Analysis of Tendencies, Change and Strength of Barriers Limiting the Development of BIM: A Novelty Assessment Method
Abstract
:1. Introduction
- Building information modeling;
- Building information model;
- Building information management.
Literature Review
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Assessment of the Importance of Barriers
- i = number of the barrier (i = 1–10);
- j = number of the subsequent study (j = 1–6).
3.2. Evaluation of Tendencies of Changes in the Assessment of Importance of Barriers
3.3. Calculation of the Power (Strength) of Barriers
- ϓij = indicator of the power of a barrier;
- ai = i-th assessment of the barrier;
- vij = i-th number of barrier; j-th indicator of the weight of a barrier.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camba, J.; Contero, M.; Johnson, M.; Company, P. Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Comput.-Aided Des. 2014, 57, 61–73. [Google Scholar] [CrossRef]
- Bynum, P.; Issa, R.R.; Olbina, S. Building information modeling in support of sustainable design and construction. J. Constr. Eng. Manag. 2013, 139, 24–34. [Google Scholar] [CrossRef]
- Chen, K.; Lu, W. Bridging BIM and building (BBB) for information management in construction. Eng. Constr. Archit. Manag. 2019, 261, 1518–1532. [Google Scholar] [CrossRef]
- Cerovsek, T. A review and outlook for a ‘Building Information Model’(BIM): A multi-standpoint framework for technological development. Adv. Eng. Inform. 2011, 25, 224–244. [Google Scholar] [CrossRef]
- Dixit, M.K.; Venkatraj, V.; Ostadalimakhmalbaf, M.; Pariafsai, F.; Lavy, S. Integration of facility management and building information modeling (BIM). Facilities 2019, 37, 455–483. [Google Scholar] [CrossRef]
- Lee, G.; Sacks, R.; Eastman, C.M. Specifying parametric building object behavior (BOB) for a building information modeling system. Autom. Constr. 2006, 15, 758–776. [Google Scholar] [CrossRef]
- Holzer, D. BIM and parametric design in academia and practice: The changing context of knowledge acquisition and application in the digital age. Int. J. Archit. Comput. 2015, 13, 65–82. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, N.; Luo, X.; Lu, W.Z. Multi-objective optimization in floor tile planning: Coupling BIM and parametric design. Autom. Constr. 2022, 140, 104384. [Google Scholar] [CrossRef]
- Szafranko, E. Applicability of multi-criteria analysis methods for the choice of material and technology solutions in building structures. Teh. Vjesn./Tech. Gaz. 2017, 24, 1935–1940. [Google Scholar] [CrossRef]
- Altaf, M.; Alaloul, W.S.; Musarat, M.A.; Bukhari, H.; Saad, S.; Ammad, S. BIM implication of life cycle cost analysis in construction project: A systematic review. In Proceedings of the 2020 Second International Sustainability and Resilience Conference: Technology and Innovation in Building Designs (51154), Sakheer, Bahrain, 11–12 November 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Mellado, F.; Lou, E.C. Building information modelling, lean and sustainability: An integration framework to promote performance improvements in the construction industry. Sustain. Cities Soc. 2020, 61, 102355. [Google Scholar] [CrossRef]
- Nieto-Julián, J.E.; Antón, D.; Moyano, J.J. Implementation and management of structural deformations into historic building information models. Int. J. Archit. Herit. 2020, 14, 1384–1397. [Google Scholar] [CrossRef]
- Szafranko, E. Decision problems in management of construction projects. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 12048. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W. Building information modelling and project information management framework for construction projects. J. Civ. Eng. Manag. 2019, 25, 53–75. [Google Scholar] [CrossRef]
- Ozturk, G.B. Interoperability in building information modeling for AECO/FM industry. Autom. Constr. 2020, 113, 103122. [Google Scholar] [CrossRef]
