Positive Effect of Biochar Application on Soil Properties: Solubility and Speciation of Heavy Metals in Non-Acidic Contaminated Soils near a Steel Metallurgical Plant in Southeastern Europe
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Acid/Alkaline and Cation Exchange Properties of Soils
- The initial pH values in the successive measurement stages gradually decreased for all three investigated soils and for the five investigated variants.
- As the % of added BC increased, soil pH increased, as observed by Gull et al. (2015) and Atanassova et al. (2024) [9,32]. In the weakly alkaline Fluvisols from Sites T1 and T2, this trend was gradual, with the maximum values reached (when adding 20% BC) between the range of 7.5–8 and 7.7–8.2, respectively (Figure 2a). In the weakly acidic to neutral Chromic Luvisols from Site T3, this trend was jump-like in the last maximally BC-enriched variant (20%). The measured maximum values were within pH 6.85–7.05. Here, again, this could be attributed to the adsorption capacity of biochar towards the soluble compounds of various salts and complexes in the solution through ion exchange reactions, complexation and/or precipitation.
- The cation exchange capacity (CEC) increased significantly at 20% of added BC for the three sites (Figure 2c) due to the CEC of biochar [9] and, respectively, had a higher efficiency for reducing the phytoavailability of heavy metals, similar to the results of Domingues et al. (2020) [33] and Zhang et al. (2024) [34].
3.2. Electrical Conductivity
3.3. Relationships between Metals in Aqueous Extracts
3.4. Changes in Metal Solubility
3.4.1. General Trends in Total Water Soluble Metal Concentrations
- Manganese. There was a decrease in concentration with Stage or the so called “time effect” and an increase in solubility with BC treatment.
- Iron. After the second stage, there was a sharp decrease in concentration and no visible biochar effect at the three sites studied. In general, Fe decreased with “time” (only at Site 3 was there mobilization with BC addition).
- Copper. There was no consistent trend in the variation of the Cu concentration. In general, Cu increased its concentration with time and there was no significant effect of BC treatment, except at the first stage of Site T1 soil.
- Zinc. There was a mobilization effect from BC application at Site T1 and Site T3 soils and no visible “time” effect.
- Cadmium. There was neither significant “time” effect nor “BC” effect, but a visible effect at 20% BC applied at Site T2 soil.
- Lead. There was a “time” effect at Site 1 soil and no significant “BC” effect.
- Barium. There was neither “time” nor “BC” effects at Sites T1 and T2 soils, only at Site T3, Ba increased with “time”; however, there was a fixation effect from BC addition.
3.4.2. Metal Species Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alekseenko, V.A. Environmental Geochemistry; Logos: Moscow, Russia, 2000; 627p. [Google Scholar]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As. Cr. Cu. Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanad, S.; Sreedharan, V.; Gopi, G.; Sophia van der Voort, T.; Malarvizhi, P.; Yi, S.; Gebert, J.; et al. Review of Large-Scale Biochar Field Trials for Soil Amendment and the Observed Influences on Crop Yield Variations. Front. Energy Res. 2021, 9, 710766. [Google Scholar] [CrossRef]
- Bian, R.; Joseph, S.; Cui, L.; Pan, G.; Li, L.; Liu, X.; Zhang, A.; Rutlidge, H.; Wong, S.; Chia, C.; et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater. 2014, 272, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Liu, J.; Wu, J.; Dai, G.; Wei, D.; Shu, Y. Assessing Biochar Application to Immobilize Cd and Pb in a Contaminated Soil: A Field experiment under a Cucumber-Sweet Potato-Rape Rotation. Environ. Geochem. Health 2020, 42, 4233–4244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Guo, X.; Zhao, Z.; He, Q.; Wang, S.; Zhu, Y.; Yan, Y.; Liu, X.; Sun, K.; Zhao, Y.; et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 2016, 218, 513–522. