The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Bibliometric Analysis of Research Progress
3.2. Research Hotspot Based on Keywords Co-Occurrence and Clustering Analysis
3.3. Research Trends Based on Co-Citation and Burstiness Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McNeill, J.R.; Engelke, P. The Great Acceleration: An Environmental History of the Anthropocene since 1945; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- World Energy Outlook 2023; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 1 October 2023).
- Lyon, S.W. A Cross-Disciplinary Approach Needs to Be at the Core of Sustainability. Sustainability 2023, 15, 15954. [Google Scholar] [CrossRef]
- A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [CrossRef]
- Global Status Report for Buildings and Construction 2024; UNEP & Global ABC, United Nations Avenue: Gigiri Nairobi, Kenya, 2024. Available online: https://www.unep.org/resources/report/global-status-report-buildings-and-construction (accessed on 7 March 2024).
- Dimoudi, A.; Androutsopoulos, A. The cooling performance of a radiator based roof component. Sol. Energy 2006, 80, 1039–1047. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA. Appl. Energy 2018, 224, 371–381. [Google Scholar] [CrossRef]
- Guerrero Delgado, M.; Sánchez Ramos, J.; Álvarez Domínguez, S. Using the sky as heat sink: Climatic applicability of night-sky based natural cooling techniques in Europe. Energy Convers. Manag. 2020, 225, 113424. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.G.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Levinson, R.; Rainer, L. Monitoring the energy-use effects of cool roofs on California commercial buildings. Energy Build. 2005, 37, 1007–1016. [Google Scholar] [CrossRef]
- Craig, S.; Harrison, D.; Cripps, A.; Knott, D. BioTRIZ Suggests Radiative Cooling of Buildings Can Be Done Passively by Changing the Structure of Roof Insulation to Let Longwave Infrared Pass. J. Bionic Eng. 2008, 5, 55–66. [Google Scholar] [CrossRef]
- Suehrcke, H.; Peterson, E.L.; Selby, N. Effect of roof solar reflectance on the building heat gain in a hot climate. Energy Build. 2008, 40, 2224–2235. [Google Scholar] [CrossRef]
- Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetal, S. Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emission. Build. Environ. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E. The joint influence of albedo and insulation on roof performance: An observational study. Energy Build. 2015, 93, 249–258. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Roof ponds as passive heating and cooling systems: A systematic review. Appl. Energy 2015, 160, 336–357. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, D.; Levinson, R.; Guo, R.; Lin, C.; Ge, J. Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building. Energy Build. 2017, 156, 343–359. [Google Scholar] [CrossRef]
- Baniassadi, A.; Sailor, D.J.; Crank, P.J.; Ban-Weiss, G.A. Direct and indirect effects of high-albedo roofs on energy consumption and thermal comfort of residential buildings. Energy Build. 2018, 178, 71–83. [Google Scholar] [CrossRef]
- Pisello, A.L.; Cotana, F. The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energy Build. 2014, 69, 154–164. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Yin, X.; Tan, G.; Yang, R. Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. Energy Build. 2019, 203, 109453. [Google Scholar] [CrossRef]
- Hanif, M.; Mahlia, T.M.I.; Zare, A.; Saksahdan, T.J.; Metselaar, H.S.C. Potential energy savings by radiative cooling system for a building in tropical climate. Renew. Sustain. Energy Rev. 2014, 32, 642–650. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Shah, K.W. A materials perspective on radiative cooling structures for buildings. Sol. Energy 2020, 207, 247–269. [Google Scholar] [CrossRef]