- Sacks, R.; Koskela, L.; Dave, B.A.; Owen, R. Interaction of lean and building information modeling in construction. J. Constr. Eng. Manag. 2010, 136, 968–980. [Google Scholar] [CrossRef]
- Seyis, S. Mixed method review for integrating building information modeling and life-cycle assessments. Build. Environ. 2020, 173, 106703. [Google Scholar] [CrossRef]
- Szafranko, E. Application of multi-criterial analytical methods for ranking environmental criteria in an assessment of a development project. J. Ecol. Eng. 2017, 18, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Ameziane, F. An Information Systems for Building Production Management. Int. J. Prod. Econ. 2000, 64, 345–358. [Google Scholar] [CrossRef]
- Caniëls, M.C.J.; Chiocchio, F.; van Loon, N.P.A.A. Collaboration in project teams: The role of mastery and performance climates. Int. J. Proj. Manag. 2019, 37, 1–13. [Google Scholar] [CrossRef]
- Penttilä, H. Early architectural design and BIM. In Computer-Aided Architectural Design Futures (CAADFutures) 2007: Proceedings of the 12th International CAAD Futures Conference; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Birx, G.W. How Building Information Modeling Changes Architecture Practice: Best Practice. AIA-P016609. AIA Best Pract. 2016, 13, 3–10. [Google Scholar]
- Azhar, S.; Abid, N.; Mok, J.; Leung, B. Building information modeling (BIM): A new paradigm for visual interactive modeling and simulation for construction projects. In Proceedings of the 1th International Conference on Construction in Developing Countries (ICCIDC–I), Karachi, Pakistan, 4–5 August 2008; pp. 435–446. [Google Scholar]
- Young, N.W.; Jones, S.A.; Bernstein, H.M. Transforming design and construction to achieve greater industry productivity. In SmartMarket Report on Building Information Modelling (BIM); McGraw-Hill: New York, NY, USA, 2008; ISBN 978-1-934926-25-3. [Google Scholar]
- Jin, R.; Zhong, B.; Ma, L.; Hashemi, A.; Ding, L. Integrating BIM with building performance analysis in project life-cycle. Autom. Constr. 2019, 106, 102861. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Ding, L.; Xu, X. Application of cloud storage on BIM life-cycle management. Int. J. Adv. Robot. Syst. 2014, 11, 129. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Li, Z.; Shi, W.; Wang, J.; Sun, Y.; Wang, X. A review of integrated applications of BIM and related technologies in whole building life cycle. Eng. Constr. Archit. Manag. 2020, 27, 1647–1677. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Development of a BIM-based environmental and economic life cycle assessment tool. J. Clean. Prod. 2020, 265, 121705. [Google Scholar] [CrossRef]
- Xu, X.; Mumford, T.; Zou, P.X. Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. Energy Build. 2021, 231, 110496. [Google Scholar] [CrossRef]
- Zou, Y.; Kiviniemi, A.; Jones, S.W. A review of risk management through BIM and BIM-related technologies. Saf. Sci. 2017, 97, 88–98. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, P.; Tang, Y.; Sun, S.; Li, Q. BIM-integrated construction safety risk assessment at the design stage of building projects. Autom. Constr. 2021, 124, 103553. [Google Scholar] [CrossRef]
- Alzoubi, H.M. BIM as a tool to optimize and manage project risk management. Int. J. Mech. Eng. 2022, 7, 6307–6323. Available online: https://research.skylineuniversity.ac.ae/id/eprint/192/1/63.pdf (accessed on 1 January 2024).
- Chatzimichailidou, M.; Ma, Y. Using BIM in the safety risk management of modular construction. Saf. Sci. 2022, 154, 105852. [Google Scholar] [CrossRef]
- Waqar, A.; Othman, I.; González-Lezcano, R.A. Challenges to the Implementation of BIM for the Risk Management of Oil and Gas Construction Projects: Structural Equation Modeling Approach. Sustainability 2023, 15, 8019. [Google Scholar] [CrossRef]
- Moshtaghian, F.; Noorzai, E. Integration of risk management within the building information modeling (BIM) framework. Eng. Constr. Archit. Manag. 2023, 30, 1951–1977. [Google Scholar] [CrossRef]
