Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions
Abstract
1. Introduction
- Numerous deserts worldwide have not been studied in the context of bifacial PV systems, leaving significant geographical gaps in the research. Specifically, the lack of comparative studies focusing on fixed, 1-axis, and 2-axis bifacial PV systems in these under-researched deserts limits the comprehensive understanding of their performance.
- Despite numerous studies conducted in various deserts, there remains a significant gap in research directly comparing the performance of fixed, 1-axis, and 2-axis bifacial PV systems under identical environmental conditions.
- There is a deficiency in techno-economic studies specific to bifacial PV systems in desert climates, impeding the evaluation of their economic viability and performance under harsh conditions. Existing studies often focus on technical performance metrics without adequately addressing the economic implications, such as the LCOE, in a consistent and comparable manner.
- Information in the literature is highly fragmented, with studies employing varying assumptions, methodologies, and performance metrics, making it challenging to draw meaningful comparisons. A consolidated study that standardizes the evaluation criteria and combines data from multiple deserts worldwide would provide more comprehensive and comparable insights.
2. Materials and Methods
2.1. Site Selection
2.2. Weather Conditions and Metrological Data
2.3. Technical Parameters and System Design
2.4. Economic Parameters
2.5. Performance Indicators
3. Results and Discussion
3.1. Hourly Production Curves
3.2. Annual Specific Yield
3.3. Performance Ratio (PR)
3.4. Capacity Factor (CF)
3.5. Levelized Cost of Energy (LCOE)
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEP | Annual Electricity Production |
CF | Capacity Factor |
CFF | Construction Financing Factor |
CRF | Capital Recovery Factor |
EVA | Ethyl Vinyl Acetate |
FCR | Fixed Charge Rate |
GHI | Global Horizontal Irradiation |
IEA | International Energy Agency |
IRENA | International Renewable Energy Agency |
LCOE | Levelized Cost of Energy |
NREL | National Renewable Energy Laboratory |
PFF | Project Financing Factor |
PR | Performance Ratio |
PTC | Power Temperature Coefficients |
PV | Photovoltaic |
PVGIS | Photovoltaic Geographical Information System |
SAM | System Advisor Model |
TCC | Total Capital Cost |
TMY | Typical Meteorological Year |
TMBM | Tilted Mounted Bifacial Modules |
VMBM | Vertically Mounted Bifacial Modules |
VOC | Variable Operating Charge |
YA | Energy Yield |
References
- IEA Electricity. 2024. Available online: https://www.iea.org/reports/electricity-2024/executive-summary (accessed on 29 June 2024).
- IEA Buildings. Available online: https://www.iea.org/energy-system/buildings (accessed on 29 June 2024).
- IEA Space Cooling. Available online: https://www.iea.org/energy-system/buildings/space-cooling (accessed on 29 June 2024).
- IEA Solar PV. Available online: https://www.iea.org/energy-system/renewables/solar-pv#overview (accessed on 29 June 2024).
- IRENA World Energy Transitions Outlook. 2023. Available online: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2023 (accessed on 29 June 2024).
- IRENA Global Energy Transformation: A Roadmap to 2050. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf (accessed on 29 June 2024).
