An Influencing Factors Analysis of Road Traffic Accidents Based on the Analytic Hierarchy Process and the Minimum Discrimination Information Principle
Abstract
1. Introduction
2. Literature Review
2.1. Study on Road Traffic Accident Influencing Factors
2.1.1. Research on Human-Related Factors
2.1.2. Research on Vehicle-Related Factors
2.1.3. Research on Road-Related Factors
2.1.4. Research on Environment-Related Factors
2.2. Influencing Factors Analysis Based on the Analytic Hierarchy Process
3. Data
3.1. The Subjective Data
3.2. The Objective Data
4. Method
4.1. Analytic Hierarchy Process Calculation Steps
4.2. Principle of Minimum Discrimination Information
5. Hierarchical Model and Weight Calculation of Influencing Factors
5.1. Hierarchical Model of Road Traffic Accident Influencing Factors
5.2. Weight Calculation of Road Traffic Accident Influencing Factors
5.2.1. Analytic Hierarchy Process Determines the Subjective Weight
5.2.2. Data Normalization Determines the Objective Weight
5.2.3. The Principle of Minimum Discrimination Information Determines the Comprehensive Weight
5.2.4. Weight, Its Rank, and Weight Difference of Road Traffic Accident Influencing Factors
6. Discussion
6.1. Hierarchical Model of Influencing Factors
6.2. Subjective and Objective Weight Difference
6.3. Causative Factors
6.3.1. First-Level Causative Factors
6.3.2. Second-Level Causative Factors
6.3.3. Third-Level Causative Factors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Health Estimates 2019: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. Powered Two-and Three-Wheeler Safety: A Road Safety Manual for Decisionmakers and Practitioners; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Zhang, H.; Wu, C.; Yan, X.; Qiu, T.Z. The effect of fatigue driving on car following behavior. Transp. Res. Part F 2016, 43, 80–89. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lu, J.J. Feature selection for driving style and skill clustering using naturalistic driving data and driving behavior questionnaire. Accid. Anal. Prev. 2023, 185, 107022. [Google Scholar] [CrossRef] [PubMed]
- Rodwell, D.; Watson-Brown, N.; Bates, L. Perceptions of novice driver education needs; Development of a scale based on the Goals for driver education using young driver and parent samples. Accid. Anal. Prev. 2023, 191, 107190. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, P. Liability of older drivers in collisions. Ergonomics 1995, 38, 499–507. [Google Scholar] [CrossRef]
- Pitta, L.S.R.; Quintas, J.L.; Trindade, I.O.A.; Belchior, P.; da Silva Duarte Gameiro, K.; Gomes, C.M.; Nóbrega, O.T.; Camargos, E.F. Older drivers are at increased risk of fatal crash involvement: Results of a systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2021, 95, 104414. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, W.; Ge, Y. Trait anger causes risky driving behavior by influencing executive function and hazard cognition. Accid. Anal. Prev. 2022, 177, 106824. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Woodman, R.; Smyth, J.; Elliott, M. The relationship between aggressive driving and driver performance: A systematic review with meta-analysis. Accid. Anal. Prev. 2023, 183, 106972. [Google Scholar] [CrossRef]
- Abdel-Aty, M.A.; Abdelwahab, H.T. Exploring the relationship between alcohol and the driver characteristics in motor vehicle accidents. Accid. Anal. Prev. 2000, 32, 473–482. [Google Scholar] [CrossRef]
- Escamilla, C.; Bele, M.A.; Picó, A.; Rojo, J.M.; Mateu-Moll, J. A psychological profile of drivers convicted of driving under the influence of alcohol. Transp. Res. Part F 2023, 95, 380–390. [Google Scholar] [CrossRef]
- Strohl, K.P.; Blatt, J.; Council, F.; Georges, K.; Kiley, J.; Kurrus, R.; MacCartt, A.T.; Merritt, S.L.; Pack, A.I.; Rogus, S.; et al. Drowsy Driving and Automobile Crashes: Reports and Recommendations; DOT HS 1998, 808 707, III-30; National Center on Sleep Disorders Research & National Highway Traffic Safety Administration: Washington, DC, USA, 1998. [Google Scholar]