- Yang, J. Application of BIM Technology in Construction Cost Management of Building Engineering. J. Phys. Conf. Ser. 2021, 2037, 12046. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Costin, A.M.; Karimi, R.; Shirowzhan, S.; Abbasian, E.; Li, J. BIM and digital tools for state-of-the-art construction cost management. Buildings 2022, 12, 396. [Google Scholar] [CrossRef]
- Ding, X.; Lu, Q. Construction cost management strategy based on BIM technology and neural network model. J. Intell. Fuzzy Syst. 2021, 40, 6669–6681. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Abdelhaleem, H.M. Project cost control using five dimensions building information modelling. Int. J. Constr. Manag. 2023, 23, 405–409. [Google Scholar] [CrossRef]
- Vigneault, M.A.; Boton, C.; Chong, H.Y.; Cooper-Cooke, B. An innovative framework of 5D BIM solutions for construction cost management: A systematic review. Arch. Comput. Methods Eng. 2020, 27, 1013–1030. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Tian, P.L.; Li, S.W.; Zhang, J.P. BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase. Adv. Eng. Softw. 2018, 115, 1–16. [Google Scholar] [CrossRef]
- Tak, A.N.; Taghaddos, H.; Mousaei, A.; Bolourani, A.; Hermann, U. BIM-based 4D mobile crane simulation and onsite operation management. Autom. Constr. 2021, 128, 103766. [Google Scholar] [CrossRef]
- Liao, C.Y.; Tan, D.L.; Li, Y.X. Research on the Application of BIM in the Operation Stage of Green Building. Appl. Mech. Mater. 2012, 174, 2111–2114. [Google Scholar] [CrossRef]
- Massafra, A.; Costantino, C.; Predari, G.; Gulli, R. Building Information Modelling and Building Performance Simulation-Based Decision Support Systems for Improved Built Heritage Operation. Sustainability 2023, 15, 11240. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Zhang, Q. Research on construction schedule management based on BIM technology. Procedia Eng. 2017, 174, 657–667. [Google Scholar] [CrossRef]
- Kim, H.; Anderson, K.; Lee, S.; Hildreth, J. Generating construction schedules through automatic data extraction using open BIM (building information modelling) technology. Autom. Constr. 2013, 35, 285–295. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, C. Research on construction schedule control based on critical chain method and BIM. J. Appl. Sci. Eng. Innov. 2018, 5, 47–50. [Google Scholar]
- Irizarry, J.; Karan, E.P. Optimizing location of tower cranes on construction sites through GIS and BIM integration. J. Inf. Technol. Constr. 2012, 17, 351–366. [Google Scholar]
- Pereira, V.; Santos, J.; Leite, F.; Escórcio, P. Using BIM to improve building energy efficiency—A scientometric and systematic review. Energy Build. 2021, 250, 111292. [Google Scholar] [CrossRef]
- Kamel, E.; Kazemian, A. BIM-integrated thermal analysis and building energy modeling in 3D-printed residential buildings. Energy Build. 2023, 279, 112670. [Google Scholar] [CrossRef]
- Truong, N.S.; Luong, D.L.; Nguyen, Q.T. BIM to BEM Transition for Optimizing Envelope Design Selection to Enhance Building Energy Efficiency and Cost-Effectiveness. Energies 2023, 16, 3976. [Google Scholar] [CrossRef]
- Pan, X.; Khan, A.M.; Eldin, S.M.; Aslam, F.; Rehman, S.K.U.; Jameel, M. BIM adoption in sustainability, energy modelling and implementing using ISO 19650: A review. Ain Shams Eng. J. 2023, 15, 102252. [Google Scholar] [CrossRef]
- Jung, D.E.; Kim, S.; Han, S.; Yoo, S.; Jeong, H.; Lee, K.H.; Kim, J. Appropriate level of development of in-situ building information modelling for existing building energy modelling implementation. J. Build. Eng. 2023, 69, 106233. [Google Scholar] [CrossRef]
- Yu, Z. Green building energy efficiency and landscape design based on remote sensing technology. In Soft Computing; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Kang, K.; Besklubova, S.; Dai, Y.; Zhong, R.Y. Building demolition waste management through smart BIM: A case study in Hong Kong. Waste Manag. 2022, 143, 69–83. [Google Scholar] [CrossRef]