- Mandal, Y.; Yang, Y.; Yu, N.; Raman, A.R. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Xue, X.; Qiu, M.; Li, Y.; Zhang, Q.M.; Li, S.; Yang, Z.; Feng, C.; Zhang, W.; Dai, J.-G.; Lei, D.; et al. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. Adv. Mater. 2020, 32, 1906751. [Google Scholar] [CrossRef] [PubMed]
- Castald, A.; Vitiello, G.; Gambale, E.; Lanchi, M.; Ferrar, M.; Michele, M. Mirroring Solar Radiation Emitting Heat Toward the Universe: Design, Production, and Preliminary Testing of a Metamaterial Based Daytime Passive Radiative Cooler. Energies 2020, 13, 4192. [Google Scholar] [CrossRef]
- Yi, Z.; Lv, Y.; Xu, D.; Xu, J.; Qian, H.; Zhao, D.; Yang, R. Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2021, 2, 214–222. [Google Scholar] [CrossRef]
- Wang, H.-D.; Xue, C.-H.; Guo, X.-J.; Liu, B.-Y.; Ji, Z.-Y.; Huang, M.-C.; Jia, S.-T. Superhydrophobic porous film for daytime radiative cooling. Appl. Mater. Today 2021, 24, 101100. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Feng, J.; Santamouri, M. Expanding the applicability of daytime radiative cooling: Technological developments and limitations. Energy Build. 2021, 243, 110990. [Google Scholar] [CrossRef]
- Farooq, A.S.; Zhang, P.; Gao, Y.; Gulfam, R. Emerging radiative materials and prospective applications of radiative sky cooling—A review. Renew. Sustain. Energy Rev. 2021, 144, 110910. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, X.; Zhang, F.; Sun, L.; Jin, N.; Yang, W. Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology 2022, 67, 57–67. [Google Scholar] [CrossRef]
- Wang, W.; Fernandez, N.; Katipamula, S.; Alvine, K. Performance assessment of a photonic radiative cooling system for office buildings. Renew. Energy 2018, 118, 265–277. [Google Scholar] [CrossRef]
- Wang, N.; Lv, Y.; Zhao, D.; Zhao, W.; Xu, J.; Yang, R. Performance evaluation of radiative cooling for commercial-scale warehouse. Mater. Today Energy 2022, 24, 100927. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Chen, N.; Pei, G. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl. Energy 2019, 236, 489–513. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Chen, X.; Yan, H.; Yang, Y. Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat 2021, 4, e12153. [Google Scholar] [CrossRef]
- Lin, K.-T.; Han, J.; Li, K.; Guo, C.; Lin, H.; Jia, B. Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 2021, 80, 105517. [Google Scholar] [CrossRef]
- Mandal, Y.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Muselli, M. Passive cooling for air-conditioning energy savings with new radiative low-cost coatings. Energy Build. 2010, 42, 945–954. [Google Scholar] [CrossRef]
- Hernández-Pérez, I.; Álvarez, G.; Xamán, J.; Zavala-Guillén, I.; Arce, J.; Simá, E. Thermal performance of reflective materials applied to exterior building components—A review. Energy Build. 2014, 80, 81–105. [Google Scholar] [CrossRef]
- Lu, X.; Xu, P.; Wang, H.; Yang, T.; Hou, J. Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renew. Sustain. Energy Rev. 2016, 65, 1079–1097. [Google Scholar] [CrossRef]
- Family, R.; Mengüç, M. Analysis of Sustainable Materials for Radiative Cooling Potential of Building Surfaces. Sustainability 2018, 10, 3049. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L. Development of radiative cooling and its integration with buildings: A comprehensive review. Sol. Energy 2020, 212, 125–151. [Google Scholar] [CrossRef]
- Aili, A.; Zhao, D.; Lu, J.; Zhai, Y.; Yin, X.; Tan, G.; Yang, R. A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Convers. Manag. 2019, 186, 586–596. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G. Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renew. Energy 2008, 33, 1220–1227. [Google Scholar] [CrossRef]
