27.2 | 28.5 | 29.6 | 35.5 |
References
- Mitsch, W.; Gosselink, J. Wetlands, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Janse, J.H.; Van Dam, A.A.; Hes, E.M.; de Klein, J.J.; Finlayson, C.M.; Janssen, A.B.; van Wijk, D.; Mooij, W.M.; Verhoeven, J.T. Towards a global model for wetlands ecosystem services. Curr. Opin. Environ. Sustain. 2019, 36, 11–19. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Wang, J.; Liu, W.; Chen, X. Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022. Sci. Data 2024, 11, 310. [Google Scholar] [CrossRef]
- Yu, B.; Zang, Y.; Wu, C.; Zhao, Z. Spatiotemporal dynamics of wetlands and their future multi-scenario simulation in the Yellow River Delta, China. J. Environ. Manag. 2024, 353, 120193. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef] [PubMed]
- Almuktar, S.A.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; Chowdhury, S.R.; Prihartato, P.K.; Razzak, S.A. Wastewater treatment using constructed wetland: Current trends and future potential. Processes 2021, 9, 1917. [Google Scholar] [CrossRef]
- Whigham, D.F.; Chitterling, C.; Palmer, B. Impacts of freshwater wetlands on water quality: A landscape perspective. Environ. Manag. 1988, 12, 663–671. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Xi, Y.; Peng, S.; Ciais, P.; Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 2021, 11, 45–51. [Google Scholar] [CrossRef]
- Creed, I.F.; Lane, C.R.; Serran, J.N.; Alexander, L.C.; Basu, N.B.; Calhoun, A.J.; Christensen, J.R.; Cohen, M.J.; Craft, C.; D’Amico, E.; et al. Enhancing protection for vulnerable waters. Nat. Geosci. 2017, 10, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, Y.; Liu, T.; Li, J.; Zhong, R.; Wang, Z.; Zan, C. Analysis of Spatial–Temporal Variations and Driving Factors of Typical Tail-Reach Wetlands in the Ili-Balkhash Basin, Central Asia. Remote Sens. 2022, 14, 3986. [Google Scholar] [CrossRef]
- Ballut-Dajud, G.A.; Sandoval Herazo, L.C.; Fernández-Lambert, G.; Marín-Muñiz, J.L.; López Méndez, M.C.; Betanzo-Torres, E.A. Factors Affecting Wetland Loss: A Review. Land 2022, 11, 434. [Google Scholar] [CrossRef]
- Mirzaei, A.; Zibaei, M. Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling. Water Resour. Manag. 2021, 35, 1–21. [Google Scholar] [CrossRef]
- An, S.; Tian, Z.; Cai, Y.; Wen, T.; Xu, D.; Jiang, H.; Yao, Z.; Guan, B.; Sheng, S.; Ouyang, Y.; et al. Wetlands of Northeast Asia and High Asia: An overview. Aquat. Sci. 2013, 75, 63–71. [Google Scholar] [CrossRef]
- Zan, C.; Liu, T.; Huang, Y.; Bao, A.; Yan, Y.; Ling, Y.; Wang, Z.; Duan, Y. Spatial and temporal variation and driving factors of wetland in the Amu Darya River Delta, Central Asia. Ecol. Indic. 2022, 139, 108898. [Google Scholar] [CrossRef]
- Bragina, T.M. The Key Wetlands of the North Kazakhstan; Tethys: Almaty, Kazakhstan, 2000. [Google Scholar]
- Ramsar, S. The List of Wetlands of International Importance 2023. Available online: https://www.ramsar.org/sites/default/files/documents/library/info2007-04-e.pdf (accessed on 2 July 2024).
