Spatial Distribution, Accessibility, and Influencing Factors of the Tourism and Leisure Industry in Qingdao, China
Abstract
:1. Introduction
1.1. The Role of the Tourism and Leisure Industry in Sustainable Urban Tourism Development
1.2. Research on Spatial Distribution
1.3. Research on Accessibility
1.4. Research on Influencing Factors of Spatial Distribution
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Research Methodology
2.3.1. Average Nearest Neighbour Index
2.3.2. Standard Deviational Ellipse
2.3.3. Kernel Density Estimation
2.3.4. Raster Analysis Method
2.3.5. Geodetector
3. Results
3.1. Overall Spatial Distribution Characteristics
3.1.1. Spatial Clustering Characteristics
3.1.2. Centre of Gravity for Spatial Distribution
3.1.3. Spatial Density Characteristics
3.1.4. Spatial Matching Characteristics
3.2. Overall Spatial Accessibility Distribution Pattern
3.3. Spatial Differentiation of Accessibility at Unit Level
3.4. Factors Influencing the Spatial Distribution of Tourism and Leisure Industry in Qingdao
3.4.1. Selection of Influencing Factors
3.4.2. Detection of Influencing Factors
- 1.
- Main Influencing Factors
- 2.
- Medium Influencing Factors
- 3.
- Secondary Influencing Factors
3.4.3. Interaction Detection of Influencing Factors
4. Discussion
4.1. Spatial Distribution of the Tourism and Leisure Industry
4.2. Analysis of Influencing Factors
4.3. Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Liu, J.; Wang, R. Spatial distribution and its influencing factors of golf tourist attractions in Beijing. Geogr. Res. 2013, 32, 1937–1947. [Google Scholar] [CrossRef]
- Fuyuan, W.; Kaiyong, W.; Xin, Z.; Mingshui, L. Spatial expansion pattern and influencing factors of recreational utilization of ecological space in the Pearl River Delta urban agglomeration. Acta Ecol. Sin. 2021, 41, 7049–7062. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, J.-M.; Tao, H.; Zhang, J. Evaluation and spatial analysis of tourism resources attraction in Beijing based on the internet information. J. Nat. Resour. 2015, 30, 2081–2094. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y. Analysis on the spatial structure of tourism resources in the south of Anhui province. Geogr. Geo-Inf. Sci. 2004, 20, 99–103. [Google Scholar]
- Li, Y.; Luo, W.; Wang, L.; Zhang, X.; Hu, J. Evolution characteristics and driving mechanism of the urban tourism and leisure hor sports: A case study of Wuhan. Hum. Geogr. 2021, 36, 183–192. [Google Scholar] [CrossRef]
- Smith, W. The tourism and leisure industry: Shaping the future. Ann. Tour. Res. 2005, 32, 510–511. [Google Scholar] [CrossRef]
- Shaw, G.; Bailey, A.; Williams, A. Aspects of service-dominant logic and its implications for tourism management: Examples from the hotel industry. Tour. Manag. 2011, 32, 207–214. [Google Scholar] [CrossRef]
- Wanhill, S. VAT rates and the UK tourism and leisure industry. Tour. Econ. 1995, 1, 211–224. [Google Scholar] [CrossRef]
- Zhou, C.; Tian, L.; Shan, Y. How Tourism Industry Development Affects Residents’ Well-Being: An Empirical Study Based on CGSS and Provincial-Level Matched Data. Sustainability 2022, 14, 12367. [Google Scholar] [CrossRef]
- Chan, L.-Y.; Lin, H.-L.; Wang, C.-L. Industry-region Position and Economic Performance of Travel and Tourism Service Industry: An Agglomeration Perspective. Asia Pac. J. Tour. Res. 2012, 17, 562–576. [Google Scholar] [CrossRef]