- Watling, C.N.; Home, M. Hazard perception performance and visual scanning behaviours: The effect of sleepiness. Transp. Res. Part F 2022, 90, 243–251. [Google Scholar] [CrossRef]
- Tefft, B.C. Prevalence of motor vehicle crashes involving drowsy drivers, United States, 1999–2008. Accid. Anal. Prev. 2012, 45, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Shi, X.; Zhang, Y.; Zhang, Y.; Xu, Y.; Chen, W.; Ye, Z. Adaptive forward collision warning system for hazmat truck drivers: Considering differential driving behavior and risk levels. Accid. Anal. Prev. 2023, 191, 107221. [Google Scholar] [CrossRef] [PubMed]
- Palk, G.; Freeman, J.; Kee, A.G.; Steinhardt, D.; Davey, J. The prevalence and characteristics of self-reported dangerous driving behaviours among a young cohort. Transp. Res. Part F 2011, 14, 147–154. [Google Scholar] [CrossRef]
- Zhu, T.; Qin, D.; Jia, W. Examining the associations between urban bus drivers’ rule violations and crash frequency using observational data. Accid. Anal. Prev. 2023, 187, 107074. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Mateus, H.; Quintana Jiménez, L.; López-Valdés, F.J. Analyzing traffic conflicts and the behavior of motorcyclists at unsignalized three-legged and four-legged intersections in Cartagena, Colombia. Accid. Anal. Prev. 2023, 191, 107222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ji, Y.; Lv, H.; Ma, X. Analysis of factors influencing delivery e-bikes’ red-light running behavior: A correlated mixed binary logit approach. Accid. Anal. Prev. 2021, 152, 105977. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Trespalacios, O.; Rubie, E.; Haworth, N. Risky business: Comparing the riding behaviours of food delivery and private bicycle riders. Accid. Anal. Prev. 2022, 177, 106820. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, J.; Quddus, M.; Zhou, W.; Shen, M. Influence of familiarity with traffic regulations on delivery riders’ e-bike crashes and helmet use: Two mediator ordered logit models. Accid. Anal. Prev. 2021, 159, 106277. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Shi, J. Comparison of injury severity between E-bikes-related and other two-wheelers-related accidents: Based on an accident dataset. Accid. Anal. Prev. 2023, 190, 107189. [Google Scholar] [CrossRef]
- Jensen, S.U. Pedestrian safety in Denmark. Transp. Res. Rec. 1999, 1674, 61–69. [Google Scholar] [CrossRef]
- Haleem, K.; Alluri, P.; Gan, A. Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accid. Anal. Prev. 2015, 81, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, Q.; Zhang, K.; Wong, S.C.; Xu, P. Analysis of the injury severity of motor vehicle–pedestrian crashes at urban intersections using spatiotemporal logistic regression models. Accid. Anal. Prev. 2023, 189, 107119. [Google Scholar] [CrossRef] [PubMed]
- Blower, D.; Green, P.; Matteson, A. Condition of trucks and truck crash involvement: Evidence from the large truck crash causation study. Transp. Res. Rec. J. Transp. Res. Board 2010, 2194, 21–28. [Google Scholar] [CrossRef]
- Schoor, O.V.; Niekerk, J.L.; Grobbelaar, B. Mechanical failures as a contributing cause to motor vehicle accidents—South Africa. Accid. Anal. Prev. 2001, 33, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Solah, M.S.; Hamzah, A.; Ariffin, A.H.; Paiman, N.F.; Hamid, I.A.; Wahab, M.A.F.A.; Jawi, Z.M.; Osman, M.R. Private vehicle roadworthiness in Malaysia from the vehicle inspection perspective article history. J. Soc. Automot. Eng. Malays. 2017, 1, 262–271. [Google Scholar]
- Haq, M.T.; Ampadu, V.-M.K.; Ksaibati, K. An investigation of brake failure related crashes and injury severity on mountainous roadways in Wyoming. J. Saf. Res. 2023, 84, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Quimby, A.R. Comparing UK and European drivers on speed and speeding issues: Some results from SARTRE 3 survey. In Behavioural Research in Road Safety: Fifteenth Seminar; Department for Transport: London, UK, 2005; pp. 49–68. ISBN 1904763618. [Google Scholar]