- Micklin, P. Aral Sea Basin Water Resources and the Changing Aral Water Balance. In The Aral Sea; Springer: Berlin/Heidelberg, Germany, 2014; pp. 111–135. [Google Scholar]
- Petr, T. Lake Balkhash, Kazakhstan. Int. J. Salt Lake Res. 1992, 1, 21–46. [Google Scholar] [CrossRef]
- Baigaliyeva, M.; Mount, N.; Gosling, S.N.; McGowan, S. Unravelling long-term impact of water abstraction and climate change on endorheic lakes: A case study of Shortandy Lake in Central Asia. PLoS ONE 2024, 19, e0305721. [Google Scholar] [CrossRef]
- Akbayeva, L.K.; Meldeshova, A.B.; Makazhanov, Y.Z. Anthropogenic impact on the Taldykol lake system in the city of Nur-Sultan. RUDN J. Ecol. Life Saf. 2022, 30, 266–279. [Google Scholar] [CrossRef]
- Utepov, A.; Jumabayev, S.; Skakova, A.; Salmanova, R.; Kuandykov, N. The Economic Evaluation of Water Ecosystem Services in Urban Planning in Nur Sultan, Kazakhstan; Mykolas Romeris University: Vilnius, Lithuania, 2021. [Google Scholar]
- O’Connor, S. Urban Development and Civic Activism in Kazakhstan: Green Space Preservation in the Shadow of Spectacle. Cent. Asian Aff. 2022, 10, 52–72. [Google Scholar] [CrossRef]
- Bragina, T.M.; Bragina, E.A. The Most Important Wetlands of Northern Kazakhstan; Russian University Press: Moscow, Russia, 2002; pp. 9–10. [Google Scholar]
- IUCN. The IUCN Red List of Ecosystems. Version 2022-2: IUCN-CEM 2022. 2022. Available online: https://www.iucnrle.org/rle-citation (accessed on 2 July 2024).
- Zhai, G.; Du, J.; Li, L.; Zhu, X.; Song, Z.; Wu, L.; Chong, F.; Chen, X. Spatiotemporal Dynamics and Driving Factors of Small and Micro Wetlands in the Yellow River Basin from 1990 to 2020. Remote Sens. 2024, 16, 567. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Chen, X.; Lin, S.; Wang, J.; Mi, J.; Liu, W. GWL_FCS30: A global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data 2023, 15, 265–293. [Google Scholar] [CrossRef]
- Demarquet, Q.; Rapinel, S.; Dufour, S.; Hubert-Moy, L. Long-Term Wetland Monitoring Using the Landsat Archive: A Review. Remote Sens. 2023, 15, 820. [Google Scholar] [CrossRef]
- Hosseiny, B.; Mahdianpari, M.; Brisco, B.; Mohammadimanesh, F.; Salehi, B. WetNet: A spatial–temporal ensemble deep learning model for wetland classification using Sentinel-1 and Sentinel-2. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Slagter, B.; Tsendbazar, N.-E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Islam, M.T.; Kabir, M.E.; Kabir, M.M. Land-use and land-cover change detection in a north-eastern wetland ecosystem of Bangladesh using remote sensing and GIS techniques. Earth Syst. Environ. 2021, 5, 319–340. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A review on change detection method and accuracy assessment for land use land cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Faisal, A.-A.; Kafy, A.-A.; Al Rakib, A.; Akter, K.S.; Jahir, D.M.A.; Sikdar, M.S.; Ashrafi, T.J.; Mallik, S.; Rahman, M. Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environ. Chall. 2021, 4, 100192. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, J.; Zhu, Y. Change in urban wetlands and their cold island effects in response to rapid urbanization. Chin. Geogr. Sci. 2015, 25, 462–471. [Google Scholar] [CrossRef]
- Jamal, S.; Ahmad, W.S. Assessing land use land cover dynamics of wetland ecosystems using Landsat satellite data. SN Appl. Sci. 2020, 2, 1891. [Google Scholar] [CrossRef]
- Ahmed, K.R.; Akter, S. Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with landsat multi-spectral surface reflectance satellite data. Remote Sens. Appl. Soc. Environ. 2017, 8, 168–181. [Google Scholar] [CrossRef]
- Szabo, S.; Gácsi, Z.; Balazs, B. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Acta Geogr. Debrecina Landsc. Environ. Ser. 2016, 10, 194. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Ali, M.; Dirawan, G.; Hasim, A.; Abidin, M. Detection of Changes in Surface Water Bodies Urban Area with NDWI and MNDWI Methods. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 946–951. [Google Scholar] [CrossRef]
- Beeson, P.C.; Daughtry, C.S.; Wallander, S.A. Estimates of conservation tillage practices using landsat archive. Remote Sens. 2020, 12, 2665. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Ma, P.; Kwan, M.-P.; Liu, Y. How Did Urban Environmental Characteristics Influence Land Surface Temperature in Hong Kong from 2017 to 2022? Evidence from Remote Sensing and Land Use Data. Sustainability 2023, 15, 15511. [Google Scholar] [CrossRef]
- Alademomi, A.S.; Okolie, C.J.; Daramola, O.E.; Akinnusi, S.A.; Adediran, E.; Olanrewaju, H.O.; Alabi, A.O.; Salami, T.J.; Odumosu, J. The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria. Appl. Geomat. 2022, 14, 299–314. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef]
