Reviewing Improved Anaerobic Digestion by Combined Pre-Treatment of Waste-Activated Sludge (WAS)
Abstract
:1. Introduction
1.1. Anaerobic Digestion and Worldwide Application
1.2. The Circular Economy Concept of Anaerobic Digestion
1.3. The Degradation of WAS to Enhance Its AD
1.4. Objectives of This Review
2. Reviewing the Literature Data on Combined WAS Pre-Treatment
2.1. Thermochemical Acid/Alkaline Hydrolysis Pre-Treatment
2.2. Alkaline and High-Pressure Homogenizer Pre-Treatment
2.3. Alkaline and Ultrasound Pretreatment
2.4. Alkaline and Microwave (MW) Pre-Treatment
2.5. Microwave and Oxidation Pre-Treatment
2.6. Ultrasound and Peroxidation Pre-Treatment
2.7. Pulsed Electric Field (PEF) Pre-Treatment
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appels, L.; Baeyens, J.; Dewil, R. Siloxane removal from biosolids by peroxidation. Energy Convers. Manag. 2008, 49, 2859–2864. [Google Scholar] [CrossRef]
- Ramli, S.; Baki, A.M.; Ayub, M.A.; Talib, S.A.; Tajuddin, R.M.; Atan, I.; Jaafar, J.; Abdullah, N.A. Renewable energy from biogas generated by sewage sludge–relationship between sludge volume and power generated. Sci. Res. J. 2008, 5, 1–9. [Google Scholar] [CrossRef]
- Bollenger, B.; Gallouin, Y. Biogas Composition, Recovery and Purification. Available online: https://www.techniques-ingenieur.fr (accessed on 23 April 2024).
- Bioenergy, I. A Perspective on the State of the Biogas Industryfrom Selected Member Countries; IEA Bioenergy: Paris, France, 2022. [Google Scholar]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of sewage sludge using anaerobic digestion in Malaysia: Current state and challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef]
- Arshad, M.; Ansari, A.R.; Qadir, R.; Tahir, M.H.; Nadeem, A.; Mehmood, T.; Alhumade, H.; Khan, N. Green electricity generation from biogas of cattle manure: An assessment of potential and feasibility in Pakistan. Front. Energy Res. 2022, 10, 911485. [Google Scholar] [CrossRef]
- Hidayati, S.; Utomo, T.P.; Suroso, E.; Maktub, Z.A. Technical and technology aspect assessment of biogas agroindustry from cow manure: Case study on cattle livestock industry in South Lampung District. Proc. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012072. [Google Scholar] [CrossRef]
- Anderson, N.; Snaith, R.; Madzharova, G.; Bonfait, J.; Doyle, L.; Godley, A.; Lam, M.; Day, G. Sewage Sludge and Circular Economy; European Environment Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Bachman, N. Sustainable Biogas Productionin Municipal Wastewater Treatment Plants; IEA Bioenergy: Paris, France, 2015. [Google Scholar]
- Xu, A.; Wu, Y.-H.; Chen, Z.; Wu, G.; Wu, Q.; Ling, F.; Huang, W.E.; Hu, H.-Y. Towards the new era of wastewater treatment of China: Development history, current status, and future directions. Water Cycle 2020, 1, 80–87. [Google Scholar] [CrossRef]
- Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic digestion: An alternative resource treatment option for food waste in China. Sci. Total Environ. 2021, 779, 146397. [Google Scholar] [CrossRef]
- Nielsan, K.; RoB, C.-L.; RoB, C.; Hoffmann, M.; Muskolus, A.; Ellmer, F.; Kautz, T. The Chemical Composition of Biogas Determines Their Effeet on Soil Microbial Activity. Agriculture 2020, 10, 244. [Google Scholar] [CrossRef]
- Vautrin, F.; Piveteau, P.; Cannavacciuolo, M.; Barré, P.; Chauvin, C.; Villenave, C.; Sadet-Bourgeteau, S. The short-term response of soil microbial communities to digestate application depends on the characteristics of the digestate and soil type. Appl. Soil Ecol. 2024, 193, 105105. [Google Scholar] [CrossRef]
- Fertilizzers Europe. Forecast of Food, Farming and Fertilizer Use in the European Union 2021–2031. 2021. Available online: https://www.fertilizerseurope.com/forecast-of-foodfarming-and-fertilizer-use-in-the-european-union-2021-2031 (accessed on 23 April 2024).