- Varet, F.; Apostolidis, T.; Granié, M.-A. Social value, normative features and gender differences associated with speeding and compliance with speed limits. J. Saf. Res. 2023, 84, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Cicchino, J.B. Effects of a rural speed management pilot program in Bishopville, Maryland, on public opinion and vehicle speeds. J. Saf. Res. 2023, 85, 278–286. [Google Scholar] [CrossRef]
- Wang, Y.; Tu, H.; Sze, N.N.; Li, H.; Ruan, X. A novel traffic conflict risk measure considering the effect of vehicle weight. J. Saf. Res. 2022, 80, 1–13. [Google Scholar] [CrossRef]
- Bunn, T.L.; Liford, M.; Turner, M.; Bush, A. Driver injuries in heavy vs. light and medium truck local crashes, 2010–2019. J. Saf. Res. 2022, 83, 26–34. [Google Scholar] [CrossRef]
- Afghari, A.P.; Vos, J.; Farah, H.; Papadimitriou, E. “I did not see that coming”: A latent variable structural equation model for understanding the effect of road predictability on crashes along horizontal curves. Accid. Anal. Prev. 2023, 187, 107075. [Google Scholar] [CrossRef] [PubMed]
- Elvik, R. International transferability of accident modification functions for horizontal curves. Accid. Anal. Prev. 2013, 59, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Ma, Z.; Chen, Z.; Luo, C. Analyzing the impact of curve and slope on multi-vehicle truck crash severity on mountainous freeways. Accid. Anal. Prev. 2023, 181, 106951. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, F.; Chen, S.; Xing, G.; Xie, Z.; Wang, F. A dynamic method to predict driving risk on sharp curves using multi-source data. Accid. Anal. Prev. 2023, 191, 107228. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lu, X.; Chien, S.I.-J.; Hu, D. Investigating factors influencing pedestrian injury severity at intersections. Traffic Inj. Prev. 2018, 19, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dutta, A.; Geedipally, S.R. Applying bayesian data mining to measure the effect of vehicular defects on crash severity. J. Transp. Saf. Secur. 2021, 13, 605–621. [Google Scholar] [CrossRef]
- DiLorenzo, T.; Yu, X. Use of ice detection sensors for improving winter road safety. Accid. Anal. Prev. 2023, 191, 107197. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Devarasetty, P.C.; Pande, A. Safety evaluation of multilane arterials in Florida. Accid. Anal. Prev. 2009, 41, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Akinci, B.; Qian, S. Inferring heterogeneous treatment effects of work zones on crashes. Accid. Anal. Prev. 2022, 177, 106811. [Google Scholar] [CrossRef]
- Islam, M.; Hosseini, P.; Jalayer, M. An analysis of single-vehicle truck crashes on rural curved segments accounting for unobserved heterogeneity. J. Saf. Res. 2022, 80, 148–159. [Google Scholar] [CrossRef]
- Uddin, M.; Huynh, N. Injury severity analysis of truck-involved crashes under different weather conditions. Accid. Anal. Prev. 2020, 141, 105529. [Google Scholar] [CrossRef]
- Yasanthi, R.G.N.; Babak Mehran, B.; Alhajyaseen, W.K.M. A reliability-based weather-responsive variable speed limit system to improve the safety of rural highways. Accid. Anal. Prev. 2022, 177, 106831. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Atya, M.; Al-Ahad, E.; Huang, H.; Choic, K. A study on crashes related to visibility obstruction due to fog and smoke. Accid. Anal. Prev. 2011, 43, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Batouli, G.; Guo, M.; Janson, B.; Marshall, W. Analysis of pedestrian-vehicle crash injury severity factors in Colorado 2006–2016. Accid. Anal. Prev. 2020, 148, 105782. [Google Scholar] [CrossRef] [PubMed]
- AlGhamdi, A.S. Experimental evaluation of fog warning system. Accid. Anal. Prev. 2007, 39, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Bee, F. At Least 40 Vehicles Crash in Dense Fog on Highway 198. Available online: http://www.fresnobee.com/news/local/article129797864.html (accessed on 19 July 2017).