- Das, N.; Mondal, P.; Sutradhar, S.; Ghosh, R. Assessment of variation of land use/land cover and its impact on land surface temperature of Asansol subdivision. Egypt. J. Remote Sens. Space Sci. 2021, 24, 131–149. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W.; Xu, L. The relationship between land surface temperature and NDVI with remote sensing: Application to Shanghai Landsat 7 ETM+ data. Int. J. Remote Sens. 2007, 28, 3205–3226. [Google Scholar] [CrossRef]
- Mustafayev, Z.S.; Kozykeyeva, A.; Kalmashova, A.; Aldiyarova, A.; Povilaitis, A.V. Ecological and Water Economic Assessment of the Yesil River Basin Catchment Area; News of the National Academy of Science of the Republic of Kazakhstan Series of Geology and Technical Sciences; National Academy of Sciences of the Republic of Kazakhstan: Almaty, Kazakhstan, 2020; pp. 123–131. [Google Scholar]
- Biosphere. Draining Lake Maly Taldykol and Reducing the Water Level in This Area (Stabilization of the Level of Kishi Taldykol); LLP Research and Production Enterprise: Astana, Kazakhstan, 2014. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Report; US Government Printing Office: Washington, DC, USA, 1976; p. 964.
- Xue, S.-Y.; Xu, H.-Y.; Mu, C.-C.; Wu, T.-H.; Li, W.-P.; Zhang, W.-X.; Streletskaya, I.; Grebenets, V.; Sokratov, S.; Kizyakov, A.; et al. Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Adv. Clim. Change Res. 2021, 12, 456–465. [Google Scholar] [CrossRef]
- Zhou, C.; He, Z.; Lou, A.; Plaza, A. RGB-to-HSV: A Frequency-Spectrum Unfolding Network for Spectral Super-Resolution of RGB Videos. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–18. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1973; Volume 1, pp. 309–317. [Google Scholar]
- Sobrino, J.A.; Raissouni, N.; Li, Z.-L. A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- Tang, B.H.; Shao, K.; Li, Z.L.; Wu, H.; Tang, R. An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. Int. J. Remote Sens. 2015, 36, 4864–4878. [Google Scholar] [CrossRef]
- El-Gammal, M.; Ali, R.R.; Samra, R.A. NDVI threshold classification for detecting vegetation cover in Damietta governorate Egypt. J. Am. Sci. 2014, 10, 108–113. [Google Scholar]
- Van Deventer, A.; Ward, A.; Gowda, P.; Lyon, J. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Ettehadi Osgouei, P.; Kaya, S.; Sertel, E.; Alganci, U. Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sens. 2019, 11, 345. [Google Scholar] [CrossRef]
- Rouibah, K.; Belabbas, M. Applying multi-index approach from Sentinel-2 imagery to extract Urban area in dry season (semi-arid land in north east Algeria). Rev. Teledetec. 2020, 56, 89–101. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Wu, X.; Dong, G. Spatio-temporal dynamic patterns of farmland and rural settlements in Su–Xi–Chang region: Implications for building a new countryside in coastal China. Land Use Policy 2009, 26, 322–333. [Google Scholar] [CrossRef]
- Long, H.; Heilig, G.K.; Li, X.; Zhang, M. Socio-economic development and land-use change: Analysis of rural housing land transition in the Transect of the Yangtse River, China. Land Use Policy 2007, 24, 141–153. [Google Scholar] [CrossRef]
- Hord, R.M.; Brooner, W. Land Use Map Accuracy Criteria. Photogramm. Eng. Remote Sens. 1976, 42, 671–677. [Google Scholar]
- Fitzpatrick-Lins, K. Comparison of sampling procedures and data analysis for a land- use and land-cover map. Photogramm. Eng. Remote Sens. 1981, 47, 343–351. [Google Scholar]
- Hay, A. Sampling designs to test land-use map accuracy. Photogramm. Eng. Remote Sens. 1979, 45, 529–533. [Google Scholar]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Zhou, C.; Qian, S.; Da, H.; Bing, T.; Haoyang, L.; Plaza, A. Spectral-spatial sequence characteristics-based convolutional transformer for hyperspectral change detection. CAAI Trans. Intell. Technol. 2023, 8, 1237–1257. [Google Scholar] [CrossRef]
- Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Geocarto Int. 1987, 2, 65. [Google Scholar] [CrossRef]
- Congalton, R.G. Remote sensing and geographic information system data integration: Error sources and. Photogramm. Eng. Remote Sens. 1991, 57, 677–687. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sens. 2016, 2016, 1480307. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.; Huang, N. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef]
- Reforms AfSPa. Main Socio-Economic Indicators of the Republic of Kazakhstan; Bureau of National Statistics: Astana, Kazakhstan, 2023.
