The NYMPHA Algae Extract as a New Consolidant for the Restoration of Cultural Heritage: Studies and Considerations on Its Effectiveness on Painted Marble
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- 12 h at T = 10 °C and RH = 95%
- 12 h at T = 50 °C and RH = 40%
2.2. Methods
2.2.1. Fourier Transform Infrared Spectroscopy
2.2.2. Peeling Test
2.2.3. Colorimetry
2.2.4. Scanning Electron Microscopy
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy
3.2. Peeling Test
3.3. Colorimetry
3.4. Scanning Electron Microscopy
4. Conclusions
- The interpretation of FTIR spectra might suggest that the application of the NYMPHA product, independently from the concentration of the applied solution, does not alter the composition of the pictorial layers. The absence of characteristic peaks identifying the polysaccharides of NYMPHA in all collected spectra may be attributed to the low concentrations at which the solution was diluted; the absorption bands of NYMPHA may have been overshadowed by the pigment and binder bands.
- The results from the peeling test indicate a good consolidation treatment for most painted layers, except for those with rabbit glue as binder. Particularly, the observed increase in cohesive properties appears to be most pronounced for the 0.5% NYMPHA solution, suggesting that the extract might be more effective at lower concentrations.
- According to the colorimetric results, the application of the NYMPHA solution on the pictorial film would not induce any distinguishable changes in color, preserving the aesthetics of the specimens.
- SEM imaging does not detect the presence of the NYMPHA solution, at least on the surface. These results suggest the idea that the product may have penetrated under the external layer of the samples at the pictorial-marble interface.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Nanotechnologies in the Conservation of Cultural Heritage: A Compendium of Materials and Techniques; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9302-5. [Google Scholar]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Patil, S.M.; Kasthurba, A.K.; Patil, M.V. Characterization and Assessment of Stone Deterioration on Heritage Buildings. Case Stud. Constr. Mater. 2021, 15, e00696. [Google Scholar] [CrossRef]
- Coccato, A.; Moens, L.; Vandenabeele, P. On the Stability of Mediaeval Inorganic Pigments: A Literature Review of the Effect of Climate, Material Selection, Biological Activity, Analysis and Conservation Treatments. Herit. Sci. 2017, 5, 12. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Chen, H.; Ma, Q. Degradation of Emerald Green: Scientific Studies on Multi-Polychrome Vairocana Statue in Dazu Rock Carvings, Chongqing, China. Herit. Sci. 2020, 8, 64. [Google Scholar] [CrossRef]
- Gil, M.; Costa, M.; Cvetkovic, M.; Bottaini, C.; Cardoso, A.M.; Manhita, A.; Barrocas Dias, C.; Candeias, A. Unveiling the Mural Painting Art of Almada Negreiros at the Maritime Stations of Alcântara (Lisbon): Diagnosis Research of Paint Layers as a Guide for Its Future Conservation. GEC 2021, 20, 105–117. [Google Scholar] [CrossRef]
- Geiger, T.; Michel, F. Studies on the Polysaccharide JunFunori Used to Consolidate Matt Paint. Stud. Conserv. 2005, 50, 193–204. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Venditti, R.; Jur, J.; Gorga, R.E.; Pawlak, J.J. Cellulose-Lignin Biodegradable and Flexible UV Protection Film. ACS Sustain. Chem. Eng. 2017, 5, 625–631. [Google Scholar] [CrossRef]