- Lu, J.; Hung, K.; Wang, L.; Schuett, M.A.; Hu, L. Do perceptions of time affect outbound-travel motivations and intention? An investigation among Chinese seniors. Tour. Manag. 2016, 53, 1–12. [Google Scholar] [CrossRef]
- Christaller, W. Some considerations of tourism location in Europe: The peripheral regions-under-developed countries-recreation areas. Pap. Reg. Sci. Assoc. 1964, 12, 95–105. [Google Scholar] [CrossRef]
- Moyle, C.-L.; Moyle, B.; Burgers, H. Entrepreneurial strategies and tourism industry growth. Tour. Manag. Perspect. 2020, 35, 100708. [Google Scholar] [CrossRef]
- Johnson, A.J.; Glover, T.D. Understanding urban public space in a leisure context. Leis. Sci. 2013, 35, 190–197. [Google Scholar] [CrossRef]
- Zakariya, K.; Harun, N.Z.; Mansor, M. Place meaning of the historic square as tourism attraction and community leisure space. Procedia-Soc. Behav. Sci. 2015, 202, 477–486. [Google Scholar] [CrossRef]
- Chen, C. Planning Method of Spatial Evolution Layout of Industrial Economy in Coastal Towns with Characteristics. J. Coast. Res. 2019, 93, 804–810. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Song, C.; Chan, C.-S.; Pei, T.; Wenting, Y.; Xin, Z. Spatial-temporal distribution characteristics and evolution mechanism of urban parks in Beijing, China. Urban For. Urban Green. 2021, 64, 127265. [Google Scholar] [CrossRef]
- McKenzie, F. Growth management or encouragement? A critical review of land use policies affecting Australia’s major exurban regions. Urban Policy Res. 1997, 15, 83–99. [Google Scholar] [CrossRef]
- Cheung, D.M.-W.; Tang, B.-S. Social order, leisure, or tourist attraction? The changing planning missions for waterfront space in Hong Kong. Habitat Int. 2015, 47, 231–240. [Google Scholar] [CrossRef]
- Cavaco, C. Rural tourism: The creation of new tourist spaces. In European Tourism: Regions, Spaces and Restructuring; Wiley: Chichester, UK, 1995; pp. 127–149. [Google Scholar]
- Su, F.; Duan, C.; Wang, R. Optimisation model and algorithm design for rural leisure tourism passenger flow scheduling. IEEE Access 2020, 8, 125295–125305. [Google Scholar] [CrossRef]
- Kezule, M.; Jianzhong, Y.; San, W. Spatial pattern evolution and interpretation of leisure facilities in central Chongqing. World Reg. Stud. 2022, 31, 1057. [Google Scholar] [CrossRef]
- Yang, X.; Lu, L.; Zhang, G.; Lu, S.; Xuan, G. Study on spatial structure of tourism resources in Zhoushan Archipelago. Geogr. Geo-Inf. Sci. 2004, 20, 87–91. [Google Scholar]
- González-Ramiro, A.; Gonçalves, G.; Sánchez-Ríos, A.; Jeong, J.S. Using a VGI and GIS-based multicriteria approach for assessing the potential of rural tourism in Extremadura (Spain). Sustainability 2016, 8, 1144. [Google Scholar] [CrossRef]
- Smith, S.L. Recreation Geography; Longman Publishing Group: Harlow, UK, 1983. [Google Scholar]
- Urtasun, A.; Gutiérrez, I. Hotel location in tourism cities: Madrid 1936–1998. Ann. Tour. Res. 2006, 33, 382–402. [Google Scholar] [CrossRef]
- Yang, Z.; Long, Y. Opportunities and limitations of big data applications to human and economic geography: The state of the art. Prog. Geogr. 2015, 34, 410–417. [Google Scholar] [CrossRef]
- Höpken, W.; Müller, M.; Fuchs, M.; Lexhagen, M. Flickr data for analysing tourists’ spatial behaviour and movement patterns: A comparison of clustering techniques. J. Hosp. Tour. Technol. 2020, 11, 69–82. [Google Scholar] [CrossRef]