- UNECE. Round Table SDG 15: Sustainable Forest Management and the SDGs. Sustainable Forest Management for Cities: The “Green Belt” of Astana City. Geneva. 2018. Available online: https://unece.org/DAM/RCM_Website/Case_study_SDG_15_1_Kazakhstan.pdf (accessed on 2 July 2024).
- Makazhanova, E.; Kulagin, A.; Puchkovski, S.; Krasnoperov, S.; Naumenko, N. Restoration of biodiversity under artificial ecosystems on the example of Akmolinsk region of the Republic of Kazakhstan. Ecol. Urban Areas 2022, 3, 12–23. [Google Scholar]
- Dissanayake, D. Land Use Change and Its Impacts on Land Surface Temperature in Galle City, Sri Lanka. Climate 2020, 8, 65. [Google Scholar] [CrossRef]
- Degerli, B.; Çetin, M. Evaluation from rural to urban scale for the effect of NDVI-NDBI indices on land surface temperature, in Samsun, Türkiye. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 2446–2452. [Google Scholar] [CrossRef]
- King, S.L.; Laubhan, M.K.; Tashjian, P.; Vradenburg, J.; Fredrickson, L. Wetland conservation: Challenges related to water law and farm policy. Wetlands 2021, 41, 54. [Google Scholar] [CrossRef]
- Xi, Y.; Peng, S.; Liu, G.; Ducharne, A.; Ciais, P.; Prigent, C.; Li, X.; Tang, X. Trade-off between tree planting and wetland conservation in China. Nat. Commun. 2022, 13, 1967. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, Y.; White, J.R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review. Sci. Total Environ. 2020, 701, 134497. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.T.; Alexander, L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998, 29, 207–231. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y.; Bandara, C.M.M.; Lokupitiya, E.; Hewawasam, T.; Gunatilake, J.; Karunaratne, S. Effects of urban land change on ecosystem service values in the Bolgoda Wetland, Sri Lanka. Sustain. Cities Soc. 2024, 101, 105050. [Google Scholar] [CrossRef]
- Basu, T.; Das, A.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Lagerwall, G. Development of an integrated peri-urban wetland degradation assessment approach for the Chatra Wetland in eastern India. Sci. Rep. 2021, 11, 4470. [Google Scholar]
- Cobbinah, P.B. Managing cities and resolving conflicts: Local people’s attitudes towards urban planning in Kumasi, Ghana. Land Use Policy 2017, 68, 222–231. [Google Scholar] [CrossRef]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban Wetlands: A Review on Ecological and Cultural Values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Chmura, G.L.; Davies, G.T.; Finlayson, C.M.; Middleton, B.A.; Natali, S.M.; Perry, J.E.; Roulet, N.; Sutton-Grier, A.E. Wetlands in a Changing Climate: Science, Policy and Management. Wetlands 2018, 38, 183–205. [Google Scholar] [CrossRef]
- Dayathilake, D.; Lokupitiya, E.; Wijeratne, V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation. Wetlands 2021, 41, 29. [Google Scholar] [CrossRef]
- Khamit, N.; Boranbay, J. Green spaces and conditions for forest growing around Taldykol. Curr. Sci. Res. Mod. World 2021, 6, 40–47. [Google Scholar]
- Tursumbayeva, M.; Muratuly, A.; Baimatova, N.; Karaca, F.; Kerimray, A. Cities of Central Asia: New hotspots of air pollution in the world. Atmos. Environ. 2023, 309, 119901. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Rousseau, A.N.; Xu, Y.J. Quantifying streamflow regulation services of wetlands with an emphasis on quickflow and baseflow responses in the Upper Nenjiang River Basin, Northeast China. J. Hydrol. 2020, 583, 124565. [Google Scholar] [CrossRef]