- Hollick, J. Nocturnal Radiation Cooling Test. Energy Procedia 2012, 30, 930–936. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, B.; Li, J.; Wang, Y.; Pei, G. Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy 2017, 137, 419–430. [Google Scholar] [CrossRef]
- Mulik, P.V.; Kapale, U.C.; Kamble, G.S. Comparative Study of Experimental and Theoretical Evaluation of Nocturnal Cooling System for Room Cooling for Clear and Cloudy Sky Climate. Glob. Chall. 2019, 3, 1900008. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Li, R.; Ma, R.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Zeyghami, M.; Goswami, D.Y.; Stefanakos, E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 2018, 178, 115–128. [Google Scholar] [CrossRef]
- Yu, X.; Chen, C. A simulation study for comparing the cooling performance of different daytime radiative cooling materials. Sol. Energy Mater. Sol. Cells 2020, 209, 110459. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Tso, C.Y.; Wong, Y.M.; Chao, C.Y.H.; Huang, B. Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 2020, 206, 110296. [Google Scholar] [CrossRef]
- Bijarniya, J.P.; Sarkar, J.; Maiti, P. Environmental effect on the performance of passive daytime photonic radiative cooling and building energy-saving potential. J. Clean. Prod. 2020, 274, 123119. [Google Scholar] [CrossRef]
- Anand, J.; Sailor, D.J.; Baniassadi, A. The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops. Sustain. Cities Soc. 2021, 65, 102612. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, H.; Yuan, D.; Yang, Y.; Xu, S. On daytime radiative cooling using spectrally selective metamaterial based building envelopes. Energy 2022, 242, 122779. [Google Scholar] [CrossRef]
- Vilà, R.; Medrano, M.; Castell, A. Mapping Nighttime and All-Day Radiative Cooling Potential in Europe and the Influence of Solar Reflectivity. Atmosphere 2021, 12, 1119. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L. Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings. J. Build. Eng. 2021, 33, 101631. [Google Scholar] [CrossRef]
- Feng, C.; Lei, Y.; Fang, J.; Lu, B.; Li, X.; Xue, X. Optimized radiative parameters of building roof surfaces for energy efficiency: Case studies in China. J. Build. Eng. 2022, 61, 105289. [Google Scholar] [CrossRef]
- Romeo, C.; Zinzi, M. Impact of a cool roof application on the energy and comfort performance in an existing non-residential building. A Sicilian case study. Energy Build. 2013, 67, 647–657. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Zingre, K.T.; Wan, M.P.; Chang, V.W.-C.; Wong, S.K.; Boo Thian Toh, W.; Yen Leng Lee, I. Thermal performance of concrete-based roofs in tropical climate. Energy Build. 2014, 76, 392–401. [Google Scholar] [CrossRef]
- Zingre, K.T.; Wan, M.P.; Tong, S.; Li, H.; Chang, V.W.-C.; Wong, S.K.; Boo Thian Toh, W.; Yen Leng Lee, I. Modeling of cool roof heat transfer in tropical climate. Renew. Energy 2015, 75, 210–223. [Google Scholar] [CrossRef]
- Baniassadi, A.; Sailor, D.J.; Ban-Weiss, G.A. Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Clim. 2019, 29, 100495. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, D.; Yuan, J.; Aili, A.; Yin, X.; Yang, R.; Tan, G. Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model. Appl. Energy 2019, 248, 589–599. [Google Scholar] [CrossRef]
- Lv, J.; Tang, M.; Quan, R.; Chai, Z. Synthesis of solar heat-reflective ZnTiO3 pigments with novel roof cooling effect. Ceram. Int. 2019, 45, 15768–15771. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Pei, G. Performance evaluation of daytime radiative cooling under different clear sky conditions. Appl. Therm. Eng. 2019, 155, 660–666. [Google Scholar] [CrossRef]