- Ribeiro, F.C.P.; Santos, J.L.; da S. Chaar, J.; de Souza, L.K.C. Introduction to Renewable Energies. In Encyclopedia of Renewable Energy, Sustainability and the Environment; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Khan, K.; Khurshid, A.; Cifuentes-Faura, J.; Xianjun, D. Does Renewable Energy Development Enhance Energy Security? Util Policy 2024, 87, 101725. [Google Scholar] [CrossRef]
- Soto, E.A.; Wollega, E.; Ortega, A.V.; Hernandez-Guzman, A.; Bosman, L. Reduction in Emissions by Massive Solar Plant Integration in the US Power Grid. Energies 2024, 17, 1611. [Google Scholar] [CrossRef]
- Kuşkaya, S. Residential Solar Energy Consumption and Greenhouse Gas Nexus: Evidence from Morlet Wavelet Transforms. Renew. Energy 2022, 192, 793–804. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Durant, S.M.; Pettorelli, N.; Bashir, S.; Woodroffe, R.; Wacher, T.; De Ornellas, P.; Ransom, C.; Abáigar, T.; Abdelgadir, M.; El Alqamy, H.; et al. Forgotten Biodiversity in Desert Ecosystems. Science 2012, 336, 1379–1380. [Google Scholar] [CrossRef]
- Younes, M.; Kahoul, N.; Labed, D.; Neçaibia, A.; Cheghib, H.; Affari, B.C.; Kherici, Z. Understanding the Impact of Desert Stressors Factors on Standard PV Panel Performance: Case Study of Algeria’s Desert. Sci. Afr. 2023, 21, e01771. [Google Scholar] [CrossRef]
- Gelsor, N.; Gelsor, N.; Wangmo, T.; Chen, Y.-C.; Frette, Ø.; Stamnes, J.J.; Hamre, B. Solar Energy on the Tibetan Plateau: Atmospheric Influences. Sol. Energy 2018, 173, 984–992. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Q.; Miller, P.A.; Zhang, Q.; Berntell, E.; Smith, B. Impacts of Large-Scale Sahara Solar Farms on Global Climate and Vegetation Cover. Geophys. Res. Lett. 2021, 48, e2020GL090789. [Google Scholar] [CrossRef]
- Chang, R.; Yan, Y.; Wu, J.; Wang, Y.; Gao, X. Projected PV Plants in China’s Gobi Deserts Would Result in Lower Evaporation and Wind. Sol. Energy 2023, 256, 140–150. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Zhang, W.; Chen, R.; Guo, S.; Zhang, P.; Du, P. Solar Photovoltaic Program Helps Turn Deserts Green in China: Evidence from Satellite Monitoring. J. Environ. Manag. 2022, 324, 116338. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.E.; Je, S.-M.; Jung, S.-H.; Choi, J.; Huh, J.-H.; Ko, H.-J. Review of Photovoltaic Power and Aquaculture in Desert. Energies 2022, 15, 3288. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Alnawafah, H.; Almomani, F.; Mousa, A.; Qandil, H. Enhancing the Efficiency of Bi-Facial Photovoltaic Panels: An Integration Approach. Sustainability 2023, 15, 14786. [Google Scholar] [CrossRef]
- Park, H.; Chang, S.; Park, S.; Kim, W.K. Outdoor Performance Test of Bifacial N-Type Silicon Photovoltaic Modules. Sustainability 2019, 11, 6234. [Google Scholar] [CrossRef]
- Ayadi, O.; Jamra, M.; Jaber, A.; Ahmad, L.; Alnaqep, M. An Experimental Comparison of Bifacial and Monofacial PV Modules. In Proceedings of the 2021 12th International Renewable Engineering Conference (IREC), Amman, Jordan, 14–15 April 2021; pp. 1–8. [Google Scholar]
- Abdallah, A.A.; Kivambe, M.; Aïssa, B.; Figgis, B.W. Performance of Monofacial and Bifacial Silicon Heterojunction Modules under Desert Conditions and the Impact of PV Soiling. Sustainability 2023, 15, 8436. [Google Scholar] [CrossRef]
- Ganesan, K.; Winston, D.P.; Nesamalar, J.J.D.; Pravin, M. Output Power Enhancement of a Bifacial Solar Photovoltaic with Upside down Installation during Module Defects. Appl. Energy 2024, 353, 122070. [Google Scholar] [CrossRef]
- Samer, R.A.B.; Ismail, B.B.; Abdullah, A.Z.; Ali, I.M. Simulation Analysis of a 3.37 MW PV System Using Bifacial Modules in Desert Environment. J. Phys. Conf. Ser. 2021, 1878, 12026. [Google Scholar] [CrossRef]
- Baloch, A.A.B.; Hammat, S.; Figgis, B.; Alharbi, F.H.; Tabet, N. In-Field Characterization of Key Performance Parameters for Bifacial Photovoltaic Installation in a Desert Climate. Renew. Energy 2020, 159, 50–63. [Google Scholar] [CrossRef]
- Apostoleris, H.; Sgouridis, S.; Stefancich, M.; Chiesa, M. Evaluating the Factors That Led to Low-Priced Solar Electricity Projects in the Middle East. Nat. Energy 2018, 3, 1109–1114. [Google Scholar] [CrossRef]
- Apostoleris, H.; Ghaferi, A.A.; Chiesa, M. What Is Going on with Middle Eastern Solar Prices, and What Does It Mean for the Rest of Us? Prog. Photovolt. Res. Appl. 2021, 29, 638–648. [Google Scholar] [CrossRef]
- Mohamed, A.S.A.; Maghrabie, H.M. Techno-Economic Feasibility Analysis of Benban Solar Park. Alex. Eng. J. 2022, 61, 12593–12607. [Google Scholar] [CrossRef]
- New England Solar Project. Available online: https://acenrenewables.com.au/project/new-england-solar/ (accessed on 20 July 2024).