- Guerra, B.C.; Leite, F.; Faust, K.M. 4D-BIM to enhance construction waste reuse and recycle planning: Case studies on concrete and drywall waste streams. Waste Manag. 2020, 116, 79–90. [Google Scholar] [CrossRef]
- Han, D.; Kalantari, M.; Rajabifard, A. Building information modeling (BIM) for construction and demolition waste management in Australia: A research agenda. Sustainability 2021, 13, 12983. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Y.; Vanhullebusch, S.; Mestdagh, R.; Cui, Z.; Li, J. Smart building demolition and waste management frame with image-to-BIM. J. Build. Eng. 2022, 49, 104058. [Google Scholar] [CrossRef]
- Porwal, A.; Parsamehr, M.; Szostopal, D.; Ruparathna, R.; Hewage, K. The integration of building information modeling (BIM) and system dynamic modeling to minimize construction waste generation from change orders. Int. J. Constr. Manag. 2020, 23, 156–166. [Google Scholar] [CrossRef]
- Ahmed, S. Barriers to implementation of building information modeling (BIM) to the construction industry: A review. J. Civ. Eng. Constr. 2018, 7, 107–113. [Google Scholar] [CrossRef]
- Ullah, K.; Lill, I.; Witt, E. An overview of BIM adoption in the construction industry: Benefits and barriers. In 10th Nordic conference on Construction Economics and Organization; Emerald Publishing Limited: Bingley, UK, 2019; pp. 297–303. [Google Scholar] [CrossRef]
- Liu, S.; Xie, B.; Tivendale, L.; Liu, C. Critical barriers to BIM implementation in the AEC industry. Int. J. Mark. Stud. 2015, 7, 162. [Google Scholar] [CrossRef]
- Leśniak, A.; Górka, M.; Skrzypczak, I. Barriers to BIM implementation in architecture, construction, and engineering projects—The polish study. Energies 2021, 14, 2090. [Google Scholar] [CrossRef]
- Durdyev, S.; Ashour, M.; Connelly, S.; Mahdiyar, A. Barriers to the implementation of Building Information Modelling (BIM) for facility management. J. Build. Eng. 2022, 46, 103736. [Google Scholar] [CrossRef]
- Ariono, B.; Wasesa, M.; Dhewanto, W. The Drivers, Barriers, and Enablers of Building Information Modeling (BIM) Innovation in Developing Countries: Insights from Systematic Literature Review and Comparative Analysis. Buildings 2022, 12, 1912. [Google Scholar] [CrossRef]
- Ismail, N.A.A.; Chiozzi, M.; Drogemuller, R. An overview of BIM uptake in Asian developing countries. AIP Conf. Proc. 2017, 1903, 80008. [Google Scholar] [CrossRef]
- Farooq, U.; Rehman, S.K.U.; Javed, M.F.; Jameel, M.; Aslam, F.; Alyousef, R. Investigating BIM implementation barriers and issues in Pakistan using ISM approach. Appl. Sci. 2020, 10, 7250. [Google Scholar] [CrossRef]
- Alhumayn, S.; Chinyio, E.; Ndekugri, I. The barriers and strategies of implementing BIM in Saudi Arabia. WIT Trans. Built Environ. 2017, 169, 55–67. [Google Scholar] [CrossRef]
- Abd Hamid, A.B.; Taib, M.M.; Razak, A.A.; Embi, M.R. Building information modelling: Challenges and barriers in implement of BIM for interior design industry in Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 12002. [Google Scholar] [CrossRef]
- Ahn, E.; Kim, M. BIM awareness and acceptance by architecture students in Asia. J. Asian Archit. Build. Eng. 2016, 15, 419–424. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Yang, J.B. Barriers to BIM implementation strategies in China. Eng. Constr. Archit. Manag. 2019, 26, 554–574. [Google Scholar] [CrossRef]
- Al Amin, A. Factors affecting as barrier for adaptation of building information modelling in architecture practice in Bangladesh. SEU J. Sci. Eng. 2020, 14, 1–8. [Google Scholar]
- Hosseini, M.R.; Namzadi, M.O.; Rameezdeen, R.; Banihashemi, S.; Chileshe, N. Barriers to BIM adoption: Perceptions from Australian small and medium-sized enterprises (SMEs). In AUBEA 2016: Proceedings of the 40th Australasian Universities Building Education Association Annual Conference; Central Queensland University: Rockhampton, Australia, 2016; pp. 271–280. [Google Scholar]