- European Biogas Association. Anearobic Digestion, Report of March 2024. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2024/04/Biogases-towards-2040-and-beyond_FINAL.pdf (accessed on 23 April 2024).
- Herrera, A.; D’Imporzano, G.; Clagnan, E.; Pigoli, A.; Bonadei, E.; Meers, E.; Adani, F. Pig slurry management producing n mineral concentrates: A full-scale case study. ACS Sustain. Chem. Eng. 2023, 11, 7309–7322. [Google Scholar] [CrossRef]
- Reuland, G.; Sigurnjak, I.; Dekker, H.; Sleutel, S.; Meers, E. Assessment of the carbon and nitrogen mineralisation of digestates elaborated from distinct feedstock profiles. Agronomy 2022, 12, 456. [Google Scholar] [CrossRef]
- Yan, X.; Ying, Y.; Li, K.; Zhang, Q.; Wang, K. A review of mitlgation technologles and management strategies for greenhouse gas and alr pollutant emissions in livestock production. J. Environ. Manag. 2024, 352, 120028. [Google Scholar] [CrossRef]
- Selvaraj, P.S.; Periasamy, K.; Suganya, K.; Ramadass, K.; Muthusamy, S.; Ramesh, P.; Bush, R.; Vincent, S.G.T.; Palanisami, T. Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Crit. Rev. Environ. Sclence Technol. 2022, 52, 1915–1999. [Google Scholar] [CrossRef]
- Wang, W.; Chang, J.-S.; Lee, D.-J. Anaerobic digestate valorisation beyond agricultural application: Current status and prospects. Bioresour. Technol. 2023, 373, 128742. [Google Scholar] [CrossRef]
- Fu, S.-F.; Wang, D.-H.; Zhong x Zou, H.; Zheng, Y. Producing insect protein from food waste digestate via black soldier fy larvaecultivation: A promising choice for digestate disposal. Sci. Total Environ. 2022, 830, 154654. [Google Scholar] [CrossRef]
- Zheng, H.; Tang, F.; Lin, Y.; Xu, Z.; Xie, Z.; Tian, J. Solid-state anaerobic digestion of rice straw pretreated witi swine manure digested effluent. J. Clean. Prod. 2022, 348, 131252. [Google Scholar] [CrossRef]
- Ma, S.; Li, L.; Ren, X.; Zhu, W.; Wang, H. A green pretreatment strategy using CO2 and acidogenesis liquid digestate asreagents for blomethane enhancement from corn stover. Ind. Crops Prod. 2022, 189, 115844. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Singh, S.P.; Atkinson, J.D.; Lam, S.S.; Iqbal, H.M.N.; Tong, Y.W. Biotransformation of food waste into biogas hydrogen fuel—A review. Int. J. Hydrogen Energy 2024, 52, 46–60. [Google Scholar] [CrossRef]
- Deng, Y.; Baeyens, J.; Liu, H. Renewable electricity and ‘green’ feedstock-based chemicals will foster industrial sustainability. Innov. Energy 2024, 1, 100016-1. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy and resources recovery from excess sewage sludge: A holistic analysis of opportunities and strategies. Resour. Conserv. Recycl. Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Kim, D.H.; Cho, S.K.; Lee, M.K.; Kim, M.S. Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency. Bioresour. Technol. 2013, 143, 660–664. [Google Scholar] [CrossRef]
- Nkuna, S.G.; Olwal, T.O.; Chowdhury, S.D.; Ndambuki, J.M. A review of wastewater sludge-to-energy generation focused on thermochemical technologies: An improved technological, economical and socio-environmental aspect. Clean. Waste Syst. 2024, 7, 100130. [Google Scholar] [CrossRef]
- Rani, R.U.; Kaliappan, S.; Kumar, S.A.; Banu, J.R. Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresour. Technol. 2012, 126, 107–116. [Google Scholar] [CrossRef]
- Sun, L.; Li, M.; Liu, B.; Li, R.; Deng, H.; Zhu, X.; Zhu, X.; Tsang, D.C.W. Machine learning for municipal sludge recycling by thermochemical conversion towards sustainability. Bioresour. Technol. 2024, 394, 130254. [Google Scholar] [CrossRef]
- Takashima, M.; Tanaka, Y. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge. Water Sci. Technol. 2010, 62, 2647–2654. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.W.; Li, Y. Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresour. Technol. 2014, 173, 168–176. [Google Scholar] [CrossRef]