- Jing, Z.; Luo, Y.; Li, X.; Xu, X. A multi-dimensional city data embedding model for improving predictive analytics and urban operations. Ind. Manag. Data Syst. 2022, 122, 2199–2216. [Google Scholar] [CrossRef]
- Ivan, I.; Singleton, A.; Horák, J.; Inspektor, T. The Rise of Big Spatial Data; Springer: Berlin, Germany, 2017. [Google Scholar]
- Zhao, M.; Liu, J. Study on spatial structure characteristics of the tourism and leisure industry. Sustainability 2021, 13, 13117. [Google Scholar] [CrossRef]
- Papatheodorou, A.; Lei, Z. Leisure travel in Europe and airline business models: A study of regional airports in Great Britain. J. Air Transp. Manag. 2006, 12, 47–52. [Google Scholar] [CrossRef]
- Eymann, A.; Ronning, G. Microeconometric models of tourists’ destination choice. Reg. Sci. Urban Econ. 1997, 27, 735–761. [Google Scholar] [CrossRef]
- Liu, X.; Xu, M.; Zhou, H. Analysing the Spatio-Temporal Distribution and Network Structure of Ecotourism Flow in Zhangjiajie. Sustainability 2022, 14, 2496. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choi, J.-Y.; Yoo, S.-H.; Oh, Y.-G. Evaluating spatial centrality for integrated tourism management in rural areas using GIS and network analysis. Tour. Manag. 2013, 34, 14–24. [Google Scholar] [CrossRef]
- Kwan, M.P. Space-time and integral measures of individual accessibility: A comparative analysis using a point-based framework. Geogr. Anal. 1998, 30, 191–216. [Google Scholar] [CrossRef]
- Rainer, G. Constructing globalised spaces of tourism and leisure: Political ecologies of the Salta Wine Route (NW-Argentina). J. Rural. Stud. 2016, 43, 104–117. [Google Scholar] [CrossRef]
- Yin, J.; Bi, Y.; Ji, Y. Structure and formation mechanism of China-ASEAN tourism cooperation. Sustainability 2020, 12, 5440. [Google Scholar] [CrossRef]
- Cheng, J.; Lu, Y.-Q.; Zhang, L.; Xu, J. An analysis of accessibility of scenic spots based on land traffic network: A case study of Nanjing. Geogr. Res. 2009, 28, 246–258. [Google Scholar] [CrossRef]
- Shouliang, Z.; Tingting, C. City for tourists and residents: Trends, impacts, and countermeasures of urban tourism and recreation under “time-space compression”. City Plan. Rev. 2015, 39, 106–112. [Google Scholar] [CrossRef]
- Huili, Y.; Qiang, W.; Hao, X.; Fan, X. Analysis on spatial distribution characteristics and influencing factors of China’s most beautiful leisure country demonstration sites. J. Arid. Land Resour. Environ. 2019, 33, 45–50. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Lu, L.; Zhang, X.; Li, L. Spatial distribution characteristics and influencing factors of high-level tourist attractions in the Yellow River basin. Econ. Geogr. 2020, 40, 70–80. [Google Scholar] [CrossRef]
- Krugman, P. First nature, second nature, and metropolitan location. J. Reg. Sci. 1993, 33, 129–144. [Google Scholar] [CrossRef]
- Masson, S.; Petiot, R. Can the high speed rail reinforce tourism attractiveness? The case of the high speed rail between Perpignan (France) and Barcelona (Spain). Technovation 2009, 29, 611–617. [Google Scholar] [CrossRef]
- Industrial Classification for National Economic Activities. Available online: https://www.mca.gov.cn/n156/n188/n2678/c1662004999979993525/content.html (accessed on 30 June 2023).