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, G.; Li, X.; Zhang, X.; Hang, W.; Tang, M.; Gao, Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023, 9, e12949. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, I.; Nenova, L.; Simeonova, T.; Benkova, M.; Harizanova, M.; Ilinkin, V. Effect of biochar on heavy metal solubility and speciation in Technogenic soils around Aurubis copper smelter in Bulgaria. Biologia 2024, 79. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of Biochar Application on Heavy Metal Mobility in soils impacted by copper smelting processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef]
- Gong, X.; Lian, W.; Tian, S.; Yu, Q.; Guo, Z.; Zhang, X.; Yuan, Y.; Fan, Y.; Liu, Z.; Zheng, J.; et al. Utilizing ragweed and oyster shell derived biochar as an effective stabilizer for the restoring Cd and Pb-contaminated soil. Geoderma Reg. 2024, 37, e00816. [Google Scholar] [CrossRef]
- Burachevskaya, M.; Minkina, T.; Bauer, T.; Lobzenko, I.; Fedorenko, A.; Mazarji, M.; Sushkova, S.; Mandzhieva, S.; Nazarenko, A.; Butova, V.; et al. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Sci. Rep. 2023, 13, 2020. [Google Scholar] [CrossRef]
- Burachevskaya, M.; Mandzhieva, S.; Bauer, T.; Minkina, T.; Rajput, V.; Chaplygin, V.; Fedorenko, A.; Chernikova, N.; Zamulina, I.; Kolesnikov, S.; et al. The Effect of Granular Activated Carbon and Biochar on the Availability of Cu and Zn to Hordeum sativum Distichum in Contaminated Soil. Plants 2021, 10, 841. [Google Scholar] [CrossRef]
- PCSURSF, Program for Conservation, Sustainable Use and Restoration of Soil Functions on the Territory of Sofia-City District, 2020–2030. Institute of Soil Science, Agrotechnology and Plant Protection “Nikola Pushkarov”, MEW, 2021; 160p. Available online: https://www.sofia.bg/documents/ (accessed on 14 May 2024).
- Nenova, L.; Atanassova, I.; Stoykova, M.; Dimitrov, E.; Kirilov, I.; Benkova, M.; Simeonova, T.; Harizanova, M. Relationships between Heavy Metal and Metalloid Contents and Major Soil Characteristics in Soils around the Former Kremikovtsi Metallurgical Plant Following Its Closure in 2009. Proc. Bulg. Acad. Sci. 2023, 76, 1789–1798. [Google Scholar] [CrossRef]
- Angelov, V.; Antonov, M.; Gerdjikov, S.; Petrov, P.; Tanatsiev, S.; Kiselinov, H.; Marinova, R.; Valev, V. Geological Map of Bulgaria M 1:50000., m. pp. K–34–48-B (Elin Pelin); Research Institute of Geology and Geophysics, MGU “St. Ivan Rilski”: Sofia, Bulgaria, 2008. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; 192p. [Google Scholar]
- Kononova, M.M. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility, 2nd ed.; Pergamon Press Ltd.: Oxford, UK, 1966; 544p. [Google Scholar]
- Ganev, S.; Arsova, A. Methods for Determination of Strongly Acidic and Weakly Acidic Cation Exchange in Soil. Soil Sci. Agrochem. 1980, 15, 22–33. [Google Scholar]
- Kachinsky, N.A. Methods of Mechanical and Microagregatic Analysis of Soil; Publ. House Acad. Sci. USSR: Moscow, Russia, 1943; 39p. [Google Scholar]
- ISO 11265:2002; Soil quality—Determination of the Specific Electrical Conductivity. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2002.
- Decree No. 3, For Standards of Acceptable Content of Harmful Substances in the Soil. MEW, MH, MAE, State Gazette, Sofia, Bulgaria, 2008, Volume 71. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC174830/ (accessed on 11 March 2024).
- Stoykova, M. Technogenic and geochemical diagnostics of soils distributed on the territory of the “Kremikovtsi” Metallurgical Plant. Bulg. J. Soil Sci. 2023, 8, 22–32. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Includes bibliographical references and index; CRC Press: Boca Raton, FL, USA, 2011; 534p. [Google Scholar]
- Decree No. 12, On the Quality Requirements for Surface Water Intended for Drinking and Domestic Water Supply. MEW, MH and MRDPW. State Gazette, Sofia, Bulgaria, 2002. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC033627/ (accessed on 11 March 2024).