- Xu, H.C.; He, P.J.; Yu, G.H.; Shao, L.M. Effect of ultrasonic pretreatment on anaerobic digestion its sludge dewaterability. J. Environ. Sci. 2011, 23, 1472–1478. [Google Scholar] [CrossRef]
- Demir, Ö. Performance of thermophilic anaerobic sludge digester after alkaline-assisted thermal disintegration optimization using response surface methodology. Water Environ. J. 2018, 32, 597–606. [Google Scholar] [CrossRef]
- Guo, H.G.; Du, L.Z.; Liang, J.F.; Yang, Z.J.; Cui, G.H.; Zhang, K.Q. Influence of Alkaline-Thermal Pretreatment on High-Solids Anaerobic Digestion of Dewatered Activated Sludge. BioResources 2017, 12, 195–210. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J.; Creemers, C. Alkalinethermal sludge hydrolysis. J. Hazard. Mater. 2003, 97, 295–314. [Google Scholar] [CrossRef]
- Saha, M.; Eskicioglu, C.; Marin, J. Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresour. Technol. 2011, 102, 7815–7826. [Google Scholar] [CrossRef]
- Stephenson, R.; Rabinowitz, B.; Laliberte, S.; Elson, P. Teaching an old digester new tricks: Full-scale demonstration of the MicroSludge process to liquefy municipal waste activated sludge. Proc. Water Environ. Fed. 2005, 2005, 386–411. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, P.Y.; Shang, R.; Ye, J.; Wu, Y.; Zhang, H.B.; Liu, J.B.; Gou, X.Y.; Zeng, G.M.; Zhou, S.Q. Effect of high pressure homogenization on anaerobic digestion of the sludge pretreated by combined alkaline and high pressure homogenization. Desalin. Water Treat. 2017, 62, 168–174. [Google Scholar] [CrossRef]
- Sun, Y.X.; Liu, Y.; Zhang, Y.H.; Huang, Y.; Wang, L.; Dai, L.; Xu, J.P.; Wang, H.L. Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion. Chem. Eng. J. 2019, 374, 1364–1372. [Google Scholar] [CrossRef]
- Zawieja, I.; Brzeska, K. Disintegrating Influence of Sonication on the Excess Sludge Liquification and their Microbiological Indicator. Rocz. Ochr. Sr. 2019, 21, 456–471. [Google Scholar]
- Chiu, Y.-C.; Chang, C.-N.; Lin, J.-G.; Huang, S.-J. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Water Sci. Technol. 1997, 36, 155–162. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, H.; Chen, J.H.; Du, G.C.; Chen, J. Enhancement of solubilization and acidification of waste activated sludge by pretreatment. Waste Manag. 2008, 28, 2614–2622. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Lee, J.; Kim, J.H.; Lim, H.C. Optimal strategies of fill aeration in a sequencing batch reactor for biological nitrogen carbon removal Korean. J. Chem. Eng. 2010, 27, 925–929. [Google Scholar]
- Tian, X.B.; Ng, W.J.; Trzcinski, A.P. Optimizing the synergistic effect of sodium hydroxide/ultrasound pre-treatment of sludge. Ultrason. Sonochem. 2018, 48, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.R.; Guan, R.L.; Wachemo, A.C.; Zhu, C.; Zou, D.X.; Li, Y.; Liu, Y.P.; Zuo, X.Y.; Li, X.J. Enhancing methane production of excess sludge and dewatered sludge with combined low frequency CaO-ultrasonic pretreatment. Bioresour. Technol. 2019, 273, 425–430. [Google Scholar] [CrossRef]
- Arman, I.; Ansari, K.B.; Danish, M.; Farooqi, I.H.; Jain, A.K. Ultrasonic-Assisted Feedstock Disintegration for Improved Biogas Production in Anaerobic Digestion: A Review. BioEnergy Res. 2023, 16, 1512–1527. [Google Scholar] [CrossRef]
- Baffoe, E.E.; Otoo, S.L.; Kareem, S.; Dankwah, J.R. Evaluation of initial pH and urea hydrogen peroxide (UP) co-pretreatment on waste-activated sludge. Environ. Res. 2024, 246, 118155. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhang, J.; Gao, W.; Wang, Y.; Duan, H.; Sun, Z. Comprehensive assessment of the ultrasound lysis-cryptic growth technology for in situ sludge reduction: Mass balance and environmental and economic analvses. Appl. Energy 2024, 360, 122787. [Google Scholar] [CrossRef]