- Newton, K.; Chileshe, N. Enablers and Barriers of Building Information Modelling (BIM) within South Australian Construction Organisations. Doctoral Dissertation, University of New South Wales, Kensington, Australia, 2012. [Google Scholar]
- Hall, A.T.; Durdyev, S.; Koc, K.; Ekmekcioglu, O.; Tupenaite, L. Multi-criteria analysis of barriers to building information modeling (BIM) adoption for SMEs in New Zealand construction industry. Eng. Constr. Archit. Manag. 2022, 30, 3798–3816. [Google Scholar] [CrossRef]
- Stanley, R.; Thurnell, D. The benefits of, and barriers to, implementation of 5D BIM for quantity surveying in New Zealand. Australas. J. Constr. Econ. Build. 2014, 14, 105–117. [Google Scholar] [CrossRef]
- Likita, A.J.; Jelodar, M.B.; Vishnupriya, V.; Rotimi, J.O.B.; Vilasini, N. Lean and BIM Implementation Barriers in New Zealand Construction Practice. Buildings 2022, 12, 1645. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, L.H.; McCabe, B.; Shahi, A. The benefits of and barriers to BIM adoption in Canada. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction; IAARC Publications: Lyon, France, 2019; Volume 36, pp. 152–158. [Google Scholar] [CrossRef]
- Charef, R.; Emmitt, S.; Alaka, H.; Fouchal, F. Building information modelling adoption in the European Union: An overview. J. Build. Eng. 2019, 25, 100777. [Google Scholar] [CrossRef]
- Seed, L. The Dynamics of BIM Adoption: A Mixed Methods Study of BIM as an Innovation within the United Kingdom Construction Industry. Doctoral Dissertation, University of Huddersfield, Huddersfield, UK, 2015. [Google Scholar]
- von Both, P. Potentials and barriers for implementing BIM in the German AEC market. Results A Curr. Mark. Anal. 2012, 2, 151–158. [Google Scholar]
- Elagiry, M.; Marino, V.; Lasarte, N.; Elguezabal, P.; Messervey, T. BIM4Ren: Barriers to BIM implementation in renovation processes in the Italian market. Buildings 2019, 9, 200. [Google Scholar] [CrossRef]
- Szafranko, E.; Jurczak, M. Implementability of BIM Technology in Light of Literature Studies and Analyses of the Construction Market. Sustainability 2024, 16, 1083. [Google Scholar] [CrossRef]
- Dubas, S.; Pasławski, J. The concept of improving communication in BIM during transfer to operation phase on the Polish market. Procedia Eng. 2017, 208, 14–19. [Google Scholar] [CrossRef]
- Matoseiro Dinis, F.; Rodrigues, R.; Pedro da Silva Poças Martins, J. Development and validation of natural user interfaces for semantic enrichment of BIM models using open formats. Constr. Innov. 2024, 24, 196–220. [Google Scholar] [CrossRef]
- Lee, Y.C.; Eastman, C.M.; Lee, J.K. Validations for ensuring the interoperability of data exchange of a building information model. Autom. Constr. 2015, 58, 176–195. [Google Scholar] [CrossRef]
- Ghannad, P.; Lee, Y.C.; Dimyadi, J.; Solihin, W. Automated BIM data validation integrating open-standard schema with visual programming language. Adv. Eng. Inform. 2019, 40, 14–28. [Google Scholar] [CrossRef]
- Collao, J.; Lozano-Galant, F.; Lozano-Galant, J.A.; Turmo, J. BIM visual programming tools applications in infrastructure projects: A state-of-the-art review. Appl. Sci. 2021, 11, 8343. [Google Scholar] [CrossRef]
Area | Author/Authors | Title | Journal/Conference | Year |
---|---|---|---|---|
Design and modeling | Ameziane F. [20] | An information systems for building production management. | International Journal of Production Economics. Vol. 64 (1) | 2000 |
Caniëls M.C.J., Chiocchio F., Van Loon P.A.A. [21] | Collaboration in project teams: The role of mastery and performance climates. | International Journal of Project Management 7 (2019) | 2019 | |
Hannu P. [22] | Early architectural design and BIM. | Computer-Aided Architectural Design Futures (CAADFutures) 2007: Proceedings of the 12th International CAAD Futures Conference | 2007 | |
Birx G.W. [23] | How building information modelling changes architecture practice: Best practice | AIA-P016609, BP 13.01.03, 10/06 | 2006 | |