- Das, A.; Ali Ghasemzadeh, A.; Ahmed, M.M. Analyzing the effect of fog weather conditions on driver lane-keeping performance using the SHRP2 naturalistic driving study data. J. Saf. Res. 2019, 68, 71–80. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Huang, Y.; Bian, L. A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet. Expert Syst. Appl. 2009, 36, 933–943. [Google Scholar] [CrossRef]
- Ma, H.; Li, S.; Chan, C.-S. Analytic Hierarchy Process (AHP)-based assessment of the value of non- World Heritage Tulou: A case study of Pinghe County, Fujian Province. Tour. Manag. Perspect. 2018, 26, 67–77. [Google Scholar] [CrossRef]
- Badea, A.; Prostean, G.; Goncalves, G.; Allaoui, H. Assessing risk factors in collaborative supply chain with the analytic hierarchy process (AHP). Procedia-Soc. Behav. Sci. 2014, 124, 114–123. [Google Scholar] [CrossRef]
- Ignaccolo, M.; Inturri, G.; García-Melón, M.; Giuffrida, N.; Le Pira, M.; Torrisi, V. Combining Analytic Hierarchy Process (AHP) with role-playing games for stakeholder engagement in complex transport decisions. Transp. Res. Procedia 2017, 27, 500–507. [Google Scholar] [CrossRef]
- Ha, J.S.; Seong, P.H. A method for risk-informed safety significance categorization using the analytic hierarchy process and bayesian belief networks. Reliab. Eng. Syst. Saf. 2004, 83, 1–15. [Google Scholar] [CrossRef]
- Abrahamsen, E.B.; Milazzo, M.F.; Selvik, J.T.; Asche, F.; Abrahamsen, H.B. Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process. Reliab. Eng. Syst. Saf. 2020, 198, 106811. [Google Scholar] [CrossRef]
- Guo, X.; Kapucu, M. Assessing social vulnerability to earthquake disaster using rough analytic hierarchy process method: A case study of Hanzhong City, China. Saf. Sci. 2020, 125, 104625. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Z.-R.; Song, Z.-Y.; Guo, P.-K.; Cao, X.-Y. Assessment of domino effects in the coal gasification process using Fuzzy Analytic Hierarchy Process and Bayesian Network. Saf. Sci. 2020, 130, 104888. [Google Scholar] [CrossRef]
- Kumar, A.; Sinha, P.K. Human error control in railways. Jordan J. Mech. Ind. Eng. 2008, 2, 183–190. [Google Scholar]
- Larue, G.S.; Naweed, A.; Rodwell, D. The road user, the pedestrian, and me: Investigating the interactions, errors and escalating risks of users of fully protected level crossings. Saf. Sci. 2018, 110, 80–88. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Mangini, A.M.; Precchiazzi, I. A new index to evaluate the safety performance level of railway transportation systems. Saf. Sci. 2020, 131, 104921. [Google Scholar] [CrossRef]
- Paltrinieri, N.; Landucci, G.; Molag, M.; Bonvicini, S.; Spadoni, G.; Cozzani, V. Risk reduction in road and rail LPG transportation by passive fire protection. J. Hazard Mater. 2009, 167, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Mearns, K.; Yule, S. The role of national culture in determining safety performance: Challenges for the global oil and gas industry. Saf. Sci. 2009, 47, 777–785. [Google Scholar] [CrossRef]
- Ghaleh, S.; Omidvari, M.; Nassiri, P.; Momeni, M.; Lavasani, S.M.M. Pattern of safety risk assessment in road fleet transportation of hazardous materials (oil materials). Saf. Sci. 2019, 116, 1–12. [Google Scholar] [CrossRef]
- Karahalios, H. The contribution of risk management in ship management: The case of ship collision. Saf. Sci. 2014, 63, 104–114. [Google Scholar] [CrossRef]
- Yoo, K.E.; Choi, Y.C. Analytic hierarchy process approach for identifying relative importance of factors to improve passenger security checks at airports. J. Air Transp. Manag. 2006, 12, 135–142. [Google Scholar] [CrossRef]
- Manca, D.; Brambilla, S. A methodology based on the Analytic Hierarchy Process for the quantitative assessment of emergency preparedness and response in road tunnels. Transp. Policy 2011, 18, 657–664. [Google Scholar] [CrossRef]
- Ahlström, C.; Raimondas Zemblys, R.; Finér, S.; Kircher, K. Alcohol impairs driver attention and prevents compensatory strategies. Accid. Anal. Prev. 2023, 184, 107010. [Google Scholar] [CrossRef]
- Schlueter, D.A.; Austerschmidt, K.L.; Schulz, P.; Beblo, T.; Driessen, M.; Kreisel, S.; Toepper, M. Overestimation of on-road driving performance is associated with reduced driving safety in older drivers. Accid. Anal. Prev. 2023, 187, 107086. [Google Scholar] [CrossRef]
- Hassan, A.; Lee, C.; Cramer, K.; Lafreniere, K. Analysis of driver characteristics, self-reported psychology measures and driving performance measures associated with aggressive driving. Accid. Anal. Prev. 2023, 188, 107097. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (accessed on 13 June 2024).