- Shi, D.; Zhuang, C.; Lin, C.; Zhao, X.; Chen, D.; Gao, Y.; Levinson, R. Effects of natural soiling and weathering on cool roof energy savings for dormitory buildings in Chinese cities with hot summers. Sol. Energy Mater. Sol. Cells 2019, 200, 110016. [Google Scholar] [CrossRef]
- Kolokotsa, D.-D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, K.; Chen, L.; Tang, S. Analysis of the impact of a novel cool roof on cooling performance for a low-rise prefabricated building in China. Build. Serv. Eng. Res. Technol. 2020, 42, 26–44. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, K.; Ma, M.; Tang, S.; Li, F.; Niu, X. Sub-ambient radiative cooling and its application in buildings. Build. Simul. 2020, 13, 1165–1189. [Google Scholar] [CrossRef]
- Cheng, Z.; Shuai, Y.; Gong, D.; Wang, F.; Liang, H.; Li, G. Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles. Sci. China Technol. Sci. 2020, 64, 1017–1029. [Google Scholar] [CrossRef]
- Prakash Bijarniya, J.; Sarkar, J. Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India. Renew. Sustain. Energy Rev. 2020, 134, 110303. [Google Scholar] [CrossRef]
- Wijesuriya, S.; Anant Kishore, R.; Bianchi, M.V.A.; Booten, C. Potential energy savings benefits and limitations of radiative cooling coatings for U.S. residential buildings. J. Clean. Prod. 2022, 379, 134763. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, H.; Yang, R.; Zhao, D. Radiative sky cooling potential maps of China based on atmospheric spectral emissivity. Sol. Energy 2021, 218, 195–210. [Google Scholar] [CrossRef]
- Panchabikesan, K.; Vellaisamy, K.; Ramalingam, V. Passive cooling potential in buildings under various climatic conditions in India. Renew. Sustain. Energy Rev. 2017, 78, 1236–1252. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Tso, C.Y.; Ha, J.; Wong, Y.M.; Chao, C.Y.H.; Huang, B.; Qiu, H. Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate. Renew. Energy 2020, 146, 44–55. [Google Scholar] [CrossRef]
- Fan, J.; Fu, C.; Fu, T. Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment. Appl. Therm. Eng. 2020, 165, 114585. [Google Scholar] [CrossRef]
- Li, M.; Coimbra, C.F.M. On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials. Int. J. Heat Mass Transf. 2019, 135, 1053–1062. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Zhang, D.; Jiao, S.; Zhang, Y.; Luo, L.; Zhang, Z.; Gao, F. Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside. Renew. Energy 2020, 155, 90–99. [Google Scholar] [CrossRef]
- Han, D.; Ng, B.F.; Wan, M.P. Preliminary study of passive radiative cooling under Singapore’s tropical climate. Sol. Energy Mater. Sol. Cells 2020, 206, 110270. [Google Scholar] [CrossRef]
- Gao, Y.; Song, X.; Samad Farooq, A.; Zhan, P. Cooling performance of porous polymer radiative coating under different environmental conditions throughout all-year. Sol. Energy 2021, 228, 474–485. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Zhai, Y.; Tan, G.; Yin, X.; Yang, R. Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule 2019, 3, 111–123. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Heidarinejad, Z.M.; Dalgo, D.; Ruiyu, M.; Zha, X.; Song, J.; Dai, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. Available online: https://www.science.org/doi/10.1126/science.aau9101 (accessed on 24 May 2019). [CrossRef]
- Kou, J.-L.; Jurado, O.Z.; Chen, Z.; Fan, S.; Minnich, A.J. Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics 2017, 4, 626–630. Available online: https://pubs.acs.org/doi/10.1021/acsphotonics.6b00991 (accessed on 3 February 2017). [CrossRef]
- Bao, H.; Yan, C.; Wang, B.; Fang, X.; Zhao, C.Y.; Ruan, X. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78–84. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Raman, A.P.; Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2024, 43, 17143. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q.; Wang, B.; Jin, S.; Wang, M. Development of a new spectral selectivity-based passive radiative roof cooling model and its application in hot and humid region. J. Clean. Prod. 2021, 307, 127170. [Google Scholar] [CrossRef]
