The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis
Abstract
1. Introduction
2. Methodology
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Bibliometric Analysis of Research Progress
3.2. Research Hotspot Based on Keywords Co-Occurrence and Clustering Analysis
3.3. Research Trends Based on Co-Citation and Burstiness Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McNeill, J.R.; Engelke, P. The Great Acceleration: An Environmental History of the Anthropocene since 1945; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- World Energy Outlook 2023; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 1 October 2023).
- Lyon, S.W. A Cross-Disciplinary Approach Needs to Be at the Core of Sustainability. Sustainability 2023, 15, 15954. [Google Scholar] [CrossRef]
- A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [CrossRef]
- Global Status Report for Buildings and Construction 2024; UNEP & Global ABC, United Nations Avenue: Gigiri Nairobi, Kenya, 2024. Available online: https://www.unep.org/resources/report/global-status-report-buildings-and-construction (accessed on 7 March 2024).
- Dimoudi, A.; Androutsopoulos, A. The cooling performance of a radiator based roof component. Sol. Energy 2006, 80, 1039–1047. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA. Appl. Energy 2018, 224, 371–381. [Google Scholar] [CrossRef]
- Guerrero Delgado, M.; Sánchez Ramos, J.; Álvarez Domínguez, S. Using the sky as heat sink: Climatic applicability of night-sky based natural cooling techniques in Europe. Energy Convers. Manag. 2020, 225, 113424. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.G.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Levinson, R.; Rainer, L. Monitoring the energy-use effects of cool roofs on California commercial buildings. Energy Build. 2005, 37, 1007–1016. [Google Scholar] [CrossRef]
- Craig, S.; Harrison, D.; Cripps, A.; Knott, D. BioTRIZ Suggests Radiative Cooling of Buildings Can Be Done Passively by Changing the Structure of Roof Insulation to Let Longwave Infrared Pass. J. Bionic Eng. 2008, 5, 55–66. [Google Scholar] [CrossRef]
- Suehrcke, H.; Peterson, E.L.; Selby, N. Effect of roof solar reflectance on the building heat gain in a hot climate. Energy Build. 2008, 40, 2224–2235. [Google Scholar] [CrossRef]
- Xu, T.; Sathaye, J.; Akbari, H.; Garg, V.; Tetal, S. Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emission. Build. Environ. 2012, 48, 1–6. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Sun, T.; Rule, K.; Bou-Zeid, E. The joint influence of albedo and insulation on roof performance: An observational study. Energy Build. 2015, 93, 249–258. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Roof ponds as passive heating and cooling systems: A systematic review. Appl. Energy 2015, 160, 336–357. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, D.; Levinson, R.; Guo, R.; Lin, C.; Ge, J. Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building. Energy Build. 2017, 156, 343–359. [Google Scholar] [CrossRef]
- Baniassadi, A.; Sailor, D.J.; Crank, P.J.; Ban-Weiss, G.A. Direct and indirect effects of high-albedo roofs on energy consumption and thermal comfort of residential buildings. Energy Build. 2018, 178, 71–83. [Google Scholar] [CrossRef]
- Pisello, A.L.; Cotana, F. The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energy Build. 2014, 69, 154–164. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Yin, X.; Tan, G.; Yang, R. Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. Energy Build. 2019, 203, 109453. [Google Scholar] [CrossRef]
- Hanif, M.; Mahlia, T.M.I.; Zare, A.; Saksahdan, T.J.; Metselaar, H.S.C. Potential energy savings by radiative cooling system for a building in tropical climate. Renew. Sustain. Energy Rev. 2014, 32, 642–650. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Shah, K.W. A materials perspective on radiative cooling structures for buildings. Sol. Energy 2020, 207, 247–269. [Google Scholar] [CrossRef]