- Sassoni, E.; Franzoni, E.; Stefanova, M.; Kamenarov, Z.; Scopece, P.; Verga Falzacappa, E. Comparative Study Between Ammonium Phosphate and Ethyl Silicate Towards Conservation of Prehistoric Paintings in the Magura Cave (Bulgaria). Coatings 2020, 10, 250. [Google Scholar] [CrossRef]
- Tsakalof, A.; Manoudis, P.; Karapanagiotis, I.; Chryssoulakis, I.; Panayiotou, C. Assessment of Synthetic Polymeric Coatings for the Protection and Preservation of Stone Monuments. J. Cult. Herit. 2007, 8, 69–72. [Google Scholar] [CrossRef]
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S. Adhesives Applied to Granite Cultural Heritage: Effectiveness, Harmful Effects and Reversibility. Constr. Build. Mater. 2019, 223, 951–964. [Google Scholar] [CrossRef]
- Serafini, I.; Ciccola, A. Chapter 14—Nanotechnologies and Nanomaterials: An Overview for Cultural Heritage. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Lazzara, G., Fakhrullin, R., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 325–380. ISBN 978-0-12-813910-3. [Google Scholar]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage—An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Negri, A.; Nervo, M.; Di Marcello, S.; Castelli, D. Consolidation and Adhesion of Pictorial Layers on a Stone Substrate. The Study Case of the Virgin with the Child from Palazzo Madama, in Turin. Coatings 2021, 11, 624. [Google Scholar] [CrossRef]
- Weththimuni, M.L.; Licchelli, M. Heritage Conservation and Restoration: Surface Characterization, Cleaning and Treatments. Coatings 2023, 13, 457. [Google Scholar] [CrossRef]
- Horie, C.V. 10—Polymers Derived from Cellulose. In Materials for Conservation; Horie, C.V., Ed.; Butterworth-Heinemann: Oxford, UK, 1987; pp. 124–134. ISBN 978-0-408-01531-8. [Google Scholar]
- Matteini, M.; Rescic, S.; Fratini, F.; Botticelli, G. Ammonium Phosphates as Consolidating Agents for Carbonatic Stone Materials Used in Architecture and Cultural Heritage: Preliminary Research. Int. J. Archit. Herit. 2011, 5, 717–736. [Google Scholar] [CrossRef]
- David, M.E.; Ion, R.-M.; Grigorescu, R.M.; Iancu, L.; Andrei, E.R. Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An Up-to-Date Overview. Materials 2020, 13, 2064. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef] [PubMed]
- Ntasi, G.; Sbriglia, S.; Pitocchi, R.; Vinciguerra, R.; Melchiorre, C.; Dello Ioio, L.; Fatigati, G.; Crisci, E.; Bonaduce, I.; Carpentieri, A.; et al. Proteomic Characterization of Collagen-Based Animal Glues for Restoration. J. Proteome Res. 2022, 21, 2173–2184. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.A. Testing Adhesives for the Consolidation of Paintings. Stud. Conserv. 1972, 17, 173–194. [Google Scholar] [CrossRef]
- Andreotti, A.; Izzo, F.C.; Bonaduce, I. Archaeometric Study of the Mural Paintings by Saturnino Gatti and Workshop in the Church of San Panfilo, Tornimparte (AQ): The Study of Organic Materials in Original and Restored Areas. Appl. Sci. 2023, 13, 7153. [Google Scholar] [CrossRef]