- Zhang, A.; Ma, B.; Lu, J.; He, A. Spatial pattern and driving mechanism of leisure tourism in Lanzhou. J. Arid. Land Resour. Environ. 2022, 36, 200–208. [Google Scholar] [CrossRef]
- Mao, R.; Chen, F.; Ji, X. Spatial Coupling of the Public Transport Network and the Tourism and Leisure Industry against the Background of Tourism Urbanization: A Case Study of Lijiang. Trop. Geogr. 2022, 42, 659–673. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Liu, Z.; Chen, H.; Zhao, Y. Spatial Patterns of Tourist Attractions in the Yangtze River Delta Region. Land 2022, 11, 1523. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Zhang, S.; Zhu, H.; Zhang, X. Spatial pattern and micro-location rules of tourism businesses in historic towns: A case study of Pingyao, China. J. Destin. Mark. Manag. 2022, 25, 100721. [Google Scholar] [CrossRef]
- Li, L.; Gao, Q. Researching Tourism Space in China’s Great Bay Area: Spatial Pattern, Driving Forces and Its Coupling with Economy and Population. Land 2023, 12, 1878. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Li, Z.; Yang, M.; Zhai, F.; Li, Z.; Yao, H.; Li, H. Spatial Distribution Characteristics and Influencing Factors of Key Rural Tourism Villages in China. Sustainability 2022, 14, 14064. [Google Scholar] [CrossRef]
- Walmsley, D. Retail Change in Southern Sydney: Lifestyle-Linked Restructuring? Urban Policy Res. 2006, 24, 509–523. [Google Scholar] [CrossRef]
- Prayag, G.; Landré, M.; Ryan, C. Restaurant location in Hamilton, New Zealand: Clustering patterns from 1996 to 2008. Int. J. Contemp. Hosp. Manag. 2012, 24, 430–450. [Google Scholar] [CrossRef]
- Rogerson, J.M. The Changing Location of Hotels in South Africa’s Coastal Cities, 1990–2010, Urban Forum, 2012; Springer: Berlin, Germany, 2012; pp. 73–91. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C.; Xiu, C.; Zhang, P. Location analysis of retail stores in Changchun, China: A street centrality perspective. Cities 2014, 41, 54–63. [Google Scholar] [CrossRef]
- He, B.-J.; Zhao, Z.-Q.; Shen, L.-D.; Wang, H.-B.; Li, L.-G. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Wu, J.; Wu, K. Demand prediction and regulation zoning of urban-industrial land: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef]
- Dongdong, X.; Zhenfang, H.; Huangping, S.; Xueying, S.; Huan, L.; Linjiao, T. The spatial characteristics and its influencing factors of leisure tourism resources in Nanjing. J. Nanjing Norm. Univ. Nat. Sci. Ed. 2017, 40, 127–133. [Google Scholar] [CrossRef]
- Yu, C.; Lian, T.; Geng, H.; Li, S. Analysing the structure of tourism destination network based on digital footprints: Taking Guilin, China as a case. Data Technol. Appl. 2023, 57, 56–83. [Google Scholar] [CrossRef]
- Qu, X.; Xu, G.; Qi, J.; Bao, H. Identifying the Spatial Patterns and Influencing Factors of Leisure and Tourism in Xi’an Based on Point of Interest (POI) Data. Land 2023, 12, 1805. [Google Scholar] [CrossRef]
- McKercher, B. The Impact of Distance on Tourism: A Tourism Geography Law; Tourism Spaces; Routledge: London, UK, 2021; pp. 137–141. [Google Scholar] [CrossRef]
- Liang, W.; Ahmad, Y.; Mohidin, H.H.B. Spatial pattern and influencing factors of tourism based on POI data in Chengdu, China. Environ. Dev. Sustain. 2024, 26, 10127–10143. [Google Scholar] [CrossRef] [PubMed]