- Mandal, Y.; Yang, Y.; Yu, N.; Raman, A.R. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Xue, X.; Qiu, M.; Li, Y.; Zhang, Q.M.; Li, S.; Yang, Z.; Feng, C.; Zhang, W.; Dai, J.-G.; Lei, D.; et al. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. Adv. Mater. 2020, 32, 1906751. [Google Scholar] [CrossRef] [PubMed]
- Castald, A.; Vitiello, G.; Gambale, E.; Lanchi, M.; Ferrar, M.; Michele, M. Mirroring Solar Radiation Emitting Heat Toward the Universe: Design, Production, and Preliminary Testing of a Metamaterial Based Daytime Passive Radiative Cooler. Energies 2020, 13, 4192. [Google Scholar] [CrossRef]
- Yi, Z.; Lv, Y.; Xu, D.; Xu, J.; Qian, H.; Zhao, D.; Yang, R. Energy saving analysis of a transparent radiative cooling film for buildings with roof glazing. Energy Built Environ. 2021, 2, 214–222. [Google Scholar] [CrossRef]
- Wang, H.-D.; Xue, C.-H.; Guo, X.-J.; Liu, B.-Y.; Ji, Z.-Y.; Huang, M.-C.; Jia, S.-T. Superhydrophobic porous film for daytime radiative cooling. Appl. Mater. Today 2021, 24, 101100. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Feng, J.; Santamouri, M. Expanding the applicability of daytime radiative cooling: Technological developments and limitations. Energy Build. 2021, 243, 110990. [Google Scholar] [CrossRef]
- Farooq, A.S.; Zhang, P.; Gao, Y.; Gulfam, R. Emerging radiative materials and prospective applications of radiative sky cooling—A review. Renew. Sustain. Energy Rev. 2021, 144, 110910. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, X.; Zhang, F.; Sun, L.; Jin, N.; Yang, W. Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology 2022, 67, 57–67. [Google Scholar] [CrossRef]
- Wang, W.; Fernandez, N.; Katipamula, S.; Alvine, K. Performance assessment of a photonic radiative cooling system for office buildings. Renew. Energy 2018, 118, 265–277. [Google Scholar] [CrossRef]
- Wang, N.; Lv, Y.; Zhao, D.; Zhao, W.; Xu, J.; Yang, R. Performance evaluation of radiative cooling for commercial-scale warehouse. Mater. Today Energy 2022, 24, 100927. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Chen, N.; Pei, G. Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl. Energy 2019, 236, 489–513. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Chen, X.; Yan, H.; Yang, Y. Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat 2021, 4, e12153. [Google Scholar] [CrossRef]
- Lin, K.-T.; Han, J.; Li, K.; Guo, C.; Lin, H.; Jia, B. Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 2021, 80, 105517. [Google Scholar] [CrossRef]
- Mandal, Y.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Muselli, M. Passive cooling for air-conditioning energy savings with new radiative low-cost coatings. Energy Build. 2010, 42, 945–954. [Google Scholar] [CrossRef]
- Hernández-Pérez, I.; Álvarez, G.; Xamán, J.; Zavala-Guillén, I.; Arce, J.; Simá, E. Thermal performance of reflective materials applied to exterior building components—A review. Energy Build. 2014, 80, 81–105. [Google Scholar] [CrossRef]
- Lu, X.; Xu, P.; Wang, H.; Yang, T.; Hou, J. Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renew. Sustain. Energy Rev. 2016, 65, 1079–1097. [Google Scholar] [CrossRef]
- Family, R.; Mengüç, M. Analysis of Sustainable Materials for Radiative Cooling Potential of Building Surfaces. Sustainability 2018, 10, 3049. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L. Development of radiative cooling and its integration with buildings: A comprehensive review. Sol. Energy 2020, 212, 125–151. [Google Scholar] [CrossRef]
- Aili, A.; Zhao, D.; Lu, J.; Zhai, Y.; Yin, X.; Tan, G.; Yang, R. A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Convers. Manag. 2019, 186, 586–596. [Google Scholar] [CrossRef]