- de la Fuente, A.; Meruane, C.; Suárez, F. Long-term spatiotemporal variability in high Andean wetlands in northern Chile. Sci. Total Environ. 2021, 756, 143830. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Leon, A.S.; Kavvas, M. Impact of size and location of wetlands on watershed-scale flood control. Water Resour. Manag. 2020, 34, 1693–1707. [Google Scholar] [CrossRef]
- Gratzer, M.C.; Davidson, G.R.; O’Reilly, A.M.; Rigby, J.R. Groundwater recharge from an oxbow lake-wetland system in the Mississippi Alluvial Plain. Hydrol. Process. 2020, 34, 1359–1370. [Google Scholar] [CrossRef]
- Costanza, R.; Anderson, S.J.; Sutton, P.; Mulder, K.; Mulder, O.; Kubiszewski, I.; Wang, X.; Liu, X.; Pérez-Maqueo, O.; Martinez, M.L.; et al. The global value of coastal wetlands for storm protection. Glob. Environ. Chang. 2021, 70, 102328. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Chen, J.; Zhao, Y.; Tuoliewubieke, D.; Li, J.; Yang, L.; Mao, W. Intensification of extreme precipitation in arid Central Asia. J. Hydrol. 2021, 598, 125760. [Google Scholar] [CrossRef]
- Dike, V.N.; Lin, Z.; Fei, K.; Langendijk, G.S.; Nath, D. Evaluation and multimodel projection of seasonal precipitation extremes over central Asia based on CMIP6 simulations. Int. J. Climatol. 2022, 42, 7228–7251. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Chen, X.; Zhang, L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett. 2020, 15, 054009. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Otto, I.M.; Adams, S.; Albrecht, T.; Baarsch, F.; Cartsburg, M.; Coumou, D.; Eden, A.; Ludi, E.; Marcus, R.; et al. Climate change impacts in Central Asia and their implications for development. Reg. Environ. Chang. 2017, 17, 1639–1650. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Frankl, A.; De Maeyer, P. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. Int. J. Climatol. 2019, 39, 1571–1588. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Chang. 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater. J. Hydrol. 2008, 350, 114–125. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Korah, P.I.; Bardoe, J.B.; Darkwah, R.M.; Nunbogu, A.M. Contested urban spaces in unplanned urbanization: Wetlands under siege. Cities 2022, 121, 103489. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Malik, I.; Wistuba, M.; Cao, Y.; Hou, D.; Ta, Z.; He, J.; Zhang, L.; Yu, R.; et al. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. J. Arid. Land 2021, 13, 881–890. [Google Scholar] [CrossRef]
Feature | Value | Unit | Source |
---|---|---|---|
Taldykol Lake area (1992) | 11.9 | km2 | Landsat 5 |
Kishi Taldykol area (1992) | 2.6 | km2 | Landsat 5 |
Max depth | 3.5 | m | [50] |
Total catchment area | 1934 | km2 | Landsat 5 (1992) |
Mean annual temperature | 4.3 | °C | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Mean temperature (May–Sept) | 17.6 | °C | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Mean temperature (Oct–Apr) | −5.2 | °C | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Mean wind speed | 2.6 | m/s | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Mean annual precipitation | 346.7 | mm | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Mean precipitation (May–Sept) | 173 | mm | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Mean precipitation (Oct–Apr) | 173.7 | mm | From 2000–2023 in Astana weather station, Kazhydromet Meteorological Database |