- Aoki, S. Soil contamination countermeasures law. Jpn. Tappi J. 2003, 57, 1475–1493. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. Available online: https://link.springer.com/article/10.1007/s42773-022-00146-1 (accessed on 1 February 2024). [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Li, C.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef] [PubMed]
- Or, D.; Wraith, J.M. Water content and water potential relationships, Chapter 3. In Soil Physics Companion; Warrick, A.W., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 49–82. [Google Scholar]
- Katoh, M.; Satoshi, M.; Takeshi, S. Single-Step Extraction to Determine Soluble Lead Levels in Soil. GEOMATE J. 2012, 3, 375–380. Available online: https://geomatejournal.com/geomate/article/view/1645 (accessed on 11 June 2024). [CrossRef]
- Eshwar, M.; Srilatha, M.; Rekha, K.B.; Sharma, S.H.K. Characterization of humic substances by functional groups and spectroscopic methods. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1768–1774. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H.Y. Physico-chemical properties and microbial responses in biocharamended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, S.; Zhou, K.; Zhao, J.; Wang, J.; Li, N.; Wang, Y.; Li, Y.; Tao, E. Preparation of co-doped biochar to improve electron transfer and modulate 1O2 generation: Unraveling the radical-unradical mechanism. Chem. Eng. J. 2024, 491, 151985. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.H.E.; Liu, S.; Yamiao, C.; Jia, B. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Kane, S.; Ulrich, R.; Harrington, A.; Stadie, N.; Ryan, C. Physical and chemical mechanisms that influence the electrical conductivity of lignin-derived biochar. Carbon Trends 2021, 5, 100088. [Google Scholar] [CrossRef]
- Tan, H.; Onga, P.Y.; Klemešb, J.J.; Bonga, C.P.C.; Lic, C.; Gaoc, Y.; Leea, C.T. Mitigation of soil salinity using biochar derived from lignocellulosic biomass. Chem. ICAL Eng. 2021, 83, 235–240. Available online: https://www.aidic.it/cet/21/83/040.pdf (accessed on 7 June 2024).
- Singh, B.; Dolk, M.M.; Shen, Q.; Camps-Arbestain, M. Biochar pH, electrical conductivity and liming potential. In Biochar: A Guideto Analytical Methods; CRC Press: Boca Raton, FL, USA, 2017; 23p. [Google Scholar]
- Lawrinenko, M.; Laird, D. Anion Exchange Capacity of Biochar. Green Chem. 2015, 17, 4628–4636. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific and Technical: London, UK, 1993; Volume xxvi, 352p, ISBN 0582067014. [Google Scholar]