- Bagiorgas, H.S.; Mihalakakou, G. Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renew. Energy 2008, 33, 1220–1227. [Google Scholar] [CrossRef]
- Hollick, J. Nocturnal Radiation Cooling Test. Energy Procedia 2012, 30, 930–936. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, B.; Li, J.; Wang, Y.; Pei, G. Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy 2017, 137, 419–430. [Google Scholar] [CrossRef]
- Mulik, P.V.; Kapale, U.C.; Kamble, G.S. Comparative Study of Experimental and Theoretical Evaluation of Nocturnal Cooling System for Room Cooling for Clear and Cloudy Sky Climate. Glob. Chall. 2019, 3, 1900008. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Li, R.; Ma, R.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Zeyghami, M.; Goswami, D.Y.; Stefanakos, E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 2018, 178, 115–128. [Google Scholar] [CrossRef]
- Yu, X.; Chen, C. A simulation study for comparing the cooling performance of different daytime radiative cooling materials. Sol. Energy Mater. Sol. Cells 2020, 209, 110459. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Tso, C.Y.; Wong, Y.M.; Chao, C.Y.H.; Huang, B. Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Sol. Energy Mater. Sol. Cells 2020, 206, 110296. [Google Scholar] [CrossRef]
- Bijarniya, J.P.; Sarkar, J.; Maiti, P. Environmental effect on the performance of passive daytime photonic radiative cooling and building energy-saving potential. J. Clean. Prod. 2020, 274, 123119. [Google Scholar] [CrossRef]
- Anand, J.; Sailor, D.J.; Baniassadi, A. The relative role of solar reflectance and thermal emittance for passive daytime radiative cooling technologies applied to rooftops. Sustain. Cities Soc. 2021, 65, 102612. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, H.; Yuan, D.; Yang, Y.; Xu, S. On daytime radiative cooling using spectrally selective metamaterial based building envelopes. Energy 2022, 242, 122779. [Google Scholar] [CrossRef]
- Vilà, R.; Medrano, M.; Castell, A. Mapping Nighttime and All-Day Radiative Cooling Potential in Europe and the Influence of Solar Reflectivity. Atmosphere 2021, 12, 1119. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L. Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings. J. Build. Eng. 2021, 33, 101631. [Google Scholar] [CrossRef]
- Feng, C.; Lei, Y.; Fang, J.; Lu, B.; Li, X.; Xue, X. Optimized radiative parameters of building roof surfaces for energy efficiency: Case studies in China. J. Build. Eng. 2022, 61, 105289. [Google Scholar] [CrossRef]
- Romeo, C.; Zinzi, M. Impact of a cool roof application on the energy and comfort performance in an existing non-residential building. A Sicilian case study. Energy Build. 2013, 67, 647–657. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Zingre, K.T.; Wan, M.P.; Chang, V.W.-C.; Wong, S.K.; Boo Thian Toh, W.; Yen Leng Lee, I. Thermal performance of concrete-based roofs in tropical climate. Energy Build. 2014, 76, 392–401. [Google Scholar] [CrossRef]
- Zingre, K.T.; Wan, M.P.; Tong, S.; Li, H.; Chang, V.W.-C.; Wong, S.K.; Boo Thian Toh, W.; Yen Leng Lee, I. Modeling of cool roof heat transfer in tropical climate. Renew. Energy 2015, 75, 210–223. [Google Scholar] [CrossRef]
- Baniassadi, A.; Sailor, D.J.; Ban-Weiss, G.A. Potential energy and climate benefits of super-cool materials as a rooftop strategy. Urban Clim. 2019, 29, 100495. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, D.; Yuan, J.; Aili, A.; Yin, X.; Yang, R.; Tan, G. Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model. Appl. Energy 2019, 248, 589–599. [Google Scholar] [CrossRef]
- Lv, J.; Tang, M.; Quan, R.; Chai, Z. Synthesis of solar heat-reflective ZnTiO3 pigments with novel roof cooling effect. Ceram. Int. 2019, 45, 15768–15771. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Pei, G. Performance evaluation of daytime radiative cooling under different clear sky conditions. Appl. Therm. Eng. 2019, 155, 660–666. [Google Scholar] [CrossRef]