- Guanchoi Solar Plant. Available online: https://www.enel.cl/en/meet-enel/our-power-plants/guanchoi-photovoltaic-plant.html (accessed on 20 July 2024).
- Ayala, P.; Munoz, C.; Osorio, N.; Hernandez, C.; Zurita, F.; Gutierrez, V.; Ramirez, G.; Mancilla, F.; Valdivia, P.; Cuevas, F.; et al. Bifacial Technology Performance Compared with Three Commercial Monofacial PV Technologies under Outdoor High Irradiance Conditions at the Atacama Desert. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 672–675. [Google Scholar]
- Cabrera, E.; Araya, F.; Schneider, A.; Marzo, A.; Roescu, R.; Rabanal, J.; Ferrada, P.; Ayala, P.; Berrian, D.; Libal, J.; et al. AtaMoS TeC Project: Soiling Impact on Bifacial Modules with Different Mounting Geometry in the Atacama Desert in Chile. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 3653–3659. [Google Scholar]
- Cordero, R.R.; Damiani, A.; Laroze, D.; MacDonell, S.; Jorquera, J.; Sepúlveda, E.; Feron, S.; Llanillo, P.; Labbe, F.; Carrasco, J.; et al. Effects of Soiling on Photovoltaic (PV) Modules in the Atacama Desert. Sci. Rep. 2018, 8, 13943. [Google Scholar] [CrossRef] [PubMed]
- Olivares, D.; Ferrada, P.; Bijman, J.; Rodríguez, S.; Trigo-González, M.; Marzo, A.; Rabanal-Arabach, J.; Alonso-Montesinos, J.; Batlles, F.J.; Fuentealba, E. Determination of the Soiling Impact on Photovoltaic Modules at the Coastal Area of the Atacama Desert. Energies 2020, 13, 3819. [Google Scholar] [CrossRef]
- Haider, U.; Qureshi, O.A.; Shahzad, A.A.; Baloch, A.A.B.; Rodriguez-Ubinas, E. Assessment of PV Performance-Enhancing Technologies in Desert Climate Conditions of Dubai. In Proceedings of the 2023 Middle East and North Africa Solar Conference (MENA-SC), Dubai, United Arab Emirates, 15–18 November 2023; pp. 1–4. [Google Scholar]
- Abotaleb, A.; Abdallah, A. Performance of Bifacial-Silicon Heterojunction Modules under Desert Environment. Renew. Energy 2018, 127, 94–101. [Google Scholar] [CrossRef]
- Figgis, B.; Abdallah, A. Investigation of PV Yield Differences in a Desert Climate. Sol. Energy 2019, 194, 136–140. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Al Mayasi, A.; Al Shukaili, A.; Khanna, S. Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Patel, M.T.; Ahmed, M.S.; Imran, H.; Butt, N.Z.; Khan, M.R.; Alam, M.A. Global Analysis of Next-Generation Utility-Scale PV: Tracking Bifacial Solar Farms. Appl. Energy 2021, 290, 116478. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Gulakhmadov, A.; Kumar, A.; Safaraliev, M.; Chen, X. Comparative Analysis for a Solar Tracking Mechanism of Solar PV in Five Different Climatic Locations in South Indian States: A Techno-Economic Feasibility. Sustainability 2022, 14, 11880. [Google Scholar] [CrossRef]
- NREL System Advisor Model. Available online: https://sam.nrel.gov/ (accessed on 29 June 2024).