- Huang, M.; Li, Z.; Luo, N.; Yang, R.; Wen, J.; Huang, B.; Zeng, G. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Sci. Total Environ. 2019, 646, 220–228. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Wu, Q.; Hendershot, W.H.; Marshall, W.D.; Ge, Y. Speciation of cadmium, copper, lead, and zinc in contaminated soils. Commun. Soil Sci. Plant Anal. 2000, 31, 1129–1144. [Google Scholar] [CrossRef]
- Ren, Z.L.; Tella, M.; Bravin, M.N.; Comans, R.N.; Dai, J.; Garnier, J.M.; Sivry, Y.; Doelsch, E.; Straathof, A.; Benedetti, M.F. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol. 2015, 398, 61–69. [Google Scholar] [CrossRef]
- Schnitzer, M.; Skinner, S.I.M. Organo-Metallic Interactions in Soils: 5. Stability Constants of Cu++-, Fe++-, and Zn++-Fulvic Acid Complexes. Soil Sci. 1966, 102, 361–365. [Google Scholar] [CrossRef]
- Uchimiya, M.; Lima, I.M.; Klasson, K.T.; Wartelle, L.H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere 2010, 80, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Smebye, A.; Alling, V.; Vogt, R.D.; Gadmar, T.C.; Mulder, J.; Cornelissen, G.; Hale, S.E. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 2016, 142, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, I.; Damyanova, I. Bioavailability of Trace Elements in Soils from North Bulgaria. II. Cu and Pb. Soil Sci. Agrochem. Ecol. 2003, 38, 28–32. [Google Scholar]
- Hornburg, V.; Welp, G.; Brümmer, G.W. Verhalten von Schwermetallen in Böden. 2. Extraktion mobiler Schwermetalle mittels CaCl2 und NH4NO3. Z. Pflanzenernähr. Bodenk. 1995, 158, 137–145. [Google Scholar] [CrossRef]
- Konig, N.; Baccini, P.; Ultich, B. Der Einfluss der naturlichen organischen Substanzen auf die Metallverteilung zwischen Boden und Bodenlosung in einem sauren Waldboden. Z. Pflanzenernahr. Bodenk. 1986, 149, 68–82. [Google Scholar] [CrossRef]
- Lee, S.S.; Nagy, K.L.; Park, C.; Fenter, P. Heavy metal sorption at the muscovite (001)-fulvic acid interface. Environ. Sci. Technol. 2011, 45, 9574–9581. [Google Scholar] [CrossRef]
- Papadaki, E.S.; Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Bozinou, E.; Mitlianga, P.; Lalas, S.I. Assessment of Humic and Fulvic Acid Sorbing Potential for Heavy Metals in Water. Foundations 2023, 3, 788–804. [Google Scholar] [CrossRef]
(a) | |||||||||||||||||||||||||||||||||||||
pH/ H2O | CEC cmol/kg | Exch. Ca cmol/kg | Exch. Mg cmol/kg | EC mS/cm | TOC K2P2O7 % | (N%) | (C%) | ||||||||||||||||||||||||||||||
8.2 | 10.4 | 7.2 | 3.2 | 0.12 | 19.8 | 0.027 | 64.25 | ||||||||||||||||||||||||||||||
(b) | |||||||||||||||||||||||||||||||||||||
Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Zn | As | Hg | Se | |||||||||||||||||||||||||
0.28 | 0.43 | 1.20 | 5.81 | 923.5 | 212 | 1.45 | 2.24 | 13.16 | 186.9 | 0.03 | 0.015 | 0.23 | |||||||||||||||||||||||||