- Feng, J.; Saliari, M.; Gao, K.; Santamouri, M. On the cooling energy conservation potential of super cool roofs. Energy Build. 2022, 264, 112076. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, H.; Cao, P.; Yuan, D.; Xu, S. Daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces. Energy Sustain. Dev. 2020, 57, 22–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Tennakoon, T.; Chan, Y.H.; Chan, K.C.; Fu, S.C.; Tso, C.Y.; Yu, K.M.; Huang, B.L.; Yao, S.H.; Qiu, H.H.; et al. Energy consumption modelling of a passive hybrid system for office buildings in different climates. Energy 2022, 239, 121914. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. On the sky temperature models and their influence on buildings energy performance: A critical review. Energy Build. 2019, 183, 607–625. [Google Scholar] [CrossRef]
- Yu, X.; Chen, C. Coupling spectral-dependent radiative cooling with building energy simulation. Build. Environ. 2021, 197, 107841. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q.; Lau, W.Y.; Cheung, K.H. Techno-economic and environmental performance assessment of radiative sky cooling-based super-cool roof applications in China. Energy Convers. Manag. 2021, 245, 114621. [Google Scholar] [CrossRef]
- Green, A.; Ledo Gomis, L.; Paolini, R.; Haddad, S.; Kokogiannakis, G.; Cooper, P.; Ma, Z.; Kosasih, B.; Santamouris, M. Above-roof air temperature effects on HVAC and cool roof performance: Experiments and development of a predictive model. Energy Build. 2020, 222, 110071. [Google Scholar] [CrossRef]
- Sinsel, T.; Simon, H.; Broadbent, A.M.; Bruse, M.; Heusinger, J. Modeling impacts of super cool roofs on air temperature at pedestrian level in mesoscale and microscale climate models. Urban Clim. 2021, 40, 101001. [Google Scholar] [CrossRef]
- Feng, J.; Gao, K.; Santamouris, M.; Wei Shah, K.; Ranzi, G. Dynamic impact of climate on the performance of daytime radiative cooling materials. Sol. Energy Mater. Sol. Cells 2020, 208, 110426. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q. A new study on passive radiative sky cooling resource maps of China. Energy Convers. Manag. 2021, 237, 114132. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Wei Shah, K.; Feng, J.; Santamouris, M. On the energy modulation of daytime radiative coolers: A review on infrared emissivity dynamic switch against overcooling. Sol. Energy 2020, 209, 278–301. [Google Scholar] [CrossRef]
- Yazdani, H.; Baneshi, M. Building energy comparison for dynamic cool roofs and green roofs under various climates. Sol. Energy 2021, 230, 764–778. [Google Scholar] [CrossRef]
- An, Y.; Fu, Y.; Dai, J.-G.; Yin, X.; Lei, D. Switchable radiative cooling technologies for smart thermal management. Cell Rep. Phys. Sci. 2022, 3, 101098. [Google Scholar] [CrossRef]
- Tang, K.; Dong, K.; Li, J.; Gordon, M.P.; Reichertz, F.G.; Kim, H.; Rho, Y.; Wang, Q.; Lin, C.-Y.; Grigoropoulos, C.P.; et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509. Available online: https://www.science.org/doi/10.1126/science.abf7136 (accessed on 16 December 2021). [CrossRef] [PubMed]
- Wang, J.; Xie, M.; An, Y.; Tao, Y.; Sun, J.; Ji, C. All-season thermal regulation with thermochromic temperature-adaptive radiative cooling coatings. Sol. Energy Mater. Sol. Cells 2022, 246, 111883. [Google Scholar] [CrossRef]