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Multicriteria Decision Making: The Analytic Hierarchy Process; McGraw-Hill, RSW Publishing: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Chang, L.; Chen, W. Data mining of tree-based models to analyze freeway accident frequency. J. Saf. Res. 2005, 36, 365–375. [Google Scholar] [CrossRef]
- Naik, B.; Tung, L.W.; Zhao, S.; Khattak, A.J. Weather impacts on single-vehicle truck crash injury severity. J. Saf. Res. 2016, 58, 57–65. [Google Scholar] [CrossRef]
- Knapp, K.; Kroeger, D.; Giese, K. Mobility and Safety Impacts of Winter Storm Events in a Freeway Environment; Center for Transportation Research and Education, Iowa State University: Ames, IA, USA, 2000. [Google Scholar]
- Claret, P.L.; del Castillo, J.D.; Moleón, J.J.; Cavanillas, A.B.; Martín, M.G.; Vargas, R.G. Age and sex differences in the risk of causing vehicle collisions in Spain, 1990 to 1999. Accid. Anal. Prev. 2003, 35, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Md Isa, M.H.; Abu Bakar, S.; Hamzah, A.; Ariffin, A.H.; Mohd Nazri, N.N.; Mohamad Hashim, M.S. Investigating motorcycle turn signal behaviors in mixed- traffic environments. In Recent Trends in Manufacturing and Materials towards Industry 4.0; Springer: Singapore, 2021; pp. 711–722. [Google Scholar]
- Clarke, D.D.; Ward, P.; Bartle, C.; Truman, W. Killer crashes: Fatal road traffic accidents in the UK. Accid. Anal. Prev. 2010, 42, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Abdel-Aty, M.; Wang, J.H. Time series trends of the safety effects of pavement resurfacing. Accid. Anal. Prev. 2017, 101, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Huang, H.; Sze, N.N.; Song, Z.; Hon, K.K. Diagnostic analysis of the effects of weather condition on pedestrian crash severity. Accid. Anal. Prev. 2019, 122, 318–324. [Google Scholar] [CrossRef]
- Retting, R.A.; Weinstein, H.B.; Solomon, M.G. Analysis of motor-vehicle crashes at stop signs in four US cities. J. Saf. Res. 2003, 34, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Nikitas, A.; Liu, H. A study of fatal pedestrian crashes at rural low-volume road intersections in southwest China. Traffic. Inj. Prev. 2018, 19, 298–304. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, L.; Yan, Y.; Li, G.; Qiao, D.; Tian, J. Distracted driving behavior in patients with insomnia. Accid. Anal. Prev. 2023, 183, 106971. [Google Scholar] [CrossRef]
Attribute | Category | Quantity | Attribute | Category | Quantity |
---|---|---|---|---|---|
Motor vehicle drivers in bad condition | Fatigue driving | 7 | Driving experience of motor vehicle drivers | ≤5 years | 16 |
Drunk driving | 9 | 6~8 years | 20 | ||
Emotional driving | 10 | 9~14 years | 23 | ||
Motor vehicle drivers’ misconduct | Driving without a license | 6 | 15~19 years | 13 | |
Illegal U-turn | 5 | >20 years | 15 | ||
Illegal overtaking | 8 | Age of motor vehicle drivers | ≤25 years old | 12 | |
Illegal lane change | 16 | 26~30 years old | 14 | ||
Traffic signal violation | 10 | 31~40 years old | 29 | ||
Failure to maintain a safe distance | 10 | 41~50 years old | 23 | ||
Not yielding to pedestrians at zebra crossings | 9 | 50~60 years old | 6 | ||