- Yuan, H.P.; Zhu, N.W. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives. Sci. Total Environ. 2024, 912, 18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dong, Y.L.; Wang, Q.W.; Xu, D.Y.; Lv, L.Y.; Zhang, G.M.; Ren, Z.J. Effects of lysed sludge reflux point on ultrasound lysis-cryptic growth in anaerobic/aerobic (A/O) wastewater treatment: Sludge reduction, microbial community, and metabolism. J. Environ. Manag. 2023, 347, 11. [Google Scholar] [CrossRef]
- Liu, J.B.; Yang, M.; Zhang, J.Y.; Zheng, J.X.; Xu, H.; Wang, Y.W.; Wei, Y.S. A comprehensive insight into the effects of microwave-H2O2 pretreatment on concentrated sewage sludge anaerobic digestion based on semi-continuous operation. Bioresour. Technol. 2018, 256, 118–127. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, E.; Oh, S.E.; Shin, H.S. Combined (alkaline plus ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010, 44, 3093–3100. [Google Scholar] [CrossRef]
- Bao, H.X.; Yang, H.; Zhang, H.; Liu, Y.C.; Su, H.Z.; Shen, M.L. Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system. Environ. Res. 2020, 180, 7. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Xiao, K.K.; Chen, Y.; Soh, Y.N.A.; Zhou, Y. Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: From macro to micro. Water Res. 2018, 142, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.K.; Lo, S.L. Enhancement in mesophilic aerobic digestion of waste activated sludge by chemically assisted thermal pretreatment method. Bioresour. Technol. 2012, 119, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.F.; Chang, W.C.; Chuang, S.H.; Fang, Y.L. Comparison of polyhydroxyalkanoates production by activated sludges from anaerobic and oxic zones of an enhanced biological phosphorus removal system: Effect of sludge retention time. Bioresour. Technol. 2011, 102, 5473–5478. [Google Scholar] [CrossRef]
- Chi, Y.Z.; Li, Y.Y.; Fei, X.N.; Wang, S.P.; Yuan, H.Y. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave alkaline pretreatment. J. Environ. Sci. 2011, 23, 1257–1265. [Google Scholar] [CrossRef]
- Park, C.; Fang, Y.; Murthy, S.N.; Novak, J.T. Effects of floc aluminum on activated sludge characteristics and removal of 17-α-ethinylestradiol in wastewater systems. Water Res. 2010, 44, 1335–1340. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.L. Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renew. Sust. Energ. Rev. 2013, 18, 288–305. [Google Scholar] [CrossRef]
- Alqaralleh, R.M.; Kennedy, K.; Delatolla, R. Microwave vs. alkaline-microwave pretreatment for enhancing Thickened Waste Activated Sludge and fat, oil, and grease solubilization, degradation and biogas production. J. Environ. Manag. 2019, 233, 378–392. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.M. Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion. Appl. Energy 2016, 183, 1123–1132. [Google Scholar] [CrossRef]
- Banu, J.R.; Kannah, R.Y.; Kavitha, S.; Gunasekaran, M.; Kumar, G. Novel insights into scalability of biosurfactant combined microwave disintegration of sludge at alkali pH for achieving profitable bioenergy recovery and net profit. Bioresour. Technol. 2018, 267, 281–290. [Google Scholar] [CrossRef]
- Cao, M.H.; Xu, P.; Tian, K.; Shi, F.Y.; Zheng, Q.Z.; Ma, D.; Zhang, G.S. Recent advances in microwave-enhanced advanced oxidation processes (MAOPs) for environmental remediation: A review. Chem. Eng. J. 2023, 471, 23. [Google Scholar] [CrossRef]