Azhar S., Abid N., Mok J., Leung B. [24] | Building information modelling (BIM): A new paradigm for visual interactive modelling and simulation for construction projects. | 1st International Conference on Construction in Developing Countries (ICCIDC–I), 4–5 August 2008, Karachi, Pakistan | 2008 | |
Young N. W., Jones S. A., Bernstein H. M. [25] | Transforming design and construction to achieve greater industry productivity. | Smartmarket Report on Building Information Modelling (BIM). Mcgraw-Hill | 2008 | |
Life cycle | Jin R., Zhong B., Ma L., Hashemi A., Ding, L. [26] | Integrating BIM with building performance analysis in project life-cycle. | Automation in Construction, 106 | 2019 |
Wong J. K. W., Zhou J. [27] | Enhancing environmental sustainability over building life cycles through green BIM: A review. | Automation in Construction, 571 | 2015 | |
Ding L., Xu X. [28] | Application of cloud storage on BIM life-cycle management. | International Journal of Advanced Robotic Systems, 11(8) | 2014 | |
Meng Q., Zhang Y., Li Z., Shi W., Wang J., Sun Y., Xu L., Wang X. [29] | A review of integrated applications of BIM and related technologies in whole building life cycle. | Engineering, Construction and Architectural Management, 27(8) | 2020 | |
Santos R., Costa A. A., Silvestre J. D., Pyl L [30] | Development of a BIM-based environmental and economic life cycle assessment tool. | Journal of Cleaner Production, 265 | 2020 | |
Xu X., Mumford T., Zou P. X. [31] | Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. | Energy and Buildings, 231(2021) | 2021 | |
Risk management | Zou Y., Kiviniemi A., Jones S. W. [32] | A review of risk management through BIM and BIM-related technologies. | Safety Science, 97 | 2017 |
Lu Y., Gong P., Tang Y., Sun S., Li, Q. [33] | BIM-integrated construction safety risk assessment at the design stage of building projects. | Automation in Construction, 124, 103553 | 2021 | |
Alzoubi H. M. [34] | BIM as a tool to optimize and manage project risk management. | International Journal of Mechanical Engineering, 7(1) | 2022 | |
Chatzimichailidou M., Ma Y. [35] | Using BIM in the safety risk management of modular construction. | Safety Science, 154 | 2022 | |
Waqar A., Othman I., González-Lezcano R. A. [36] | Challenges to the implementation of BIM for the risk management of oil and gas construction projects: structural equation modeling approach. | Sustainability, 15(10) | 2023 | |
Moshtaghian F., Noorzai, E. [37] | Integration of risk management within the building information modeling (BIM) framework. | Engineering, Construction and Architectural Management, 30(5) | 2023 | |
Cost management | Yang J. [38] | Application of BIM technology in construction cost management of building engineering. | In Journal of Physics: Conference Series (Vol. 2037, No. 1, p. 012046). IOP Publishing | 2021 (September) |
Sepasgozar S. M., Costin A. M., Karimi R., Shirowzhan S., Abbasian, E., Li, J. [39] | BIM and digital tools for state-of-the-art construction cost management. | Buildings, 12(4) | 2022 | |
Ding, X., Lu, Q [40] | Construction cost management strategy based on BIM technology and neural network model. | Journal of Intelligent & Fuzzy Systems, 40(4) | 2021 | |
Abdel-Hamid M., Abdelhaleem, H. M. [41] | Project cost control using five dimensions building information modelling. | International Journal of Construction Management, 23(3) | 2023 | |
Vigneault M. A., Boton C., Chong, H. Y., Cooper-Cooke, B. [42] | An innovative framework of 5D BIM solutions for construction cost management: a systematic review. | Archives of Computational Methods in Engineering, 27 | 2020 | |
Management of operation stage | Hu Z. Z., Tian P. L., Li S. W., Zhang J. P. [43] | BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase. | Advances in Engineering Software, 115 | 2018 |
Tak A. N., Taghaddos H., Mousaei A., Bolourani A., Hermann, U. [44] | BIM-based 4D mobile crane simulation and onsite operation management | Automation in Construction, 128 | 2021 | |