- Photovoltaic Geographical Information System (PVGIS). Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 29 June 2024).
- Muhammed, E.; El-Shazly, A.; Morsy, S. Building Rooftop Extraction Using Machine Learning Algorithms for Solar Photovoltaic Potential Estimation. Sustainability 2023, 15, 11004. [Google Scholar] [CrossRef]
- Djordjević, L.; Pekez, J.; Novaković, B.; Bakator, M.; Djurdjev, M.; Ćoćkalo, D.; Jovanović, S. Increasing Energy Efficiency of Buildings in Serbia—A Case of an Urban Neighborhood. Sustainability 2023, 15, 6300. [Google Scholar] [CrossRef]
- Gaman, F.; Iacoboaea, C.; Aldea, M.; Luca, O.; Stănescu, A.A.; Boteanu, C.M. Energy Transition in Marginalized Urban Areas: The Case of Romania. Sustainability 2022, 14, 6855. [Google Scholar] [CrossRef]
- Usta, Y.; Carioni, G.; Mutani, G. Modeling and Mapping Solar Energy Production with Photovoltaic Panels on Politecnico Di Torino University Campus. Energy Effic. 2024, 17, 53. [Google Scholar] [CrossRef]
- Tahir, M.F.; Tzes, A.; Yousaf, M.Z. Enhancing PV Power Forecasting with Deep Learning and Optimizing Solar PV Project Performance with Economic Viability: A Multi-Case Analysis of 10 MW Masdar Project in UAE. Energy Convers. Manag. 2024, 311, 118549. [Google Scholar] [CrossRef]
- Georgiou, L.; Afxentiou, N.; Fokaides, P.A. Numerical Investigation of a Novel Controlled-Temperature Double-Skin Façade (DSF) Building Element. Energies 2023, 16, 1836. [Google Scholar] [CrossRef]
- Ashetehe, A.A.; Gessesse, B.B.; Shewarega, F. A Generalized Approach for the Determination of Optimum Tilt Angle for Solar Photovoltaic Modules with Selected Locations in Ethiopia as Illustration Examples. Sci. Afr. 2022, 18, e01433. [Google Scholar] [CrossRef]
- Rinchi, B.; Ayadi, O.; Al-Dahidi, S.; Dababseh, R. A Universal Tool for Estimating Monthly Solar Radiation on Tilted Surfaces from Horizontal Measurements: A Machine Learning Approach. Energy Convers. Manag. 2024, 314, 118703. [Google Scholar] [CrossRef]
- Kulesza, K.; Martinez, A.; Taylor, N. Assessment of Typical Meteorological Year Data in Photovoltaic Geographical Information System 5.2, Based on Reanalysis and Ground Station Data from 147 European Weather Stations. Atmosphere 2023, 14, 1803. [Google Scholar] [CrossRef]
- Díaz, A.J.; Pinto, C.; Neira, T.; Sarmiento-Laurel, C.; Cáceres-González, R. An Exergoeconomic Exploration of Solar-Geothermal Integration. Energy Convers. Manag. 2024, 314, 118673. [Google Scholar] [CrossRef]
- Batgi, S.U.; Dincer, I. Design and Analysis of a Floating Photovoltaic Based Integrated Energy System with Ammonia Production. Appl. Therm. Eng. 2024, 252, 123676. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Khan, T.; Giri, N.C. Evaluating the Technical, Economic, and Environmental Performance of Solar Water Heating System for Residential Applications–Comparison of Two Different Working Fluids (Water and Glycol). Sustainability 2023, 15, 14555. [Google Scholar] [CrossRef]
- Ramírez, A.T.O.; Tovar, M.R.; Silva-Marrufo, O. Rice Husk Reuse as a Sustainable Energy Alternative in Tolima, Colombia. Sci. Rep. 2024, 14, 10391. [Google Scholar] [CrossRef]
- Esparza, I.; Olábarri Candela, Á.; Huang, L.; Yang, Y.; Budiono, C.; Riyadi, S.; Hetharia, W.; Hantoro, R.; Setyawan, D.; Utama, I.K.A.P.; et al. Floating PV Systems as an Alternative Power Source: Case Study on Three Representative Islands of Indonesia. Sustainability 2024, 16, 1345. [Google Scholar] [CrossRef]