- Shi, D.; Zhuang, C.; Lin, C.; Zhao, X.; Chen, D.; Gao, Y.; Levinson, R. Effects of natural soiling and weathering on cool roof energy savings for dormitory buildings in Chinese cities with hot summers. Sol. Energy Mater. Sol. Cells 2019, 200, 110016. [Google Scholar] [CrossRef]
- Kolokotsa, D.-D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, K.; Chen, L.; Tang, S. Analysis of the impact of a novel cool roof on cooling performance for a low-rise prefabricated building in China. Build. Serv. Eng. Res. Technol. 2020, 42, 26–44. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, K.; Ma, M.; Tang, S.; Li, F.; Niu, X. Sub-ambient radiative cooling and its application in buildings. Build. Simul. 2020, 13, 1165–1189. [Google Scholar] [CrossRef]
- Cheng, Z.; Shuai, Y.; Gong, D.; Wang, F.; Liang, H.; Li, G. Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles. Sci. China Technol. Sci. 2020, 64, 1017–1029. [Google Scholar] [CrossRef]
- Prakash Bijarniya, J.; Sarkar, J. Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India. Renew. Sustain. Energy Rev. 2020, 134, 110303. [Google Scholar] [CrossRef]
- Wijesuriya, S.; Anant Kishore, R.; Bianchi, M.V.A.; Booten, C. Potential energy savings benefits and limitations of radiative cooling coatings for U.S. residential buildings. J. Clean. Prod. 2022, 379, 134763. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, H.; Yang, R.; Zhao, D. Radiative sky cooling potential maps of China based on atmospheric spectral emissivity. Sol. Energy 2021, 218, 195–210. [Google Scholar] [CrossRef]
- Panchabikesan, K.; Vellaisamy, K.; Ramalingam, V. Passive cooling potential in buildings under various climatic conditions in India. Renew. Sustain. Energy Rev. 2017, 78, 1236–1252. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Tso, C.Y.; Ha, J.; Wong, Y.M.; Chao, C.Y.H.; Huang, B.; Qiu, H. Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate. Renew. Energy 2020, 146, 44–55. [Google Scholar] [CrossRef]
- Fan, J.; Fu, C.; Fu, T. Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment. Appl. Therm. Eng. 2020, 165, 114585. [Google Scholar] [CrossRef]
- Li, M.; Coimbra, C.F.M. On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials. Int. J. Heat Mass Transf. 2019, 135, 1053–1062. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Zhang, D.; Jiao, S.; Zhang, Y.; Luo, L.; Zhang, Z.; Gao, F. Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside. Renew. Energy 2020, 155, 90–99. [Google Scholar] [CrossRef]
- Han, D.; Ng, B.F.; Wan, M.P. Preliminary study of passive radiative cooling under Singapore’s tropical climate. Sol. Energy Mater. Sol. Cells 2020, 206, 110270. [Google Scholar] [CrossRef]
- Gao, Y.; Song, X.; Samad Farooq, A.; Zhan, P. Cooling performance of porous polymer radiative coating under different environmental conditions throughout all-year. Sol. Energy 2021, 228, 474–485. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Zhai, Y.; Tan, G.; Yin, X.; Yang, R. Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule 2019, 3, 111–123. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Heidarinejad, Z.M.; Dalgo, D.; Ruiyu, M.; Zha, X.; Song, J.; Dai, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. Available online: https://www.science.org/doi/10.1126/science.aau9101 (accessed on 24 May 2019). [CrossRef]
- Kou, J.-L.; Jurado, O.Z.; Chen, Z.; Fan, S.; Minnich, A.J. Daytime Radiative Cooling Using Near-Black Infrared Emitters. ACS Photonics 2017, 4, 626–630. Available online: https://pubs.acs.org/doi/10.1021/acsphotonics.6b00991 (accessed on 3 February 2017). [CrossRef]