(c) | |||||||||||||||||||||||||||||||||||||
NO3− | SO42− | PO43− | Cl− | DOC | Cd | Cu | Cr | Ni | Pb | Hg | Zn | Fe | Mn | Mg | Ca | Na | K | As | |||||||||||||||||||
4.0 | 4.65 | 3.5 | 4.25 | 16.8 | 0.01 | 0.02 | 0.002 | nd | 0.007 | nd | 0.012 | 0.079 | 0.14 | 1.4 | 5.245 | 0.38 | 3.75 | nd |
Humified OC (%) | Unextracted | E4/E6 | |||||
---|---|---|---|---|---|---|---|
Site * | TOC K2Cr2O7 oxidation | Extracted with 0.1 M Na4P2O7 + 0.1 M NaOH | OC | Total HA | |||
% | TOC | Humic acids | Fulvic acids | Ch/Cf | (%) | ||
Control T1 * | 2.79 | 0.32 a 11.47 b | 0.21 7.53 | 0.11 3.94 | 1.9 | 2.47 88.53 | 4.25 |
T1 20% BC | 4.79 | 0.32 6.68 | 0.23 4.80 | 0.09 1.88 | 2.56 | 4.47 93.32 | 4.11 |
Control T2 | 1.25 | 0.17 13.60 | 0.17 13.60 | 0.00 | - | 1.08 86.40 | 4.89 |
T2 20% BC | 3.52 | 0.16 4.54 | 0.16 4.54 | 0.00 | - | 3.36 95.46 | 3.75 |
Control T3 | 2.30 | 0.33 14.35 | 0.21 9.13 | 0.12 5.22 | 1.75 | 1.97 85.65 | 5.17 |
T3 20% BC | 5.41 | 0.26 4.81 | 0.18 3.32 | 0.08 1.48 | 2.25 | 5.15 95.19 | 3.71 |
El. | AL | B | Ba | Ca | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | 1.00 | −0.07 | −0.08 | −0.25 | 0.51 | 0.62 | −0.16 | 0.04 | 0.89 | 0.56 | −0.28 | 0.22 | 0.60 | 0.40 |
B | 1.00 | 0.08 | 0.05 | 0.25 | 0.23 | 0.27 | 0.12 | −0.10 | 0.14 | 0.09 | 0.23 | −0.01 | 0.09 | |
Ba | 1.00 | 0.06 | −0.20 | −0.30 | −0.04 | −0.41 | −0.06 | 0.05 | −0.24 | −0.33 | −0.26 | −0.25 | ||
Ca | 1.00 | −0.13 | −0.27 | 0.27 | 0.21 | −0.09 | 0.09 | 0.42 | 0.12 | 0.13 | 0.07 | |||
Cd | 1.00 | 0.71 | −0.29 | 0.25 | 0.54 | 0.42 | −0.12 | 0.23 | 0.51 | 0.51 | ||||
Co | 1.00 | −0.30 | 0.12 | 0.51 | 0.40 | −0.14 | 0.26 | 0.40 | 0.31 | |||||
Cr | 1.00 | 0.34 | −0.07 | 0.04 | 0.47 | 0.47 | 0.03 | 0.00 | ||||||
Cu | 1.00 | 0.18 | 0.18 | 0.23 | 0.74 | 0.36 | 0.45 | |||||||
Fe | 1.00 | 0.68 | −0.24 | 0.29 | 0.76 | 0.52 | ||||||||
Mn | 1.00 | −0.24 | 0.25 | 0.60 | 0.54 | |||||||||
Mo | 1.00 | 0.30 | −0.04 | −0.13 | ||||||||||
Ni | 1.00 | 0.31 | 0.37 | |||||||||||
Pb | 1.00 | 0.72 | ||||||||||||
Zn | 1.00 |
(a) | |||||
T1 + 20% BC pH 7.5 | % of Total Conc. | Species Name | Control T1 pH 7.2 | % of Total Conc. | Species Name |
Zn+2 | 9.331 | Zn+2 | Zn+2 | 12.991 | Zn+2 |
1.032 | /FA-Zn+2G (aq) | 1.067 | /FA-Zn+2G (aq) | ||
0.254 | ZnOH+ | 0.179 | ZnOH+ | ||
0.097 | Zn(OH)2 (aq) | 0.034 | Zn(OH)2 (aq) | ||
0.014 | ZnCl+ | 0.013 | ZnCl+ | ||
0.244 | ZnSO4 (aq) | 0.247 | ZnSO4 (aq) | ||
0.122 | ZnHPO4 (aq) | 0.013 | ZnNO3+ | ||
0.183 | ZnCO3 (aq) | 0.102 | ZnHPO4 (aq) | ||
0.071 | ZnHCO3+ | 0.153 | ZnCO3 (aq) | ||
40.983 | /FAZn+ (aq) | 0.119 | ZnHCO3+ | ||
47.66 | /FA2Zn (aq) | 45.45 | /FAZn+ (aq) | ||
Pb+2 | 0.054 | Pb+2 | 39.634 | /FA2Zn (aq) | |
0.037 | PbOH+ | Pb+2 | 0.101 | Pb+2 | |