Untimely braking | 37 | >60 years old | 5 | ||
Non-motor vehicle driver factors | Swerve | 10 | Pedestrian and passenger factors | Illegal crossing lanes | 5 |
Crossing the road | 12 | Illegally crossing the traffic barrier | 7 | ||
No safety helmet | 22 | Traffic signal violation | 4 | ||
Occupying motor vehicle lanes | 4 | Not observing traffic environment | 11 |
Attribute | Category | Quantity | Attribute | Category | Quantity |
---|---|---|---|---|---|
Vehicle safety condition | Tire burst | 4 | Vehicle safety hazard | Overloaded | 5 |
Steering failure | 6 | Over speed | 18 | ||
Brake failure | 13 | Large truck | 22 |
Attribute | Category | Quantity | Attribute | Category | Quantity |
---|---|---|---|---|---|
Pavement condition | Dry | 61 | Road section | Flat straight section | 55 |
Wet and slippery | 38 | Uphill and downhill section | 10 | ||
Construction situation | Road construction | 14 | Sharp turn section | 8 | |
No road construction | 87 | Intersection | 28 | ||
Traffic sign | There are traffic signals or lines | 79 | |||
Lack of traffic signals | 22 |
Attribute | Category | Quantity | Attribute | Category | Quantity |
---|---|---|---|---|---|
Weather condition | Clear Weather | 26 | Sight condition | Day | 75 |
Overcast sky | 33 | Lighting at night | 11 | ||
Rainy and snowy day | 34 | No lighting at night | 15 | ||
Foggy weather | 8 | Visibility less than 100 m | 8 |
Scale | Degree of Importance |
---|---|
1 | Equally important |
3 | Moderately important |
5 | Strongly important |
7 | Very strongly important |
9 | Extremely important |
2, 4, 6, 8 | Intermediate values |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Result | First-Level Influencing Factors | Second-Level Influencing Factors | Third-Level Influencing Factors | Selected Studies |
---|---|---|---|---|
Urban road traffic accidents | Human factor U1 | Motor vehicle drivers’ bad condition U11 | Inexperience U111 | [4,5] |
Old and infirm U112 | [6,7] | |||
Emotional driving U113 | [8,9] | |||
Drunk driving U114 | [10,11] | |||
Fatigue driving U115 | [12,13,14] | |||
Motor vehicle drivers’ misconduct U12 | Driving without a license U121 | [17] | ||
Illegal U-turn U122 | [16] | |||
Illegal overtaking U123 | [16] | |||
Illegal lane change U124 | [17] | |||
Traffic signal violation U125 | [17] | |||
Failure to maintain a safe distance U126 | [15] | |||
Not yielding to pedestrians at zebra crossings U127 | [17] | |||
Untimely braking U128 | [15] | |||
Non-motor vehicle drivers’ unsafe behavior U13 | Swerve U131 | [22] | ||
Crossing the road U132 | [19,20] | |||
No safety helmet U133 | [20,21] | |||
Occupy motor vehicle lanes U134 | [22] | |||
Unsafe behavior by pedestrians and passengers U14 | Illegal crossing lanes U141 | [25] | ||
Illegally crossing the traffic barrier U142 | [25] | |||
Traffic signal violation U143 | [24] | |||
Not observing traffic environment U144 | [23,25] | |||
Vehicle factor U2 | Safety condition U21 | Tire burst U211 | [27,28] | |
Steering failure U212 | [26] | |||
Brake failure U213 | [29] | |||
Safety hazard U22 | Over speed U221 | [30,31,32] | ||
Overloaded U222 | [33] | |||
Large truck U223 | [34] | |||
Road factor U3 | Road section U31 | Uphill and downhill section U311 | [37] | |