- Aggelakopoulou, E.; Sotiropoulou, S.; Karagiannis, G. Architectural Polychromy on the Athenian Acropolis: An In Situ Non-Invasive Analytical Investigation of the Colour Remains. Heritage 2022, 5, 756–787. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zhu, J.; Wang, S.; Wei, B. Hybrids of CNTs and Acrylic Emulsion for the Consolidation of Wall Paintings. Prog. Org. Coat. 2018, 124, 185–192. [Google Scholar] [CrossRef]
- Normand, L.; Duchêne, S.; Vergès-Belmin, V.; Dandrel, C.; Giovannacci, D.; Nowik, W. Comparative in Situ Study of Nanolime, Ethyl Silicate and Acrylic Resin for Consolidation of Wall Paintings with High Water and Salt Contents at the Chapter Hall of Chartres Cathedral. Int. J. Archit. Herit. 2020, 14, 1120–1133. [Google Scholar] [CrossRef]
- Stagno, V.; Ciccola, A.; Curini, R.; Postorino, P.; Favero, G.; Capuani, S. Non-Invasive Assessment of PVA-Borax Hydrogel Effectiveness in Removing Metal Corrosion Products on Stones by Portable NMR. Gels 2021, 7, 265. [Google Scholar] [CrossRef]
- Di Turo, F.; Medeghini, L. How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe. Sustainability 2021, 13, 3609. [Google Scholar] [CrossRef]
- Palma Prieto, M.; Santos Gómez, S.; Pérez-Estébanez, M.; De La Roja, J.M. Evaluation of Chia and Flax Mucilages as Consolidants of Paint Films and as Hydrogels Used in the Cleaning of Canvases Reverses: First Results. Eur. Phys. J. Plus 2023, 138, 555. [Google Scholar] [CrossRef]
- Mariani, A.; Malucelli, G. Consolidation of Stone Materials by Organic and Hybrid Polymers: An Overview. Macro Chem. Phys. 2023, 224, 2300053. [Google Scholar] [CrossRef]
- Giorgi, R.; Dei, L.; Baglioni, P. A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Stud. Conserv. 2000, 45, 154–161. [Google Scholar] [CrossRef]
- Pondelak, A.; Kramar, S.; Kikelj, M.L.; Sever Škapin, A. In-Situ Study of the Consolidation of Wall Paintings Using Commercial and Newly Developed Consolidants. J. Cult. Herit. 2017, 28, 1–8. [Google Scholar] [CrossRef]
- Karydas, A.G.; Brecoulaki, H.; Bourgeois, B.; Zarkadas, C. In-Situ XRF Analysis of Raw Pigments and Traces of Polychromy on Marble Sculpture Surfaces. Possibilities and Limitations. In Proceedings of the 28th International Symposium on the Conservation and Restoration of Cultural Property, Tokyo, Japan, 1–3 December 2004. [Google Scholar]
- Saint, A.-C.; Cheilakou, E.; Dritsa, V.; Koui, M.; Kostanti, K.; Christopoulou, A.; Zezza, F. The Combined Use of Non-Invasive Methods for the Identification of Pigments and the Weathering Damage on Marble Figurines and Statues. In 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin: Natural and Anthropogenic Hazards and Sustainable Preservation; Koui, M., Zezza, F., Kouis, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 233–242. ISBN 978-3-319-78093-1. [Google Scholar]
- Calza, C.; Oliveira, D.F.; Freitas, R.P.; Rocha, H.S.; Nascimento, J.R.; Lopes, R.T. Analysis of Sculptures Using XRF and X-Ray Radiography. Radiat. Phys. Chem. 2015, 116, 326–331. [Google Scholar] [CrossRef]
- Calvano, C.D.; Van Der Werf, I.D.; Palmisano, F.; Sabbatini, L. Revealing the Composition of Organic Materials in Polychrome Works of Art: The Role of Mass Spectrometry-Based Techniques. Anal. Bioanal. Chem. 2016, 408, 6957–6981. [Google Scholar] [CrossRef]
- Geddes Da Filicaia, E.; Evershed, R.P.; Peggie, D.A. Review of Recent Advances on the Use of Mass Spectrometry Techniques for the Study of Organic Materials in Painted Artworks. Anal. Chim. Acta 2023, 1246, 340575. [Google Scholar] [CrossRef] [PubMed]