- Bao, H.; Yan, C.; Wang, B.; Fang, X.; Zhao, C.Y.; Ruan, X. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78–84. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Raman, A.P.; Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2024, 43, 17143. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q.; Wang, B.; Jin, S.; Wang, M. Development of a new spectral selectivity-based passive radiative roof cooling model and its application in hot and humid region. J. Clean. Prod. 2021, 307, 127170. [Google Scholar] [CrossRef]
- Feng, J.; Saliari, M.; Gao, K.; Santamouri, M. On the cooling energy conservation potential of super cool roofs. Energy Build. 2022, 264, 112076. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, H.; Cao, P.; Yuan, D.; Xu, S. Daytime radiative cooling of enclosed water using spectral selective metamaterial based cooling surfaces. Energy Sustain. Dev. 2020, 57, 22–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Tennakoon, T.; Chan, Y.H.; Chan, K.C.; Fu, S.C.; Tso, C.Y.; Yu, K.M.; Huang, B.L.; Yao, S.H.; Qiu, H.H.; et al. Energy consumption modelling of a passive hybrid system for office buildings in different climates. Energy 2022, 239, 121914. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. On the sky temperature models and their influence on buildings energy performance: A critical review. Energy Build. 2019, 183, 607–625. [Google Scholar] [CrossRef]
- Yu, X.; Chen, C. Coupling spectral-dependent radiative cooling with building energy simulation. Build. Environ. 2021, 197, 107841. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q.; Lau, W.Y.; Cheung, K.H. Techno-economic and environmental performance assessment of radiative sky cooling-based super-cool roof applications in China. Energy Convers. Manag. 2021, 245, 114621. [Google Scholar] [CrossRef]
- Green, A.; Ledo Gomis, L.; Paolini, R.; Haddad, S.; Kokogiannakis, G.; Cooper, P.; Ma, Z.; Kosasih, B.; Santamouris, M. Above-roof air temperature effects on HVAC and cool roof performance: Experiments and development of a predictive model. Energy Build. 2020, 222, 110071. [Google Scholar] [CrossRef]
- Sinsel, T.; Simon, H.; Broadbent, A.M.; Bruse, M.; Heusinger, J. Modeling impacts of super cool roofs on air temperature at pedestrian level in mesoscale and microscale climate models. Urban Clim. 2021, 40, 101001. [Google Scholar] [CrossRef]
- Feng, J.; Gao, K.; Santamouris, M.; Wei Shah, K.; Ranzi, G. Dynamic impact of climate on the performance of daytime radiative cooling materials. Sol. Energy Mater. Sol. Cells 2020, 208, 110426. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q. A new study on passive radiative sky cooling resource maps of China. Energy Convers. Manag. 2021, 237, 114132. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Wei Shah, K.; Feng, J.; Santamouris, M. On the energy modulation of daytime radiative coolers: A review on infrared emissivity dynamic switch against overcooling. Sol. Energy 2020, 209, 278–301. [Google Scholar] [CrossRef]
- Yazdani, H.; Baneshi, M. Building energy comparison for dynamic cool roofs and green roofs under various climates. Sol. Energy 2021, 230, 764–778. [Google Scholar] [CrossRef]
- An, Y.; Fu, Y.; Dai, J.-G.; Yin, X.; Lei, D. Switchable radiative cooling technologies for smart thermal management. Cell Rep. Phys. Sci. 2022, 3, 101098. [Google Scholar] [CrossRef]
- Tang, K.; Dong, K.; Li, J.; Gordon, M.P.; Reichertz, F.G.; Kim, H.; Rho, Y.; Wang, Q.; Lin, C.-Y.; Grigoropoulos, C.P.; et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509. Available online: https://www.science.org/doi/10.1126/science.abf7136 (accessed on 16 December 2021). [CrossRef] [PubMed]
- Wang, J.; Xie, M.; An, Y.; Tao, Y.; Sun, J.; Ji, C. All-season thermal regulation with thermochromic temperature-adaptive radiative cooling coatings. Sol. Energy Mater. Sol. Cells 2022, 246, 111883. [Google Scholar] [CrossRef]