- Gamil, A.; Li, P.; Khammash, A.L.; Ali, B. Comparative Techno-Economic and Environmental Analysis of a Relocatable Solar Power Tower for Low to Medium Temperature Industrial Process Heat Supply. Energy 2024, 304, 132085. [Google Scholar] [CrossRef]
- Rami, Y.; Allouhi, A. A Comprehensive Multi-Criteria Assessment of Solar-Driven Refrigeration Systems for Fish Preservation in Africa Based on Energy, Economic, Environmental and Social Dimensions. Energy Convers. Manag. 2024, 306, 118183. [Google Scholar] [CrossRef]
- Rigby, A.; Baker, U.; Lindley, B.; Wagner, M. Generation and Validation of Comprehensive Synthetic Weather Histories Using Auto-Regressive Moving-Average Models. Renew. Energy 2024, 224, 120157. [Google Scholar] [CrossRef]
- Sadiq, M.; Kokchang, P.; Kittipongvises, S. Comparative Techno-Economic Evaluation of a Standalone Solar Power System for Scaled Implementation in Off-Grid Areas. Energies 2023, 16, 6262. [Google Scholar] [CrossRef]
- Battisti, F.G.; Klein, C.F.; Escobar, R.A.; Cardemil, J.M. Exergy Analysis and Off-Design Modeling of a Solar-Driven Supercritical CO2 Recompression Brayton Cycle. Energies 2023, 16, 4755. [Google Scholar] [CrossRef]
- Al Dhafrah Solar Power Project. Available online: https://www.adpv2.ae/ (accessed on 29 June 2024).
- Trina Solar TSM-DEG21C.20 Modules. Available online: https://static.trinasolar.com/sites/default/files/DT_M_0013_B%20Datasheet_Vertex_DEG21C.20_EN_2022_A_web.pdf (accessed on 20 July 2024).
- Sungrow SG250HX Inverter. Available online: https://en.sungrowpower.com/upload/file/20210108/DS_20201121_SG250HX%20Datasheet_V1.5.4_EN.pdf.pdf (accessed on 20 July 2024).
- Riad, S.; Bekkioui, N.; Simo-Tagne, M.; Macmanus Chinenye, N.; Lamrani, B.; Ez-Zahraouy, H. Application of Artificial Neuronal Networks for the Prediction of Monthly Photovoltaic Power Using Tilt Angle as Input in Rabat City, Morocco. Int. J. Ambient. Energy 2024, 45, 2365809. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, Z.; Song, Y. Hour-Ahead Optimization Strategy for Shared Energy Storage of Renewable Energy Power Stations to Provide Frequency Regulation Service. IEEE Trans. Sustain. Energy 2022, 13, 2331–2342. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid Policy-Based Reinforcement Learning of Adaptive Energy Management for the Energy Transmission-Constrained Island Group. IEEE Trans. Industr. Inform. 2023, 19, 10751–10762. [Google Scholar] [CrossRef]
- Feldman, D.; Dummit, K.; Zuboy, J.; Smith, B.; Stright, D.; Heine, M.; Margolis, R. Fall 2023 Solar Industry Update. Available online: https://www.nrel.gov/docs/fy24osti/88026.pdf (accessed on 29 June 2024).
- IRENA Renewable Power Generation Costs in 2022. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Aug/IRENA_Renewable_power_generation_costs_in_2022.pdf (accessed on 29 June 2024).
- PVsyst Normalized Performance Index. Available online: https://www.pvsyst.com/help/performance_index.htm (accessed on 29 June 2024).
- Iñigo-Labairu, J.; Dersch, J.; Hirsch, T.; Giuliano, S.; Loevenich, M.; Córdoba, D. Techno-Economic Evaluation of CSP–PV Hybrid Plants with Heat Pump in a Temperature Booster Configuration. Energies 2024, 17, 2634. [Google Scholar] [CrossRef]
- IEA-Coal and Natural Gas LCOE. Available online: https://www.iea.org/data-and-statistics/charts/lcoe-and-value-adjusted-lcoe-for-solar-pv-plus-battery-storage-coal-and-natural-gas-in-selected-regions-in-the-stated-policies-scenario-2022-2030 (accessed on 20 July 2024).