Liao C. Y., Tan D. L., Li Y. X. [45] | Research on the application of BIM in the operation stage of green building. | Applied Mechanics and Materials, 174 | 2012 | |
Massafra A., Costantino C., Predari G., Gulli R. [46] | Building information modelling and building performance simulation-based decision support systems for improved built heritage operation. | Sustainability, 15(14) | 2023 | |
Li X., Xu J., Zhang, Q. [47] | Research on construction schedule management based on BIM technology. | Procedia Engineering, 174 | 2017 | |
Kim H., Anderson K., Lee S., Hildreth J. [48] | Generating construction schedules through automatic data extraction using open BIM (building information modelling) technology. | Automation in Construction, 35 | 2013 | |
Zhang S., Liang C. [49] | Research on construction schedule control based on critical chain method and BIM. | Journal of Applied Science and Engineering Innovation, 5(2) | 2018 | |
Irizarry J., Karan E. P. [50] | Optimizing location of tower cranes on construction sites through GIS and BIM integration. | Journal of Information Technology in Construction (ITcon), 17(23) | 2012 | |
Building energy assessment | Pereira V., Santos J., Leite F., Escórcio P. [51] | Using BIM to improve building energy efficiency–A scientometric and systematic review | Energy and Buildings, 250 | 2021 |
Kamel E., Kazemian A. [52] | BIM-integrated thermal analysis and building energy modeling in 3D-printed residential buildings. | Energy and Buildings, 279(2023) | 2023 | |
Truong N. S., Luong D. L., Nguyen Q. T. [53] | BIM to BEM transition for optimizing envelope design selection to enhance building energy efficiency and cost-effectiveness. | Energies, 16(10) | 2023 | |
Pan X., Khan A. M., Eldin S. M., Aslam F., Rehman S. K. U., Jameel M. [54] | BIM adoption in sustainability, energy modelling and implementing using ISO 19650: A review. | Ain Shams Engineering Journal, 102252 | 2023 | |
Jung D. E., Kim S., Han S., Yoo S., Jeong H., Lee K. H., Kim J. [55] | Appropriate level of development of in-situ building information modelling for existing building energy modelling implementation. | Journal of Building Engineering, 69, 106233 | 2023 | |
Yu Z. [56] | Green building energy efficiency and landscape design based on remote sensing technology. | Soft Computing, 1(10) | 2023 |
No. | Barrier to Development of BIM | Country of Occurrence/Notation |
---|---|---|
1 | Cost of implementation | P1, P2, M1, C1, B3, A3, NZ6, PW3, PW4 |
2 | Low level of knowledge and lack of training on BIM | P7, AS1, M3, C3, B5, NZ4, NA3, NA4, PW1 |
3 | Low level of commitment to cooperation between members of a building investment process | P4, B1, B2, UK3 |
4 | Lack of standardization/regulations/procedures | M4, NZ1, NZ2 |
5 | Shortage of experts | P6, C6, B3, M2 |
6 | Fear of change | P3, M5, C4, B1, B2, E1 |
7 | Treating BIM as a fleeting fad | NA1, E2, M5, B5 |
8 | Fears concerning the division of responsibility for a project | M6, NA6, N3, |
9 | Shortage of equipment/infrastructure/software | N1, C2, B4, AS2, AS3 |
10 | Low prices of designs | N2, N4, M6 |
No. | Barrier to Development of BIM | Importance of Barriers in Subsequent Years aij [%] | |||||
---|---|---|---|---|---|---|---|
2015 | 2017 | 2019 | 2020 | 2021 | 2022 | ||
1 | Cost of implementation [B1] | 78.2 | 65.4 | 68.2 | 64.0 | 65 | 74.3 |
2 | Low level of knowledge and lack of training on BIM [B2] | 60.2 | 74.8 | 68.4 | 40.0 | 39.4 | 42.5 |
3 | Low level of commitment to cooperation between members of a building investment process [B3] | 82.4 | 68.7 | 53.3 | 34.6 | 29.4 | 28.6 |
4 | Lack of standardization/regulations/procedures [B4] | 67 | 60.2 | 63.9 | 28.2 | 27.1 | 22.0 |
5 | Shortage of experts [B5] | 71.4 | 66.3 | 58 | 24.6 | 16.5 | 28.8 |
6 | Fear of change [B6] | 54.2 | 42.2 | 28.5 | 18.2 | 26.6 | 33.8 |
7 | Treating BIM as a fleeting fad [B7] | 22.2 | 14.3 | 16.9 | 17.3 | 15.9 | 16.1 |
8 | Fears concerning the division of responsibility for a project [B8] | 6.4 | 8.2 | 5.8 | 6.4 | 7.1 | 8.7 |