- Sisto, R.; Cappelletti, G.M.; Bianchi, P.; Sica, E. Sustainable and accessible tourism in natural areas: A participatory approach. Curr. Issues Tour. 2022, 25, 1307–1324. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, J.; Meng, X. Spatial distribution and its influencing factors of level-A scenic spots in Northeast China. Sci. Geogr. Sin. 2017, 37, 895–903. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Z.; Yang, Y. Agglomerating or dispersing? Spatial effects of high-speed trains on regional tourism economies. Tour. Manag. 2021, 87, 104392. [Google Scholar] [CrossRef]
- Yifan, X.; Honglei, Z.; Yuan, T. The impact of transportation system on the spatial structure of tourism: Review and prospect. Tour. Sci. 2020, 34, 32–46. [Google Scholar] [CrossRef]
- Li, L.; Hou, G.-L.; Xia, S.-Y.; Huang, Z.-F. Spatial distribution characteristics and influencing factors of leisure tourism resources in Chengdu. J. Nat. Resour. 2020, 35, 683–697. [Google Scholar] [CrossRef]
- Brida, J.; Pulina, M. A Literature Review on the Tourism-Led-Growth Hypothesis; Working papers 2010/17; CUEC: Cagliari, Italy, 2010. [Google Scholar]
- Kapera, I. Healthcare Significance in Tourists’ Destination Choices: A Case Study of Polish Travelers. Pol. J. Sport Tour. 2024, 31, 45–49. [Google Scholar] [CrossRef]
- Karl, M.; Bauer, A.; Ritchie, W.B.; Passauer, M. The impact of travel constraints on travel decision-making: A comparative approach of travel frequencies and intended travel participation. J. Destin. Mark. Manag. 2020, 18, 100471. [Google Scholar] [CrossRef]
- Ma, H.; Chiu, Y.-H.; Tian, X.; Zhang, J.; Guo, Q. Safety or travel: Which is more important? The impact of disaster events on tourism. Sustainability 2020, 12, 3038. [Google Scholar] [CrossRef]
- Williams, A.M.; Shaw, G. Future play: Tourism, recreation and land use. Land Use Policy 2009, 26, S326–S335. [Google Scholar] [CrossRef]
- García-Hernández, M.; De la Calle-Vaquero, M.; Yubero, C. Cultural heritage and urban tourism: Historic city centres under pressure. Sustainability 2017, 9, 1346. [Google Scholar] [CrossRef]
- Li, W.; Yu, H.; Chen, T.; Ma, X. Evolution of distribution patterns and location selection mechanism of urban tourism complexes: A case study of Hangzhou city. Geogr. Res. 2023, 42, 2386–2404. [Google Scholar] [CrossRef]
- Xudong, G.; Haiming, C.; Xiaoqiao, C. Tourism Spatial Structure in Urban Agglomeration of the Greater Bay Area and Its Optimisation. J. Landsc. Res. 2021, 13, 104–110. [Google Scholar] [CrossRef]
- Ma, T.; Hong, T.; Zhang, H. Tourism spatial spillover effects and urban economic growth. J. Bus. Res. 2015, 68, 74–80. [Google Scholar] [CrossRef]
- Weishan, C.; Lin, L.; Yutian, L. Retail center recognition and spatial aggregating feature analysis of retail formats in Guangzhou based on POI data. Geogr. Res. 2016, 35, 703–716. [Google Scholar] [CrossRef]
- Weiwei, L.; Xiaolong, M. Spatial Pattern and Mechanisms of the Tourism and Leisure Industry in China’s Big Cities: A Case Study of Xi’an. Hum. Geogr. 2019, 34, 153–160. [Google Scholar] [CrossRef]
Type | POI Type | POI Number |
---|---|---|
Catering services | Tea houses, coffee shops, fast food restaurants, cold drink stores, foreign restaurants, Chinese restaurants, bars, etc. | 49,620 |
Scenic spots | Beaches, scenic spots, memorials, temples and Taoist temples, zoos, aquariums, etc. | 2204 |
Shopping services | Convenience stores, shopping centres, malls, etc. | 11,391 |
Sports and entertainment | Museums, science and technology museums, bath and massage places, theatres, exhibition halls, sports venues, etc. | 11,921 |
Accommodation services | Economy hotel chains, hotels and guest houses, guesthouses and hotels, star-rated hotels | 10,979 |