0.062 | PbCO3 (aq) | 0.035 | PbOH+ | ||
0.01 | PbHCO3+ | 0.07 | PbCO3 (aq) | ||
1.462 | /FAPb+ (aq) | 0.023 | PbHCO3+ | ||
98.363 | /FA2Pb (aq) | 2.144 | /FAPb+ (aq) | ||
Mn+2 | 73.786 | Mn+2 | 97.613 | /FA2Pb (aq) | |
0.051 | MnOH+ | Mn+2 | 79.014 | Mn+2 | |
0.038 | MnCl+ | 0.027 | MnOH+ | ||
1.57 | MnSO4 (aq) | 0.026 | MnCl+ | ||
0.04 | MnNO3+ | 1.219 | MnSO4 (aq) | ||
1.239 | MnHPO4 (aq) | 0.052 | MnNO3+ | ||
0.357 | MnHCO3+ | 0.796 | MnHPO4 (aq) | ||
1.261 | MnCO3 (aq) | 0.456 | MnHCO3+ | ||
8.16 | /FA-Mn+2G (aq) | 0.809 | MnCO3 (aq) | ||
13.499 | /FAMn+ (aq) | 6.492 | /FA-Mn+2G (aq) | ||
Fe+3 | 99.99 | /FA2FeOH (aq) | 11.108 | /FAMn+ (aq) | |
Cu+2 | 74.761 | /FA2Cu (aq) | Fe+3 | 99.985 | /FA2FeOH (aq) |
0.24 | /FACu+ (aq) | 0.013 | /FA2Fe+ (aq) | ||
24.979 | /FA2CuOH− (aq) | Cu+2 | 0.011 | CuCO3 (aq) | |
Cd+2 | 15.952 | Cd+2 | 85.098 | /FA2Cu (aq) | |
0.035 | CdOH+ | 0.353 | /FACu+ (aq) | ||
0.782 | CdCl+ | 14.524 | /FA2CuOH (aq) | ||
0.447 | CdSO4 (aq) | Cd+2 | 21.428 | Cd+2 | |
0.017 | CdNO3+ | 0.023 | CdOH+ | ||
0.511 | CdHPO4 (aq) | 0.686 | CdCl+ | ||
0.123 | CdHCO3+ | 0.436 | CdSO4 (aq) | ||
0.127 | CdCO3 (aq) | 0.028 | CdNO3+ | ||
1.764 | /FA-Cd+2G (aq) | 0.412 | CdHPO4 (aq) | ||
39.401 | /FACd+ (aq) | 0.196 | CdHCO3+ | ||
40.838 | /FA2Cd (aq) | 0.103 | CdCO3 (aq) | ||
Ba+2 | 86.526 | Ba+2 | 1.761 | /FA-Cd+2G (aq) | |
0.041 | BaCl+ | 42.159 | /FACd+ (aq) | ||
1.396 | BaSO4 (aq) | 32.766 | /FA2Cd (aq) | ||
0.15 | BaNO3+ | Ba+2 | 89.484 | Ba+2 | |
0.09 | BaHPO4 (aq) | 0.028 | BaCl+ | ||
0.015 | BaCO3 (aq) | 1.047 | BaSO4 (aq) | ||
0.2 | BaHCO3+ | 0.184 | BaNO3+ | ||
9.569 | /FA-Ba+2G (aq) | 0.056 | BaHPO4 (aq) | ||
1.993 | /FABa+ (aq) | 0.247 | BaHCO3+ | ||
0.02 | /FA2Ba (aq) | 7.353 | /FA-Ba+2G (aq) | ||
1.584 | /FABa+ (aq) | ||||
(b) | |||||
T2 + 20% BC pH 7.7 | % of Total Conc. | Species Name | Control T2 pH 7.5 | % of Total Conc. | Species Name |
Zn+2 | 7.574 | Zn+2 | Zn+2 | 14.086 | Zn+2 |
1.037 | /FA-Zn+2G (aq) | 1.055 | /FA-Zn+2G (aq) | ||
0.338 | ZnOH+ | 0.394 | ZnOH+ | ||
0.206 | Zn(OH)2 (aq) | 0.151 | Zn(OH)2 (aq) | ||
0.124 | ZnSO4 (aq) | 0.01 | ZnCl+ | ||
0.087 | ZnHPO4 (aq) | 0.256 | ZnSO4 (aq) | ||
0.381 | ZnCO3 (aq) | 0.152 | ZnHPO4 (aq) | ||
0.093 | ZnHCO3+ | 0.305 | ZnCO3 (aq) | ||
35.326 | /FAZn+ (aq) | 0.118 | ZnHCO3+ | ||
54.823 | /FA2Zn (aq) | 40.158 | /FAZn+ (aq) | ||
Pb+2 | 0.038 | Pb+2 | 43.306 | /FA2Zn (aq) | |
0.043 | PbOH+ | Pb+2 | 0.087 | Pb+2 | |
0.113 | PbCO3 (aq) | 0.061 | PbOH+ | ||
0.012 | PbHCO3+ | 0.112 | PbCO3 (aq) | ||
1.08 | /FAPb+ (aq) | 0.018 | PbHCO3+ | ||
98.706 | /FA2Pb (aq) | 1.55 | /FAPb+ (aq) | ||
Mn+2 | 71.171 | Mn+2 | 98.159 | /FA2Pb (aq) | |
0.08 | MnOH+ | Mn+2 | 80.083 | Mn+2 | |