- Mastrapostoli, E.; Santamouris, M.; Kolokotsa, D.; Vassilis, P.; Venieri, D.; Gompakis, K. On the ageing of cool roofs: Measure of the optical degradation, chemical and biological analysis and assessment of the energy impact. Energy Build. 2016, 114, 191–199. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, X.; Li, X.; Feng, C. Impact of aging, precipitation, and orientation on performance of radiative cooling for building envelope: A field investigation. Energy Build. 2023, 279, 112716. [Google Scholar] [CrossRef]
- Uday Kumar Nutakki, T.; Ullah Kazim, W.; Alamara, K.; Salameh, T.; Ali Abdelkareem, M. Experimental Investigation on Aging and Energy Savings Evaluation of High Solar Reflective Index (SRI) Paints: A Case Study on Residential Households in the GCC Region. Buildings 2023, 13, 419. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, G.; Rong, L. Impact of cloud and total column water vapor on annual performance of passive daytime radiative cooler. Energy Convers. Manag. 2022, 273, 116420. [Google Scholar] [CrossRef]
- Zhao, B.; Yue, X.; Tian, Q.; Qiu, F.; Zhang, T. Controllable fabrication of ZnO nanorods @ cellulose membrane with self-cleaning and passive radiative cooling properties for building energy-saving applications. Cellulose 2022, 29, 1981–1992. [Google Scholar] [CrossRef]
- Jiang, T.; Fan, W.; Wang, F. Long-lasting self-cleaning daytime radiative cooling paint for building. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131296. [Google Scholar] [CrossRef]
- Yue, X.; Wu, H.; Zhang, T.; Yang, D.; Qiu, F. Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 2022, 245, 123287. [Google Scholar] [CrossRef]
- Ju, H.; Lei, S.; Wang, F.; Yang, D.; Ou, J.; Amirfazli, A. Daytime radiative cooling performance and building energy consumption simulation of superhydrophobic calcined kaolin/poly(vinylidene fluoride-co-hexafluoropropylene) coatings. Energy Build. 2023, 292, 113184. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Zhang, Z.; Cai, Y.; Sun, Z.; Zhang, H.; Li, Y.; Liu, L.; Zhang, W.; Xue, X.; et al. Sub-ambient cooling effect and net energy efficiency of a super-amphiphobic self-cleaning passive sub-ambient daytime radiative cooling coating applied to various buildings. Energy Build. 2023, 284, 112702. [Google Scholar] [CrossRef]
- Zhang, D.-M.; Wang, H.-D.; Huang, M.-C.; Fan, T.-T.; Deng, F.-Q.; Xue, C.-H.; Guo, X.-J. Fabrication of radiative cooling film with superhydrophobic self-cleaning property. Surf. Innov. 2023, 11, 285–296. [Google Scholar] [CrossRef]
- Xu, F.; Wang, F.; Lei, S.; Ou, J.; Li, W. Superhydrophobic poly-4-methyl-1-pentene/polyvinylidene fluoride coating with excellent passive daytime radiation cooling performance. Appl. Phys. A 2023, 129, 266. [Google Scholar] [CrossRef]
- Chi, F.A.; Liu, Y.; Yan, J. Integration of Radiative-based air temperature regulating system into residential building for energy saving. Appl. Energy 2021, 301, 117426. [Google Scholar] [CrossRef]
- Tang, S.; Akkurt, N.; Zhang, K.; Chen, L.; Ma, M. Effect of roof and ceiling configuration on energy performance of a metamaterial-based cool roof for low-rise office building in China. Indoor Built Environ. 2020, 30, 1739–1750. [Google Scholar] [CrossRef]
- Peoples, J.; Hung, Y.-W.; Fang, Z.; Braun, J.; Horton, T.W.; Ruan, X. Energy savings of radiative cooling paints applied to residential buildings. Int. J. Heat Mass Transf. 2022, 194, 123001. [Google Scholar] [CrossRef]
- Chan, Y.H.; Zhang, Y.; Tennakoon, T.; Fu, S.C.; Chan, K.C.; Tso, C.Y.; Yu, K.M.; Wan, M.P.; Huang, B.L.; Yao, S.; et al. Potential passive cooling methods based on radiation controls in buildings. Energy Convers. Manag. 2022, 272, 116342. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Jia, L.; Gong, Q. Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region. Sustainability 2023, 15, 12607. [Google Scholar] [CrossRef]
- Shen, D.; Yu, C.; Wang, W. Investigation on the thermal performance of the novel phase change materials wall with radiative cooling. Appl. Therm. Eng. 2020, 176, 115479. [Google Scholar] [CrossRef]