No. | Desert | Location | Latitude (°N) | Longitude (°E) | Elevation (m) | GHI (kWh/m2/day) | Average Temperature (°C) |
---|---|---|---|---|---|---|---|
1 | Sahara | Ouarzazat | 31.018 | −6.831 | 1224 | 6.14 | 17.9 |
2 | Arabian | Al Dafrah | 24.151 | 54.53 | 28 | 6.09 | 27.9 |
3 | Gobi | Xinjiang | 40.08 | 94.45 | 1235 | 4.93 | 11.2 |
4 | Atacama | Antofagasta | −27.879 | −70.20 | 1619 | 6.71 | 16.6 |
5 | Sturt Stony | Broken Hill | −31.98 | 141.39 | 281 | 5.63 | 19.1 |
6 | Mojave | Barstow | 35.015 | −117.32 | 629 | 6.01 | 18.7 |
Description | Characteristics | Value |
---|---|---|
PV Modules | Panel model | Trina Solar: TSM-DEG21C.20 |
Maximum power (Pmp) | 665 W | |
Maximum power voltage (Vmp) | 38.3 V | |
Maximum power current (Imp) | 17.39 A | |
Open circuit voltage (Voc) | 46.1 V | |
Short circuit current (Isc) | 18.50 A | |
Module efficiency () | 21.40% | |
Inverter | Inverter model | Sungrow Power Supply Co., Ltd. (Hefei, China): SG250HX |
Maximum AC power | 250 kW | |
Maximum DC voltage | 1500 V | |
Number of inverters | 441 | |
System Design | Modules per string in array | 27 |
Strings in parallel array | 7182 | |
Modules in subarray | 193,914 | |
String Voc at reference condition | 1244 | |
String Vmp at reference condition | 1031 |
Parameter | Value |
---|---|
Analysis Period | 20 years |
Inflation Rate | 2.5% per year |
Internal Rate of Return (Nominal) | 13% per year |
Project Term Debt | 60% of capital cost |
Nominal Debt Interest Rate | 7% per year |
Effective Tax Rate | 28% |
Nominal Construction Interest Rate | 3.5% per year |
Capital Recovery Factor (CRF) | 0.084 |
Project Financing Factor (PFF) | 1.075 |
Construction Financing Factor (CFF) | 1.012 |
Variable Operating Cost (VOC) | USD 0.00/kWh |
Fixed Charge Rate (FCR) | 0.0903 |
No. | Desert | Location | Capital Cost | |||
Fixed | Fixed | 1-Axis | 2-Axis | |||
USD/kWac | USD/kWp | USD/kWp | USD/kWp | |||
1 | Sahara | Ouarzazat | 778 | 598 | 658 | 724 |
2 | Arabian | Al Dafrah | 578 | 445 | 489 | 538 |
3 | Gobi | Xinjiang | 715 | 550 | 605 | 666 |
4 | Atacama | Antofagasta | 888 | 683 | 751 | 827 |
5 | Sturt Stony | Broken Hill | 923 | 710 | 781 | 859 |
6 | Mojave | Barstow | 1119 | 861 | 947 | 1042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayadi, O.; Rinchi, B.; Al-Dahidi, S.; Abdalla, M.E.B.; Al-Mahmodi, M. Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions. Sustainability 2024, 16, 6982. https://doi.org/10.3390/su16166982
Ayadi O, Rinchi B, Al-Dahidi S, Abdalla MEB, Al-Mahmodi M. Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions. Sustainability. 2024; 16(16):6982. https://doi.org/10.3390/su16166982
Chicago/Turabian StyleAyadi, Osama, Bilal Rinchi, Sameer Al-Dahidi, Mohammed E. B. Abdalla, and Mohammed Al-Mahmodi. 2024. "Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions" Sustainability 16, no. 16: 6982. https://doi.org/10.3390/su16166982
APA StyleAyadi, O., Rinchi, B., Al-Dahidi, S., Abdalla, M. E. B., & Al-Mahmodi, M. (2024). Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions. Sustainability, 16(16), 6982. https://doi.org/10.3390/su16166982