- Cennini, C. Il Libro Dell’arte di Cennino Cennini; Frezzato, F., Ed.; I colibrì; Neri Pozza: Vicenza, Italy, 2009; ISBN 978-88-7305-910-3. [Google Scholar]
- Colombini, M.P.; Andreotti, A.; Bonaduce, I.; Modugno, F.; Ribechini, E. Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc. Chem. Res. 2010, 43, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Brøns, C.; Rasmussen, K.L.; Di Crescenzo, M.M.; Stacey, R.; Lluveras-Tenorio, A. Painting the Palace of Apries I: Ancient Binding Media and Coatings of the Reliefs from the Palace of Apries, Lower Egypt. Herit. Sci. 2018, 6, 6. [Google Scholar] [CrossRef]
- Pascoal, P.; Borsoi, G.; Veiga, R.; Faria, P.; Santos Silva, A. Consolidation and Chromatic Reintegration of Historical Renders with Lime-Based Pozzolanic Products. Stud. Conserv. 2015, 60, 321–332. [Google Scholar] [CrossRef]
- Becherini, F.; Durante, C.; Bourguignon, E.; Li Vigni, M.; Detalle, V.; Bernardi, A.; Tomasin, P. Aesthetic Compatibility Assessment of Consolidants for Wall Paintings by Means of Multivariate Analysis of Colorimetric Data. Chem. Cent. J. 2018, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Baiza, B.; Gil, M.; Galacho, C.; Candeias, A.; Girginova, P.I. Preliminary Studies of the Effects of Nanoconsolidants on Mural Paint Layers with a Lack of Cohesion. Heritage 2021, 4, 3288–3306. [Google Scholar] [CrossRef]
- Collado-Montero, F.J.; Calero-Castillo, A.I.; Melgosa, M.; Medina, V.J. Colorimetric Evaluation of Pictorial Coatings in Conservation of Plasterworks from the Islamic Tradition. Stud. Conserv. 2019, 64, 90–100. [Google Scholar] [CrossRef]
- Fassina, V. New Findings on Past Treatments Carried out on Stone and Marble Monuments’ Surfaces. Sci. Total Environ. 1995, 167, 185–203. [Google Scholar] [CrossRef]
- Polikreti, K.; Maniatis, Y. Micromorphology, Composition and Origin of the Orange Patina on the Marble Surfaces of Propylaea (Acropolis, Athens). Sci. Total Environ. 2003, 308, 111–119. [Google Scholar] [CrossRef]
- Masi, A.; Medeghini, L.; Masi, A.; Sadori, L.; Leonelli, F.; Favero, G.; Antonacci, A. Natural Polysaccharides from Microalgae for the Protection of Cultural Heritage. SEL 2021, 16, 24. [Google Scholar] [CrossRef]
- Schulze, T.; Prager, K.; Dathe, H.; Kelm, J.; Kießling, P.; Mittag, M. How the Green Alga Chlamydomonas Reinhardtii Keeps Time. Protoplasma 2010, 244, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Bellido-Pedraza, C.M.; Calatrava, V.; Sanz-Luque, E.; Tejada-Jiménez, M.; Llamas, Á.; Plouviez, M.; Guieysse, B.; Fernández, E.; Galván, A. Chlamydomonas Reinhardtii, an Algal Model in the Nitrogen Cycle. Plants 2020, 9, 903. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Leonelli, F.; Scognamiglio, V.; Gasperuzzo, G.; Antonacci, A.; Terzidis, M.A. Chlamydomonas Reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023, 28, 1185. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Eklund, L.; Villarreal, R.R. Use of Cactus in Mortars and Concrete. Cem. Concr. Res. 1998, 28, 41–51. [Google Scholar] [CrossRef]
- León-Martínez, F.M.; Cano-Barrita, P.F. de J.; Castellanos, F.; Luna-Vicente, K.B.; Ramírez-Arellanes, S.; Gómez-Yáñez, C. Carbonation of High-Calcium Lime Mortars Containing Cactus Mucilage as Additive: A Spectroscopic Approach. J. Mater. Sci. 2021, 56, 3778–3789. [Google Scholar] [CrossRef]