9 | Shortage of equipment/infrastructure/software [B9] | 83.2 | 76.5 | 54.3 | 32.6 | 15.9 | 10.9 |
10 | Low prices of designs [B10] | 83.9 | 77.4 | 67.4 | 66.2 | 58.9 | 44.7 |
No. | Bi | Importance of Barriers in Subsequent Years | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ratings [aij] | Weights [vij] | ||||||||||||
2015 | 2017 | 2019 | 2020 | 2021 | 2022 | 2015 | 2017 | 2019 | 2020 | 2021 | 2022 | ||
1 | B1 | 78.2 | 65.4 | 68.2 | 64.0 | 65 | 74.3 | 0.128 | 0.118 | 0.140 | 0.192 | 0.215 | 0.152 |
2 | B2 | 60.2 | 74.8 | 68.4 | 40.0 | 39.4 | 42.5 | 0.098 | 0.135 | 0.141 | 0.120 | 0.130 | 0.137 |
3 | B3 | 82.4 | 68.7 | 53.3 | 34.6 | 29.4 | 28.6 | 0.135 | 0.124 | 0.110 | 0.104 | 0.097 | 0.092 |
4 | B4 | 67 | 60.2 | 63.9 | 28.2 | 27.1 | 22.0 | 0.110 | 0.108 | 0.131 | 0.084 | 0.089 | 0.071 |
5 | B5 | 71.4 | 66.3 | 58 | 24.6 | 16.5 | 28.8 | 0.117 | 0.119 | 0.119 | 0.074 | 0.054 | 0.197 |
6 | B6 | 54.2 | 42.2 | 28.5 | 18.2 | 26.6 | 33.8 | 0.089 | 0.076 | 0.058 | 0.054 | 0.088 | 0.109 |
7 | B7 | 22.2 | 14.3 | 16.9 | 17.3 | 15.9 | 16.1 | 0.036 | 0.025 | 0.034 | 0.052 | 0.052 | 0.052 |
8 | B8 | 6.4 | 8.2 | 5.8 | 6.4 | 7.1 | 8.7 | 0.010 | 0.014 | 0.012 | 0.019 | 0.023 | 0.028 |
9 | B9 | 83.2 | 76.5 | 54.3 | 32.6 | 15.9 | 10.9 | 0.136 | 0.138 | 0.112 | 0.098 | 0.052 | 0.035 |
10 | B10 | 83.9 | 77.4 | 67.4 | 66.2 | 58.9 | 44.7 | 0.137 | 0.139 | 0.139 | 0.199 | 0.195 | 0.127 |
Ʃaij | 609.1 | 554 | 484.7 | 331.8 | 301.8 | 310.5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Barrier No. | Tendency 2015/2017 | Tendency 2017/2019 | Tendency 2019/2020 | Tendency 2020/2021 | Tendency 2021/2022 | Tendency 2015/2022 |
---|---|---|---|---|---|---|
a | b | c | d | e | f | g |
B1 | −0.0103 | 0.0227 | 0.0521 | 0.0225 | −0.0634 | 0.0236 |
B2 | 0.0362 | 0.0061 | −0.0206 | 0.0100 | 0.0064 | 0.0382 |
B3 | −0.0113 | −0.0140 | −0.0059 | −0.0067 | −0.0054 | −0.0433 |
B4 | −0.0013 | 0.0232 | −0.0469 | 0.0049 | −0.0188 | −0.0390 |
B5 | 0.0025 | 0.0000 | −0.0457 | −0.0193 | 0.1423 | 0.0798 |
B6 | −0.0128 | −0.0174 | −0.0040 | 0.0334 | 0.0209 | 0.0200 |
B7 | −0.0106 | 0.0091 | 0.0172 | 0.0006 | −0.0007 | 0.0156 |
B8 | 0.0043 | −0.0028 | 0.0072 | 0.0044 | 0.0045 | 0.0175 |
B9 | 0.0015 | −0.0261 | −0.0138 | −0.0455 | −0.0177 | −0.1016 |
B10 | 0.0020 | −0.0007 | 0.0604 | −0.0043 | −0.0682 | −0.0107 |
Barrier | Barrier Power Indicator 2015–2021 | Barrier | Barrier Power Indicator 2015–2022 | ||||
---|---|---|---|---|---|---|---|
(a1 + a5) | ϓij2015 | ϓij 2021 | (a1 + a6) | ϓij 2015 | ϓij 2022 | ||
B1 | 143.2 | 18.38 | 30.842 | B1 | 152.5 | 19.6 | 23.2 |
B2 | 99.6 | 9.84 | 13.003 | B2 | 102.7 | 10.2 | 14.1 |
B3 | 111.8 | 15.12 | 10.891 | B3 | 111.0 | 15.0 | 10.2 |
B4 | 94.1 | 10.35 | 8.450 | B4 | 89.0 | 9.8 | 6.3 |
B5 | 87.9 | 10.30 | 4.806 | B5 | 100.2 | 11.7 | 19.7 |
B6 | 80.8 | 7.19 | 7.122 | B6 | 88.0 | 7.8 | 9.6 |
B7 | 38.1 | 1.39 | 2.007 | B7 | 38.3 | 1.4 | 2.0 |
B8 | 13.5 | 0.14 | 0.318 | B8 | 15.1 | 0.2 | 0.4 |
B9 | 99.1 | 13.54 | 5.221 | B9 | 94.1 | 12.8 | 3.3 |
B10 | 142.8 | 19.67 | 27.869 | B10 | 128.6 | 17.7 | 16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szafranko, E.; Czyż, M. Analysis of Tendencies, Change and Strength of Barriers Limiting the Development of BIM: A Novelty Assessment Method. Sustainability 2024, 16, 6797. https://doi.org/10.3390/su16166797
Szafranko E, Czyż M. Analysis of Tendencies, Change and Strength of Barriers Limiting the Development of BIM: A Novelty Assessment Method. Sustainability. 2024; 16(16):6797. https://doi.org/10.3390/su16166797
Chicago/Turabian StyleSzafranko, Elżbieta, and Magdalena Czyż. 2024. "Analysis of Tendencies, Change and Strength of Barriers Limiting the Development of BIM: A Novelty Assessment Method" Sustainability 16, no. 16: 6797. https://doi.org/10.3390/su16166797
APA StyleSzafranko, E., & Czyż, M. (2024). Analysis of Tendencies, Change and Strength of Barriers Limiting the Development of BIM: A Novelty Assessment Method. Sustainability, 16(16), 6797. https://doi.org/10.3390/su16166797