- Mastrapostoli, E.; Santamouris, M.; Kolokotsa, D.; Vassilis, P.; Venieri, D.; Gompakis, K. On the ageing of cool roofs: Measure of the optical degradation, chemical and biological analysis and assessment of the energy impact. Energy Build. 2016, 114, 191–199. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, X.; Li, X.; Feng, C. Impact of aging, precipitation, and orientation on performance of radiative cooling for building envelope: A field investigation. Energy Build. 2023, 279, 112716. [Google Scholar] [CrossRef]
- Uday Kumar Nutakki, T.; Ullah Kazim, W.; Alamara, K.; Salameh, T.; Ali Abdelkareem, M. Experimental Investigation on Aging and Energy Savings Evaluation of High Solar Reflective Index (SRI) Paints: A Case Study on Residential Households in the GCC Region. Buildings 2023, 13, 419. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, G.; Rong, L. Impact of cloud and total column water vapor on annual performance of passive daytime radiative cooler. Energy Convers. Manag. 2022, 273, 116420. [Google Scholar] [CrossRef]
- Zhao, B.; Yue, X.; Tian, Q.; Qiu, F.; Zhang, T. Controllable fabrication of ZnO nanorods @ cellulose membrane with self-cleaning and passive radiative cooling properties for building energy-saving applications. Cellulose 2022, 29, 1981–1992. [Google Scholar] [CrossRef]
- Jiang, T.; Fan, W.; Wang, F. Long-lasting self-cleaning daytime radiative cooling paint for building. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131296. [Google Scholar] [CrossRef]
- Yue, X.; Wu, H.; Zhang, T.; Yang, D.; Qiu, F. Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 2022, 245, 123287. [Google Scholar] [CrossRef]
- Ju, H.; Lei, S.; Wang, F.; Yang, D.; Ou, J.; Amirfazli, A. Daytime radiative cooling performance and building energy consumption simulation of superhydrophobic calcined kaolin/poly(vinylidene fluoride-co-hexafluoropropylene) coatings. Energy Build. 2023, 292, 113184. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Zhang, Z.; Cai, Y.; Sun, Z.; Zhang, H.; Li, Y.; Liu, L.; Zhang, W.; Xue, X.; et al. Sub-ambient cooling effect and net energy efficiency of a super-amphiphobic self-cleaning passive sub-ambient daytime radiative cooling coating applied to various buildings. Energy Build. 2023, 284, 112702. [Google Scholar] [CrossRef]
- Zhang, D.-M.; Wang, H.-D.; Huang, M.-C.; Fan, T.-T.; Deng, F.-Q.; Xue, C.-H.; Guo, X.-J. Fabrication of radiative cooling film with superhydrophobic self-cleaning property. Surf. Innov. 2023, 11, 285–296. [Google Scholar] [CrossRef]
- Xu, F.; Wang, F.; Lei, S.; Ou, J.; Li, W. Superhydrophobic poly-4-methyl-1-pentene/polyvinylidene fluoride coating with excellent passive daytime radiation cooling performance. Appl. Phys. A 2023, 129, 266. [Google Scholar] [CrossRef]
- Chi, F.A.; Liu, Y.; Yan, J. Integration of Radiative-based air temperature regulating system into residential building for energy saving. Appl. Energy 2021, 301, 117426. [Google Scholar] [CrossRef]
- Tang, S.; Akkurt, N.; Zhang, K.; Chen, L.; Ma, M. Effect of roof and ceiling configuration on energy performance of a metamaterial-based cool roof for low-rise office building in China. Indoor Built Environ. 2020, 30, 1739–1750. [Google Scholar] [CrossRef]
- Peoples, J.; Hung, Y.-W.; Fang, Z.; Braun, J.; Horton, T.W.; Ruan, X. Energy savings of radiative cooling paints applied to residential buildings. Int. J. Heat Mass Transf. 2022, 194, 123001. [Google Scholar] [CrossRef]
- Chan, Y.H.; Zhang, Y.; Tennakoon, T.; Fu, S.C.; Chan, K.C.; Tso, C.Y.; Yu, K.M.; Wan, M.P.; Huang, B.L.; Yao, S.; et al. Potential passive cooling methods based on radiation controls in buildings. Energy Convers. Manag. 2022, 272, 116342. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Jia, L.; Gong, Q. Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region. Sustainability 2023, 15, 12607. [Google Scholar] [CrossRef]