- Alisi, C.; Bacchetta, L.; Bojorquez, E.; Falconieri, M.; Gagliardi, S.; Insaurralde, M.; Martinez, M.F.; Orozco, A.M.; Persia, F.; Sprocati, A.R.; et al. Mucilages from Different Plant Species Affect the Characteristics of Bio-Mortars for Restoration. Coatings 2021, 11, 75. [Google Scholar] [CrossRef]
- Sansonetti, A.; Bertasa, M.; Canevali, C.; Rabbolini, A.; Anzani, M.; Scalarone, D. A Review in Using Agar Gels for Cleaning Art Surfaces. J. Cult. Herit. 2020, 44, 285–296. [Google Scholar] [CrossRef]
- Caruso, M.R.; D’Agostino, G.; Milioto, S.; Cavallaro, G.; Lazzara, G. A Review on Biopolymer-Based Treatments for Consolidation and Surface Protection of Cultural Heritage Materials. J. Mater. Sci. 2023, 58, 12954–12975. [Google Scholar] [CrossRef]
- Rubio, L.B.; Cabezas, M.J.; Cortés, M.G.; Morelli, P.K. Evaluation of Funori as Adhesive for Stone Polychromy. The XV Century Ramon Llull’s Sepulchre as Case Study. Estud. Conserv. Restauro 2019, 10, 44–55. [Google Scholar] [CrossRef]
- Dean, N.E. Geochemistry and Archaeological Geology of the Carrara Marble, Carrara, Italy. In Classical Marble: Geochemistry, Technology, Trade; Herz, N., Waelkens, M., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 315–323. ISBN 978-94-015-7795-3. [Google Scholar]
- Bruschi, G.; Criscuolo, A.; Paribeni, E.; Zanchetta, G. 14C-Dating from an Old Quarry Waste Dump of Carrara Marble (Italy): Evidence of Pre-Roman Exploitation. J. Cult. Herit. 2004, 5, 3–6. [Google Scholar] [CrossRef]
- Oesterling, N.; Heilbronner, R.; Stünitz, H.; Barnhoorn, A.; Molli, G. Strain Dependent Variation of Microstructure and Texture in Naturally Deformed Carrara Marble. J. Struct. Geol. 2007, 29, 681–696. [Google Scholar] [CrossRef]
- Massa, G.; Pieruccioni, D. Geological Characterization of the Marble Commercial Varieties Outcropping in the Frigido Valley (Apuan Alps, Italy). Geoheritage 2020, 12, 60. [Google Scholar] [CrossRef]
- Gentili, R.; Alderighi, L.; Errico, A.; Salvatore, M.C.; Citterio, S.; Preti, F.; Baroni, C. Human-Induced Changes and Phyto-Geomorphological Relationships in the Historical Ravaneti Landscape of the Carrara Marble Basin (Tuscany, Italy). Int. J. Min. Reclam. Environ. 2023, 37, 297–318. [Google Scholar] [CrossRef]
- Hebborn, E. Il Manuale Del Falsario; Neri Pozza: Vicenza, Italy, 1995; ISBN 88-7305-519-2. [Google Scholar]
- Drdácký, M.; Slížková, Z. In Situ Peeling Tests for Assessing the Cohesion and Consolidation Characteristics of Historic Plaster and Render Surfaces. Stud. Conserv. 2015, 60, 121–130. [Google Scholar] [CrossRef]
- Drdácký, M.; Lesák, J.; Rescic, S.; Slížková, Z.; Tiano, P.; Valach, J. Standardization of Peeling Tests for Assessing the Cohesion and Consolidation Characteristics of Historic Stone Surfaces. Mater. Struct. 2012, 45, 505–520. [Google Scholar] [CrossRef]
- Zou, W.; Yeo, S.Y. New Methods for the Identification of Malachite Pigments with Varying Particle Sizes Used in Ancient Chinese Murals by Spectroscopic Techniques. Dye. Pigment. 2024, 226, 112111. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Duran, A.; Herrera, L.K.; Jimenez De Haro, M.C.; Perez-Rodriguez, J.L. Comparison between Micro-Raman and Micro-FTIR Spectroscopy Techniques for the Characterization of Pigments from Southern Spain Cultural Heritage. J. Mol. Struct. 2009, 924–926, 404–412. [Google Scholar] [CrossRef]