Sharp turn section U312 | [10,38] | |||
Intersection U313 | [37,38] | |||
Road condition U32 | Slippery road U321 | [41] | ||
Pavement construction U322 | [42,43] | |||
Traffic sign problem U323 | [44,45] | |||
Environment factor U4 | Weather condition U41 | Rain and snow U411 | [45,46] | |
Foggy U412 | [21,47] | |||
Sight condition U42 | No lighting at night U421 | [37,48] | ||
Visibility below 100 m U422 | [21,49,50,51] |
U1 | U2 | U3 | U4 | |
---|---|---|---|---|
U1 | 1 | 3 | 2 | 2 |
U2 | 1/3 | 1 | 1/3 | 1 |
U3 | 1/2 | 3 | 1 | 4 |
U4 | 1/2 | 1 | 1/4 | 1 |
Judgment Matrixes | CI | RI | CR | |
---|---|---|---|---|
U11–U14 | 4.233 | 0.078 | 0.9 | 0.086 |
U21–U22 | 2 | 0 | 0 | 0 |
U31–U32 | 2 | 0 | 0 | 0 |
U41–U42 | 2 | 0 | 0 | 0 |
U111–U115 | 5.306 | 0.076 | 1.12 | 0.068 |
U121–U128 | 8.949 | 0.136 | 1.41 | 0.096 |
U131–U134 | 4.184 | 0.061 | 0.9 | 0.068 |
U141–U144 | 4.121 | 0.04 | 0.9 | 0.045 |
U211–U213 | 3.054 | 0.027 | 0.58 | 0.046 |
U221–U223 | 3.054 | 0.027 | 0.58 | 0.046 |
U311–U313 | 3.094 | 0.047 | 0.58 | 0.081 |
U321–U323 | 3.104 | 0.052 | 0.58 | 0.089 |
U411–U412 | 2 | 0 | 0 | 0 |
U421–U422 | 2 | 0 | 0 | 0 |
First-Level Factors | Subjective (Global) Weight | Objective (Global) Weight | Comprehensive Weight | First-Level Global Weight | Rank | Weight Difference |
---|---|---|---|---|---|---|
U1 | 0.405 | 0.468 | 0.437 | 0.437 | 1 | −0.063 |
U2 | 0.126 | 0.143 | 0.135 | 0.135 | 4 | −0.017 |
U3 | 0.340 | 0.252 | 0.294 | 0.294 | 2 | 0.088 |
U4 | 0.129 | 0.137 | 0.134 | 0.134 | 3 | −0.008 |
Second-Level Factors | Subjective Weight | Subjective Global Weight | Objective Weight | Objective Global Weight | Comprehensive Weight | Second-Level Global Weight | Rank | Weight Difference |
---|---|---|---|---|---|---|---|---|
U11 | 0.194 | 0.078 | 0.211 | 0.099 | 0.202 | 0.089 | 6 | −0.021 |
U12 | 0.429 | 0.174 | 0.453 | 0.212 | 0.441 | 0.193 | 1 | −0.038 |
U13 | 0.230 | 0.093 | 0.215 | 0.101 | 0.223 | 0.098 | 4 | −0.008 |
U14 | 0.147 | 0.060 | 0.121 | 0.057 | 0.134 | 0.058 | 8 | 0.003 |
U21 | 0.333 | 0.042 | 0.338 | 0.048 | 0.336 | 0.045 | 10 | −0.006 |
U22 | 0.667 | 0.084 | 0.662 | 0.095 | 0.664 | 0.089 | 5 | −0.011 |
U31 | 0.4 | 0.136 | 0.383 | 0.097 | 0.392 | 0.115 | 3 | 0.039 |
U32 | 0.6 | 0.204 | 0.617 | 0.155 | 0.608 | 0.179 | 2 | 0.049 |
U41 | 0.667 | 0.086 | 0.646 | 0.088 | 0.656 | 0.088 | 7 | −0.002 |
U42 | 0.333 | 0.043 | 0.354 | 0.048 | 0.344 | 0.046 | 9 | −0.005 |
Third-Level Factors | Subjective Weight | Subjective Global Weight | Objective Weight | Objective Global Weight | Comprehensive Weight | Third-Level Global Weight | Rank | Weight Difference |
---|---|---|---|---|---|---|---|---|
U111 | 0.372 | 0.029 | 0.340 | 0.034 | 0.356 | 0.032 | 11 | −0.005 |
U112 | 0.110 | 0.009 | 0.106 | 0.011 | 0.109 | 0.010 | 34 | −0.002 |
U113 | 0.226 | 0.018 | 0.213 | 0.021 | 0.220 | 0.019 | 21 | −0.003 |
U114 | 0.146 | 0.011 | 0.191 | 0.019 | 0.167 | 0.015 | 26 | −0.008 |
U115 | 0.146 | 0.011 | 0.149 | 0.015 | 0.148 | 0.013 | 28 | −0.004 |
U121 | 0.072 | 0.013 | 0.059 | 0.013 | 0.066 | 0.013 | 30 | 0 |
U122 | 0.087 | 0.015 | 0.050 | 0.011 | 0.066 | 0.013 | 29 | 0.004 |
U123 | 0.085 | 0.015 | 0.079 | 0.017 | 0.083 | 0.016 | 24 | −0.002 |