- Ries, S.; Liao, P.; Mavinic, D.; Lo, V. Anaerobic digestion of thickened waste activated sludge after microwave enhanced advance oxidation pretreatment. J. Environ. Eng. Sci. 2023, 19, 78–91. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, C.; Wang, H.; Xu, S.; Zhuang, X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. J. Environ. Manag. 2023, 330, 117033. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wensel, P.C.; Ma, J.; Chen, S. Mathematical Modeling in Anaerobic Digestion (AD). J. Bioremed. Biodegrad. 2013, S4, 003. [Google Scholar] [CrossRef]
- Ambrose, H.W.; Chin, C.T.L.; Hong, E.; Philip, L.; Suraishkumar, G.K.; Sen, T.K.; Khiadani, M. Effect of hybrid (microwave-H2O2) feed sludge pretreatment on single and two-stage anaerobic digestion efficiency of real mixed sewage sludge. Process Saf. Environ. Protect. 2020, 136, 194–202. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Lo, S.L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: An up to date review. Rev. Environ. Sci. Bio-Technol. 2011, 10, 215–242. [Google Scholar] [CrossRef]
- Liu, J.B.; Jia, R.L.; Wang, Y.W.; Wei, Y.S.; Zhang, J.Y.; Wang, R.; Cai, X. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process? Environ. Sci. Pollut. Res. 2017, 24, 9016–9025. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.Y.; Song, K.; Gu, Y.L.; Gao, X.F. Improving methane production from algal sludge based anaerobic digestion by co-pretreatment with ultrasound zero-valent iron. J. Clean. Prod. 2020, 255, 9. [Google Scholar] [CrossRef]
- Liu, N.; Gong, C.X.; Jiang, J.G.; Yan, F.; Tian, S.C. Controlling odors from sewage sludge using ultrasound coupled with Fenton oxidation. J. Environ. Manag. 2016, 181, 124–128. [Google Scholar] [CrossRef]
- Sivagami, K.; Anand, D.; Divyapriya, G.; Nambi, I. Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process. Ultrason. Sonochem. 2019, 51, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels 2016, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Ki, D.; Parameswaran, P.; Rittmann, B.E.; Torres, C.I. Effect of Pulsed Electric Field Pretreatment on Primary Sludge for Enhanced Bioavailability and Energy Capture. Environ. Eng. Sci. 2015, 32, 831–837. [Google Scholar] [CrossRef]
- Ki, D.; Parameswaran, P.; Popat, S.C.; Rittmann, B.E.; Torres, C.I. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells. Bioresour. Technol. 2015, 195, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Westerholm, M.; Crauwels, S.; Houtmeyers, S.; Meerbergen, K.; Van Geel, M.; Lievens, B.; Appels, L. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge. Bioresour. Technol. 2016, 218, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.Y.; Lu, X.Q.; Kato, H.; Zhao, Y.C.; Li, Y.Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Safavi, S.M.; Unnthorsson, R. Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environ. Technol. 2017, 39, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Deng, Y.D.; Men, Y.K. Disruption of Microbial Cell within Waste Activated Sludge by DC Corona Assisted Pulsed Electric Field. IEEE Trans. Plasma Sci. 2016, 44, 2682–2691. [Google Scholar] [CrossRef]
- Gao, Y.; Deng, Y.D.; Zhang, J.; Liu, F.J.; Men, Y.K.; Wang, Z.; Du, B.X. Effect of Pulsed Electric Field on Pretreatment Efficiency in Anaerobic Digestion of Excess Sludge. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials, Sydney, NSW, Australia, 19–22 July 2015. [Google Scholar] [CrossRef]
- Ning, X.; Lin, R.; Mao, J.; Deng, C.; Ding, L.; O’Shea, R.; Wall, D.M.; Murphy, J.D. Improving the efficiency of anaerobic digestion and optimising in-situ CO2 bioconversion through the enhanced local electric field at the microbe-electrode interface. Energy Convers. Manag. 2024, 304, 118245. [Google Scholar] [CrossRef]
Components (vol%) | Domestic Waste | Sewage Sludge | Manure |
---|---|---|---|
CH4 | 55 ± 5 | 68 ± 8 | 68 ± 8 |
CO2 | 36 ± 2 | 26 ± 7 | 26 ± 7 |