- Buti, D.; Rosi, F.; Brunetti, B.G.; Miliani, C. In-Situ Identification of Copper-Based Green Pigments on Paintings and Manuscripts by Reflection FTIR. Anal. Bioanal. Chem. 2013, 405, 2699–2711. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour Difference ΔE—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Khimchenko, S.V.; Eksperiandova, L.P. Colorimetric and Stochastic Assessment of the Visual Limit of Color Perception for Visual Colorimetric Analysis. J. Anal. Chem. 2014, 69, 322–326. [Google Scholar] [CrossRef]
- Dean, A.P.; Nicholson, J.M.; Sigee, D.C. Impact of Phosphorus Quota and Growth Phase on Carbon Allocation in Chlamydomonas Reinhardtii: An FTIR Microspectroscopy Study. Eur. J. Phycol. 2008, 43, 345–354. [Google Scholar] [CrossRef]
Binder (Pigment:Binder Ratio) | NYMPHA% | ΔE |
---|---|---|
Egg yolk (1:1) | 0.5% | 2.54 |
Egg yolk (1:1) | 1% | 4.46 |
Egg yolk (1:1) | 2% | 2.67 |
Egg yolk (1:2) | 0.5% | 0.86 |
Egg yolk (1:2) | 1% | 1.72 |
Egg yolk (1:2) | 2% | 1.60 |
Tempera grassa (1:1) | 0.5% | 5.61 |
Tempera grassa (1:1) | 1% | 7.01 |
Tempera grassa (1:1) | 2% | 7.46 |
Tempera grassa (1:2) | 0.5% | 1.28 |
Tempera grassa (1:2) | 1% | 1.17 |
Tempera grassa (1:2) | 2% | 2.22 |
Rabbit glue (1:1) | 0.5% | 1.41 |
Rabbit glue (1:1) | 1% | 2.00 |
Rabbit glue (1:1) | 2% | 3.26 |
Rabbit glue (1:2) | 0.5% | 5.32 |
Rabbit glue (1:2) | 1% | 4.37 |
Rabbit glue (1:2) | 2% | 1.96 |
Linseed oil (1:1) | 0.5% | 3.83 |
Linseed oil (1:1) | 1% | 2.37 |
Linseed oil (1:1) | 2% | 4.11 |
Linseed oil (1:2) | 0.5% | 2.81 |
Linseed oil (1:2) | 1% | 0.83 |
Linseed oil (1:2) | 2% | 3.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fazio, M.; Fratello, C.; Paglialunga, G.; Mignardi, S.; Vergelli, L.; Frasca, F.; Rigon, C.; Ioele, M.; Gioventù, E.; Antonacci, A.; et al. The NYMPHA Algae Extract as a New Consolidant for the Restoration of Cultural Heritage: Studies and Considerations on Its Effectiveness on Painted Marble. Sustainability 2024, 16, 6868. https://doi.org/10.3390/su16166868
Di Fazio M, Fratello C, Paglialunga G, Mignardi S, Vergelli L, Frasca F, Rigon C, Ioele M, Gioventù E, Antonacci A, et al. The NYMPHA Algae Extract as a New Consolidant for the Restoration of Cultural Heritage: Studies and Considerations on Its Effectiveness on Painted Marble. Sustainability. 2024; 16(16):6868. https://doi.org/10.3390/su16166868
Chicago/Turabian StyleDi Fazio, Melania, Chiara Fratello, Giulia Paglialunga, Silvano Mignardi, Lisa Vergelli, Francesca Frasca, Carolina Rigon, Marcella Ioele, Eleonora Gioventù, Amina Antonacci, and et al. 2024. "The NYMPHA Algae Extract as a New Consolidant for the Restoration of Cultural Heritage: Studies and Considerations on Its Effectiveness on Painted Marble" Sustainability 16, no. 16: 6868. https://doi.org/10.3390/su16166868
APA StyleDi Fazio, M., Fratello, C., Paglialunga, G., Mignardi, S., Vergelli, L., Frasca, F., Rigon, C., Ioele, M., Gioventù, E., Antonacci, A., Favero, G., & Medeghini, L. (2024). The NYMPHA Algae Extract as a New Consolidant for the Restoration of Cultural Heritage: Studies and Considerations on Its Effectiveness on Painted Marble. Sustainability, 16(16), 6868. https://doi.org/10.3390/su16166868