0.016 | MnCl+ | 0.056 | MnOH+ | ||
0.946 | MnSO4 (aq) | 0.02 | MnCl+ | ||
0.039 | MnNO3+ | 1.185 | MnSO4 (aq) | ||
1.052 | MnHPO4 (aq) | 0.026 | MnNO3+ | ||
0.551 | MnHCO3+ | 1.112 | MnHPO4 (aq) | ||
3.118 | MnCO3 (aq) | 0.424 | MnHCO3+ | ||
9.744 | /FA-Mn+2G (aq) | 1.513 | MnCO3 (aq) | ||
13.284 | /FAMn+ (aq) | 5.996 | /FA-Mn+2G (aq) | ||
Fe+3 | 99.992 | /FA2FeOH (aq) | 9.585 | /FAMn+ (aq) | |
Cu+2 | 0.016 | CuCO3 (aq) | Fe+3 | 99.988 | /FA2FeOH (aq) |
68.349 | /FA2Cu (aq) | Cu+2 | 0.018 | CuCO3 (aq) | |
0.167 | /FACu+ (aq) | 75.323 | /FA2Cu (aq) | ||
31.459 | /FA2CuOH- (aq) | 0.262 | /FACu+ (aq) | ||
Cd+2 | 13.347 | Cd+2 | 24.38 | /FA2CuOH- (aq) | |
0.047 | CdOH+ | Cd+2 | 23.209 | Cd+2 | |
0.292 | CdCl+ | 0.052 | CdOH+ | ||
0.234 | CdSO4 (aq) | 0.547 | CdCl+ | ||
0.014 | CdNO3+ | 0.453 | CdSO4 (aq) | ||
0.376 | CdHPO4 (aq) | 0.015 | CdNO3+ | ||
0.164 | CdHCO3+ | 0.614 | CdHPO4 (aq) | ||
0.273 | CdCO3 (aq) | 0.195 | CdHCO3+ | ||
1.827 | /FA-Cd+2G (aq) | 0.205 | CdCO3 (aq) | ||
35.006 | /FACd+ (aq) | 1.738 | /FA-Cd+2G (aq) | ||
48.418 | /FA2Cd (aq) | 37.209 | /FACd+ (aq) | ||
Ba+2 | 84.904 | Ba+2 | 35.762 | /FA2Cd (aq) | |
0.018 | BaCl+ | Ba+2 | 90.402 | Ba+2 | |
0.856 | BaSO4 (aq) | 0.021 | BaCl+ | ||
0.146 | BaNO3+ | 1.015 | BaSO4 (aq) | ||
0.077 | BaHPO4 (aq) | 0.094 | BaNO3+ | ||
0.038 | BaCO3 (aq) | 0.077 | BaHPO4 (aq) | ||
0.314 | BaHCO3+ | 0.017 | BaCO3 (aq) | ||
11.624 | /FA-Ba+2G (aq) | 0.229 | BaHCO3+ | ||
1.995 | /FABa+ (aq) | 6.769 | /FA-Ba+2G (aq) | ||
0.027 | /FA2Ba (aq) | 1.362 | /FABa+ (aq) | ||
0.013 | /FA2Ba (aq) | ||||
(c) | |||||
T3 + 20% pH 6.85 | % of Total Conc. | Species Name | Control T3 pH 6.4 | % of Total Conc. | Species Name |
Zn+2 | 7.685 | Zn+2 | Zn+2 | 21.908 | Zn+2 |
5.733 | /FA-Zn+2G (aq) | 1.662 | /FA-Zn+2G (aq) | ||
0.049 | ZnOH+ | 0.048 | ZnOH+ | ||
0.143 | ZnSO4 (aq) | 0.025 | ZnCl+ | ||
0.026 | ZnCO3 (aq) | 0.304 | ZnSO4 (aq) | ||
0.045 | ZnHCO3+ | 0.032 | ZnNO3+ | ||
79.581 | /FAZn+ (aq) | 0.014 | ZnHPO4 (aq) | ||
6.721 | /FA2Zn (aq) | 61.609 | /FAZn+ (aq) | ||
0.143 | ZnSO4 (aq) | 14.397 | /FA2Zn (aq) | ||
0.026 | ZnCO3 (aq) | Pb+2 | 0.5 | Pb+2 | |
0.045 | ZnHCO3+ | 0.038 | /FA-Pb+2G (aq) | ||
79.581 | /FAZn+ (aq) | 0.028 | PbOH+ | ||
6.721 | /FA2Zn (aq) | 0.016 | PbSO4 (aq) | ||
Pb+2 | 0.195 | Pb+2 | 8.686 | /FAPb+ (aq) | |
0.146 | /FA-Pb+2G (aq) | 90.721 | /FA2Pb (aq) | ||
0.031 | PbOH+ | Mn+2 | 83.156 | Mn+2 | |
0.039 | PbCO3 (aq) | 0.033 | MnCl+ | ||
0.029 | PbHCO3+ | 0.938 | MnSO4 (aq) | ||
14.154 | /FAPb+ (aq) | 0.077 | MnNO3+ | ||
85.395 | /FA2Pb (aq) | 0.066 | MnHPO4 (aq) | ||
Mn+2 | 43.685 | Mn+2 | 6.307 | /FA-Mn+2G (aq) | |
0.659 | MnSO4 (aq) | 9.419 | /FAMn+ (aq) | ||