U124 | 0.173 | 0.030 | 0.158 | 0.034 | 0.167 | 0.032 | 10 | −0.004 |
U125 | 0.128 | 0.022 | 0.099 | 0.021 | 0.114 | 0.022 | 17 | 0.001 |
U126 | 0.116 | 0.020 | 0.099 | 0.021 | 0.108 | 0.021 | 18 | −0.001 |
U127 | 0.099 | 0.017 | 0.089 | 0.019 | 0.095 | 0.018 | 22 | −0.002 |
U128 | 0.241 | 0.042 | 0.366 | 0.078 | 0.300 | 0.058 | 4 | −0.036 |
U131 | 0.217 | 0.020 | 0.208 | 0.021 | 0.213 | 0.021 | 19 | −0.001 |
U132 | 0.258 | 0.024 | 0.25 | 0.025 | 0.254 | 0.025 | 16 | −0.001 |
U133 | 0.434 | 0.040 | 0.458 | 0.046 | 0.446 | 0.044 | 7 | −0.006 |
U134 | 0.091 | 0.009 | 0.083 | 0.008 | 0.087 | 0.009 | 36 | 0.001 |
U141 | 0.160 | 0.010 | 0.185 | 0.011 | 0.173 | 0.010 | 32 | −0.001 |
U142 | 0.227 | 0.013 | 0.259 | 0.015 | 0.243 | 0.014 | 27 | −0.002 |
U143 | 0.160 | 0.010 | 0.148 | 0.008 | 0.154 | 0.009 | 35 | 0.002 |
U144 | 0.453 | 0.027 | 0.407 | 0.023 | 0.430 | 0.025 | 15 | 0.004 |
U211 | 0.184 | 0.008 | 0.174 | 0.008 | 0.179 | 0.008 | 37 | 0 |
U212 | 0.232 | 0.010 | 0.261 | 0.013 | 0.246 | 0.011 | 31 | −0.003 |
U213 | 0.584 | 0.025 | 0.565 | 0.027 | 0.575 | 0.026 | 13 | −0.002 |
U221 | 0.396 | 0.033 | 0.4 | 0.038 | 0.398 | 0.036 | 8 | −0.005 |
U222 | 0.105 | 0.009 | 0.111 | 0.011 | 0.108 | 0.010 | 33 | −0.002 |
U223 | 0.499 | 0.042 | 0.489 | 0.046 | 0.494 | 0.044 | 6 | −0.004 |
U311 | 0.225 | 0.031 | 0.217 | 0.021 | 0.221 | 0.025 | 14 | 0.010 |
U312 | 0.165 | 0.023 | 0.174 | 0.017 | 0.170 | 0.020 | 20 | 0.006 |
U313 | 0.610 | 0.083 | 0.609 | 0.059 | 0.609 | 0.070 | 3 | 0.024 |
U321 | 0.550 | 0.112 | 0.514 | 0.080 | 0.532 | 0.095 | 1 | 0.032 |
U322 | 0.189 | 0.039 | 0.189 | 0.029 | 0.189 | 0.034 | 9 | 0.01 |
U323 | 0.261 | 0.053 | 0.297 | 0.046 | 0.279 | 0.050 | 5 | 0.007 |
U411 | 0.8 | 0.069 | 0.810 | 0.071 | 0.805 | 0.071 | 2 | −0.002 |
U412 | 0.2 | 0.017 | 0.191 | 0.017 | 0.195 | 0.017 | 23 | 0 |
U421 | 0.667 | 0.029 | 0.652 | 0.032 | 0.659 | 0.030 | 12 | −0.003 |
U422 | 0.333 | 0.014 | 0.348 | 0.017 | 0.341 | 0.016 | 25 | −0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Qiang, Y.; Zhang, N.; Yang, X.; Zhao, Z.; Wang, X. An Influencing Factors Analysis of Road Traffic Accidents Based on the Analytic Hierarchy Process and the Minimum Discrimination Information Principle. Sustainability 2024, 16, 6767. https://doi.org/10.3390/su16166767
Zeng Y, Qiang Y, Zhang N, Yang X, Zhao Z, Wang X. An Influencing Factors Analysis of Road Traffic Accidents Based on the Analytic Hierarchy Process and the Minimum Discrimination Information Principle. Sustainability. 2024; 16(16):6767. https://doi.org/10.3390/su16166767
Chicago/Turabian StyleZeng, Youzhi, Yongkang Qiang, Ning Zhang, Xiaobao Yang, Zhenjun Zhao, and Xiaoqiao Wang. 2024. "An Influencing Factors Analysis of Road Traffic Accidents Based on the Analytic Hierarchy Process and the Minimum Discrimination Information Principle" Sustainability 16, no. 16: 6767. https://doi.org/10.3390/su16166767
APA StyleZeng, Y., Qiang, Y., Zhang, N., Yang, X., Zhao, Z., & Wang, X. (2024). An Influencing Factors Analysis of Road Traffic Accidents Based on the Analytic Hierarchy Process and the Minimum Discrimination Information Principle. Sustainability, 16(16), 6767. https://doi.org/10.3390/su16166767