Type | The Average Observed Distance/m | The Expected Average Distance/m | NNI | Z | P | Spatial Distribution Type |
---|---|---|---|---|---|---|
Overall | 53.16 | 180.71 | 0.29 | 396.25 | 0 | Agglomeration |
Catering services | 55.26 | 238.06 | 0.23 | −327.22 | 0 | Agglomeration |
Scenic spots | 513.67 | 1129.55 | 0.45 | −48.97 | 0 | Agglomeration |
Shopping services | 210.25 | 496.86 | 0.42 | −117.78 | 0 | Agglomeration |
Sports and entertainment | 184.28 | 485.69 | 0.38 | −129.62 | 0 | Agglomeration |
Accommodation services | 129.84 | 506.09 | 0.26 | −149.02 | 0 | Agglomeration |
Type | Barycentric Coordinates | Long-Axis /km | Short-Axis/km | Rotation /° | Area/km2 | Flattening |
---|---|---|---|---|---|---|
Overall | 120°16′26.39″ E, 36°13′18.70″ N | 41.25 | 26.37 | 8.53 | 3417.44 | 0.36 |
Catering services | 120°16′20.05″ E, 36°13′36.82″ N | 40.35 | 25.63 | 7.75 | 3249.21 | 0.36 |
Scenic spots | 120°19′7.40″ E, 36°12′6.81″ N | 42.84 | 28.69 | 18.18 | 3860.43 | 0.33 |
Shopping services | 120°14′12.59″ E, 36°16′19.24″ N | 46.97 | 29.46 | 10.86 | 4346.41 | 0.37 |
Sports and entertainment | 120°16′59.26″ E, 36°13′26.87″ N | 41.76 | 26.45 | 7.74 | 3470.12 | 0.37 |
Accommodation services | 120°18′5.88″ E, 36°8′54.87″ N | 35.71 | 24.00 | 15.49 | 2692.88 | 0.33 |
Dimensions | Indicators | Evaluation Indicators |
---|---|---|
Socioeconomy | Level of economic development | GDP per capita Per capita disposable income Number of newly registered market entities Night light intensity |
Social factors | Urbanisation rate | |
Population density | ||
Transaction area of commercial housing | ||
Public transportation facilities | Transport condition | Density of bus and subway stations |
Accessibility | Distance to the prefecture-level city | |
Natural geography | Elevation | / |
Tourism development | Tourist trips | / |
Tourism resource endowment | Ocean park, marine particular protected area, nature reserve, etc., area proportion |
Dimensions | Factors | q |
---|---|---|
Socioeconomy | GDP per capita | 0.04 * |
Per capita disposable income | 0.72 *** | |
Number of newly registered market entities | 0.69 *** | |
Night light intensity | 0.25 *** | |
Urbanisation rate | 0.15 *** | |
Population density | 0.66 *** | |
Transaction area of commercial housing | 0.71 *** | |
Public transportation facilities | Density of bus and subway stations | 0.53 *** |
Distance to the prefecture-level city | 0.65 *** | |
Natural geography | Elevation | 0.04 * |
Tourism development | Tourist trips | 0.05 ** |
Tourism resource endowment | 0.22 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Xu, M.; Li, Z.; Zhang, W.; Yang, Y. Spatial Distribution, Accessibility, and Influencing Factors of the Tourism and Leisure Industry in Qingdao, China. Sustainability 2024, 16, 6961. https://doi.org/10.3390/su16166961
Sun F, Xu M, Li Z, Zhang W, Yang Y. Spatial Distribution, Accessibility, and Influencing Factors of the Tourism and Leisure Industry in Qingdao, China. Sustainability. 2024; 16(16):6961. https://doi.org/10.3390/su16166961
Chicago/Turabian StyleSun, Fengzhi, Mingzhi Xu, Zihan Li, Wei Zhang, and Yuxin Yang. 2024. "Spatial Distribution, Accessibility, and Influencing Factors of the Tourism and Leisure Industry in Qingdao, China" Sustainability 16, no. 16: 6961. https://doi.org/10.3390/su16166961
APA StyleSun, F., Xu, M., Li, Z., Zhang, W., & Yang, Y. (2024). Spatial Distribution, Accessibility, and Influencing Factors of the Tourism and Leisure Industry in Qingdao, China. Sustainability, 16(16), 6961. https://doi.org/10.3390/su16166961