- Shen, D.; Yu, C.; Wang, W. Investigation on the thermal performance of the novel phase change materials wall with radiative cooling. Appl. Therm. Eng. 2020, 176, 115479. [Google Scholar] [CrossRef]
- Yu, C.; Shen, D.; He, W.; Hu, Z.; Zhang, S.; Chu, W. Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology. Renew. Energy 2021, 178, 1057–1069. [Google Scholar] [CrossRef]
Phase | Period | Research Content and Findings |
---|---|---|
Phase I | 2005–2013 | Using nighttime radiative cooling to collect cold sources for daytime heat exchange on building roofs; utilizing the principle of increasing the solar reflectance of building roofs to set up a cool roof, reducing the amount of heat absorbed by the building roof during the day, thus achieving the goal of cooling the building. |
Phase II | 2014–2018 | Studying the actual case applications of different types of radiation cooling components and radiation cooling materials on building roofs, and monitoring and observing the cooling effects. |
Phase III | 2019 to the present | By experimental measurements and numerical simulations, the potential for energy savings and cooling effects of radiative cooling technology applied to building roofs were studied, accumulating a large amount of research data for the regular and mass application of radiative cooling technology in building roofs. |
No. | Keywords | Frequency | Centrality | Year |
---|---|---|---|---|
1 | Radiative cooling | 69 | 0.08 | 2006 |
2 | Performance | 59 | 0.17 | 2008 |
3 | Cooling roof | 45 | 0.16 | 2005 |
4 | Energy saving | 38 | 0.23 | 2012 |
5 | System | 35 | 0.14 | 2006 |
6 | Building | 24 | 0.16 | 2016 |
7 | Coating | 20 | 0.16 | 2008 |
8 | Optical property | 18 | 0.11 | 2014 |
9 | Surface | 17 | 0.06 | 2016 |
10 | Solar reflectance | 14 | 0.06 | 2008 |
NO. | Author | Title | Year | Freq | Source | Refs. |
---|---|---|---|---|---|---|
1 | Mandal, J Fu, YK Overvig, AC | Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling | 2018 | 89 | Science | [36] |
2 | Zhai, Y Ma, YG David, SN | Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling | 2017 | 77 | Science | [10] |
3 | Zhao, DL Aili, A Zhai, Y | Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling | 2019 | 47 | Joule | [79] |
4 | Li, T Zhai, Y He, SM | A radiative cooling structural material | 2019 | 46 | Science | [80] |
5 | Kou, JL Jurado, Z Chen, Z | Daytime radiative cooling using near-black infrared emitters | 2017 | 43 | Acs Photonics | [81] |
6 | Zhao, B Hu, MK Ao, XZ | Radiative cooling: A review of fundamentals, materials, applications, and prospects | 2019 | 41 | Applied Energy | [33] |
7 | Bao, H Yan, C Wang, B | Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling | 2017 | 38 | Solar Energy Materials and Solar Cells | [82] |
8 | Goldstein, EA Raman, AP Fan, S | Sub-ambient non-evaporative fluid cooling with the sky | 2017 | 36 | Nature Energy | [83] |
9 | Mandal, J Yang, Y Yu, NF | Paints as a Scalable and Effective Radiative Cooling Technology for Buildings | 2020 | 32 | Joule | [23] |
10 | Zhang, K Zhao, DL Yin, XB | Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA | 2018 | 31 | Applied Energy | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Liang, Z.; Li, W.; Yang, C.; Wang, E. The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis. Sustainability 2024, 16, 6936. https://doi.org/10.3390/su16166936
Guo L, Liang Z, Li W, Yang C, Wang E. The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis. Sustainability. 2024; 16(16):6936. https://doi.org/10.3390/su16166936
Chicago/Turabian StyleGuo, Linlin, Zhuqing Liang, Wenhao Li, Can Yang, and Endong Wang. 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis" Sustainability 16, no. 16: 6936. https://doi.org/10.3390/su16166936
APA StyleGuo, L., Liang, Z., Li, W., Yang, C., & Wang, E. (2024). The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis. Sustainability, 16(16), 6936. https://doi.org/10.3390/su16166936