0.031 | MnNO3+ | Fe+3 | 99.913 | /FA2FeOH (aq) | |
0.16 | MnHCO3+ | 0.085 | /FA2Fe+ (aq) | ||
0.129 | MnCO3 (aq) | Cu+2 | 0.045 | Cu+2 | |
32.588 | /FA-Mn+2G (aq) | 96.118 | /FA2Cu (aq) | ||
22.731 | /FAMn+ (aq) | 1.37 | /FACu+ (aq) | ||
Fe+3 | 99.947 | /FA2FeOH (aq) | 2.459 | /FA2CuOH− (aq) | |
0.048 | /FA2Fe+ (aq) | Cd+2 | 32.867 | Cd+2 | |
Cu+2 | 0.037 | Cu+2 | 1.232 | CdCl+ | |
0.013 | CuCO3 (aq) | 0.489 | CdSO4 (aq) | ||
0.028 | /FA-Cu+2G (aq) | 0.06 | CdNO3+ | ||
91.562 | /FA2Cu (aq) | 0.05 | CdHPO4 (aq) | ||
4.135 | /FACu+ (aq) | 2.493 | /FA-Cd+2G (aq) | ||
4.216 | /FA2CuOH− (aq) | 51.976 | /FACd+ (aq) | ||
Cd+2 | 12.409 | Cd+2 | 10.825 | /FA2Cd (aq) | |
0.268 | CdCl+ | Ba+2 | 90.743 | Ba+2 | |
0.247 | CdSO4 (aq) | 0.033 | BaCl+ | ||
0.018 | CdNO3+ | 0.777 | BaSO4 (aq) | ||
0.072 | CdHCO3+ | 0.265 | BaNO3+ | ||
0.017 | CdCO3 (aq) | 6.883 | /FA-Ba+2G (aq) | ||
9.257 | /FA-Cd+2G (aq) | 1.294 | /FABa+ (aq) | ||
72.265 | /FACd+ (aq) | ||||
5.439 | /FA2Cd (aq) | ||||
Ba+2 | 54.726 | Ba+2 | |||
0.012 | BaCl+ | ||||
0.626 | BaSO4 (aq) | ||||
0.124 | BaNO3+ | ||||
0.096 | BaHCO3+ | ||||
40.824 | /FA-Ba+2G (aq) | ||||
3.585 | /FABa+ (aq) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoykova, M.; Atanassova, I.; Benkova, M.; Simeonova, T.; Nenova, L.; Harizanova, M.; Atsenova, M. Positive Effect of Biochar Application on Soil Properties: Solubility and Speciation of Heavy Metals in Non-Acidic Contaminated Soils near a Steel Metallurgical Plant in Southeastern Europe. Sustainability 2024, 16, 6891. https://doi.org/10.3390/su16166891
Stoykova M, Atanassova I, Benkova M, Simeonova T, Nenova L, Harizanova M, Atsenova M. Positive Effect of Biochar Application on Soil Properties: Solubility and Speciation of Heavy Metals in Non-Acidic Contaminated Soils near a Steel Metallurgical Plant in Southeastern Europe. Sustainability. 2024; 16(16):6891. https://doi.org/10.3390/su16166891
Chicago/Turabian StyleStoykova, Mariela, Irena Atanassova, Maya Benkova, Tsetska Simeonova, Lyuba Nenova, Milena Harizanova, and Milchena Atsenova. 2024. "Positive Effect of Biochar Application on Soil Properties: Solubility and Speciation of Heavy Metals in Non-Acidic Contaminated Soils near a Steel Metallurgical Plant in Southeastern Europe" Sustainability 16, no. 16: 6891. https://doi.org/10.3390/su16166891
APA StyleStoykova, M., Atanassova, I., Benkova, M., Simeonova, T., Nenova, L., Harizanova, M., & Atsenova, M. (2024). Positive Effect of Biochar Application on Soil Properties: Solubility and Speciation of Heavy Metals in Non-Acidic Contaminated Soils near a Steel Metallurgical Plant in Southeastern Europe. Sustainability, 16(16), 6891. https://doi.org/10.3390/su16166891