- Yu, C.; Shen, D.; He, W.; Hu, Z.; Zhang, S.; Chu, W. Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology. Renew. Energy 2021, 178, 1057–1069. [Google Scholar] [CrossRef]
Phase | Period | Research Content and Findings |
---|---|---|
Phase I | 2005–2013 | Using nighttime radiative cooling to collect cold sources for daytime heat exchange on building roofs; utilizing the principle of increasing the solar reflectance of building roofs to set up a cool roof, reducing the amount of heat absorbed by the building roof during the day, thus achieving the goal of cooling the building. |
Phase II | 2014–2018 | Studying the actual case applications of different types of radiation cooling components and radiation cooling materials on building roofs, and monitoring and observing the cooling effects. |
Phase III | 2019 to the present | By experimental measurements and numerical simulations, the potential for energy savings and cooling effects of radiative cooling technology applied to building roofs were studied, accumulating a large amount of research data for the regular and mass application of radiative cooling technology in building roofs. |
No. | Keywords | Frequency | Centrality | Year |
---|---|---|---|---|
1 | Radiative cooling | 69 | 0.08 | 2006 |
2 | Performance | 59 | 0.17 | 2008 |
3 | Cooling roof | 45 | 0.16 | 2005 |
4 | Energy saving | 38 | 0.23 | 2012 |
5 | System | 35 | 0.14 | 2006 |
6 | Building | 24 | 0.16 | 2016 |
7 | Coating | 20 | 0.16 | 2008 |
8 | Optical property | 18 | 0.11 | 2014 |
9 | Surface | 17 | 0.06 | 2016 |
10 | Solar reflectance | 14 | 0.06 | 2008 |
NO. | Author | Title | Year | Freq | Source | Refs. |
---|---|---|---|---|---|---|
1 | Mandal, J Fu, YK Overvig, AC | Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling | 2018 | 89 | Science | [36] |
2 | Zhai, Y Ma, YG David, SN | Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling | 2017 | 77 | Science | [10] |
3 | Zhao, DL Aili, A Zhai, Y | Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling | 2019 | 47 | Joule | [79] |
4 | Li, T Zhai, Y He, SM | A radiative cooling structural material | 2019 | 46 | Science | [80] |
5 | Kou, JL Jurado, Z Chen, Z | Daytime radiative cooling using near-black infrared emitters | 2017 | 43 | Acs Photonics | [81] |
6 | Zhao, B Hu, MK Ao, XZ | Radiative cooling: A review of fundamentals, materials, applications, and prospects | 2019 | 41 | Applied Energy | [33] |
7 | Bao, H Yan, C Wang, B | Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling | 2017 | 38 | Solar Energy Materials and Solar Cells | [82] |
8 | Goldstein, EA Raman, AP Fan, S | Sub-ambient non-evaporative fluid cooling with the sky | 2017 | 36 | Nature Energy | [83] |
9 | Mandal, J Yang, Y Yu, NF | Paints as a Scalable and Effective Radiative Cooling Technology for Buildings | 2020 | 32 | Joule | [23] |
10 | Zhang, K Zhao, DL Yin, XB | Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA | 2018 | 31 | Applied Energy | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Liang, Z.; Li, W.; Yang, C.; Wang, E. The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis. Sustainability 2024, 16, 6936. https://doi.org/10.3390/su16166936
Guo L, Liang Z, Li W, Yang C, Wang E. The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis. Sustainability. 2024; 16(16):6936. https://doi.org/10.3390/su16166936
Chicago/Turabian StyleGuo, Linlin, Zhuqing Liang, Wenhao Li, Can Yang, and Endong Wang. 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis" Sustainability 16, no. 16: 6936. https://doi.org/10.3390/su16166936
APA StyleGuo, L., Liang, Z., Li, W., Yang, C., & Wang, E. (2024). The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis. Sustainability, 16(16), 6936. https://doi.org/10.3390/su16166936