Year | Satellite | Resolution, m | Date |
---|---|---|---|
1992 | Landsat 5 | 30 | 27 June 1992 |
2002 | Landsat 7 | 30 | 7 June 2002 |
2010 | Landsat 5 | 30 | 9 September 2010 |
2022 | Sentinel-2 | 10 | 28 June 2022 |
Land Cover Types | Descriptions |
---|---|
Water | Water bodies, including rivers, lakes, wetlands, and artificial reservoirs |
Urban | Build-up environment, roads, and industrial and commercial complexes |
Vegetation | Dense green vegetation, including deciduous, evergreen, and mixed forests |
Grassland | Shrubs, rangelands, cropland and pastures, and sparse vegetation |
Barren | Soil, sand, and rocks, including dried-up lake beds, mines and pits, and transitional areas |
LULC Type | Water | Barren | Urban | Grassland | Vegetation | Total | Correct Samples | Overall Accuracy (Equation (7)) |
---|---|---|---|---|---|---|---|---|
Water | 46 | 0 | 3 | 1 | 0 | 50 | 46 | 0.92 |
Barren | 0 | 42 | 0 | 8 | 0 | 50 | 42 | 0.84 |
Urban | 2 | 3 | 38 | 7 | 0 | 50 | 38 | 0.76 |
Grassland | 0 | 0 | 2 | 48 | 0 | 50 | 48 | 0.96 |
Vegetation | 0 | 0 | 0 | 6 | 44 | 50 | 44 | 0.88 |
Total | 48 | 45 | 43 | 70 | 44 | 250 | 218 | 0.87 |
LULC Types | 1992 | 2002 | 2010 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | |
Water | 23.6 | 1.2 | 21.4 | 1.1 | 22.8 | 1.2 | 18.6 | 0.96 |
Barren | 77 | 4 | 299 | 15 | 573 | 30 | 610 | 32 |
Urban | 85 | 4 | 123 | 6 | 192 | 9.9 | 194 | 10 |
Grassland | 903 | 47 | 501 | 26 | 924 | 48 | 735 | 38 |
Vegetation | 845 | 44 | 990 | 51 | 222 | 11 | 376 | 19 |
LULC Type | Change (km2, %) | |||||||
---|---|---|---|---|---|---|---|---|
1992–2002 | 2002–2010 | 2010–2022 | 1992–2022 | |||||
km2 | % | km2 | % | km2 | % | km2 | % | |
Water | −2 | −9 | +1.4 | +6 | −4 | −18 | −5 | −24 |
Barren | +222 | +288 | +274 | +92 | +37 | +6 | +533 | +637 |
Urban | +37 | +43 | +69 | +56 | +2 | +1 | +108 | +127 |
Grassland | −402 | −45 | +423 | +84 | −189 | −20 | −168 | −19 |
Vegetation | +145 | +17 | −768 | −78 | +154 | +69 | −469 | −56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baigaliyeva, M.; Atakhanova, Z.; Kairat, A. Spatiotemporal Variations in Urban Wetlands in Kazakhstan: A Case of the Taldykol Lake System in Astana City. Sustainability 2024, 16, 7077. https://doi.org/10.3390/su16167077
Baigaliyeva M, Atakhanova Z, Kairat A. Spatiotemporal Variations in Urban Wetlands in Kazakhstan: A Case of the Taldykol Lake System in Astana City. Sustainability. 2024; 16(16):7077. https://doi.org/10.3390/su16167077
Chicago/Turabian StyleBaigaliyeva, Marzhan, Zauresh Atakhanova, and Akbota Kairat. 2024. "Spatiotemporal Variations in Urban Wetlands in Kazakhstan: A Case of the Taldykol Lake System in Astana City" Sustainability 16, no. 16: 7077. https://doi.org/10.3390/su16167077
APA StyleBaigaliyeva, M., Atakhanova, Z., & Kairat, A. (2024). Spatiotemporal Variations in Urban Wetlands in Kazakhstan: A Case of the Taldykol Lake System in Astana City. Sustainability, 16(16), 7077. https://doi.org/10.3390/su16167077