N2 | 2.5 ± 2 | 0.5 | 0.5 |
O2 | 0.5 | <0.25 | <0.25 |
H2S mg/m3 | 100–900 | 2500 ± 1500 | 6500 ± 3000 |
Country | Year | Total Biogas Production | Biogas Production in WWPTs Only | ||
---|---|---|---|---|---|
Number of Plants | [GWh/y] | Number of Plants | [GWh/y] | ||
Australia | 2021 | 247 | 1587 | 52 | 381 |
Austria | 2017 | 291 | 3489 | 38 | 18 |
Belgium | 2015 | 284 | 955 | n.a. | n.a. |
Brazil | 2021 | 638 | 117,000 | n.a. | n.a. |
Finland | 2020 | 109 | 877 | 16 | 221 |
France | 2017 | 687 | 3527 | 88 | 442 |
Germany | 2020 | 10,551 | 54,100 | 1271 | 4000 |
Ireland | 2020 | 59 | 752.4 | 15 | n.a. |
The Netherlands | 2015 | 268 | 3011 | 80 | 541 |
Norway | 2019 | 162 | 782 | 27 | 305 |
Sweden | 2020 | 282 | 2161 | 134 | 721 |
Switzerland | 2019 | 434 | 1519 | 271 | 638 |
UK | 2016 | 987 | 26,457 | 162 | 950 |
USA | 2017 | 2100 | 1030 | 1240 | n.a. |
Parameter | 2022 | 2030 | 2050 |
---|---|---|---|
Total digestate production (Mt DM/year) | 31 | 75 | 177 |
Nutrient content (Mt) | |||
Nitrogen (TKN): total Kjeldahl nitrogen | 1.7 | 4.1 | 9.7 |
Phosphorous (P) | 0.3 | 0.7 | 1.7 |
Potassium (K) | 0.2 | 0.4 | 0.8 |
Organic Compound | Abundance in Activated Sludge (%) | Abundance in Extracted EPS (%) |
---|---|---|
Proteins | >43 | 45–55 |
Humic substances | 15–42 | 30–33 |
Carbohydrates | 10–18 | ±10 |
Uronic acids | 1–2 | ±1 |
DNA | 1–6 | 3–14 |
Reference | Combined Pretreatment | Main Result |
---|---|---|
[39] | 900 mg/L NaOH and an 83 MPa homogenizer | Solubilization increased by 37% |
[40] | pH 10, 83 MPa, and 1 h reaction time | 80% solubilization of SSs, VS reduction improved from 18 to 78%, and HRT reduced from 18 to 13 days |
[40] | Alkaline and high-pressure homogenizer pretreatment | Sludge degradation from 50% to 57% |
Reference | Combined Pretreatment | Main Result |
---|---|---|
[45] | US (120 W) and NaOH (0.04 mol/L, 24 h) | Solubilization of the COD of 89% and an increased hydrolysis rate |
[46] | NaOH dosage of 100 g/kg DS and an SE of 7500 kJ/kg DS | Degradation efficiency improved from 38 to 50.7% |
[47] | US of 28 kHz and pH 12, 1 h | 60% of VSSs were solubilized |
[48] | 4 g/L of KOH and US at 12 kJ/g TS | 70% sludge disintegration |
[49] | Ultrasound of 220 MHz for 9 min + 0.05 M NaOH Stepwise NaOH addition/ultrasound combined pretreatment with 0.02 M + ULS for 5 min and then 0.02 M + ULS for 4 min | 31% increase in methane production for NaOH ultrasound combined treatment Stepwise NaOH addition/ultrasound pre-treatment resulted in a 40% increase in methane production and the chemical dosage for the process could be reduced by 20% |
[50] | 0.04 g CaO/g ultrasound at a low frequency of 20 kHz and average power of 150 W for 30 min | SCOD and VFAs increased by 270.30% and 159.52% in comparison with the untreated control, respectively; the cumulative methane production was between ~163 and 167 mL/g·VS |
Reference | Combined Pretreatment | Main Result |
---|---|---|
[61] | MW/NaOH pre-treatment (pH 12, 600 W, and 2 min) | 93% SCOD reduction; VSS reduction was improved by 20% |
[62] | MW at 170 °C, 1 min, and 0.05 g NaOH/g SS | 28% and 18% reductions in VSS and TCOD and 17% increase in methane yield |
[63] | MW output 400 W, 102 °C, and 2.3% TS | Sludge solubilization degree of 17.9% |
[60] | MW at 38,400 kJ/kg TS and pH 11.0 | Sludge disintegration degree of 65.87% and VSS removal in AD improved by up to 40% |
[65] | MW for 1250 W, 2450 MHz, temperature range 25–260 °C, with pH of 10.0 | MW pretreatment at 175 °C increased solubilization by 68.2%; the maximum CH4 yield was 37% higher than that of the control |
Reference | Combined Pretreatment | Main Result |
---|---|---|
[73] | 5 min of MW irradiation at 80 °C | Solubilization of SCOD (1954 mg/L) and most of the SSs were disintegrated |
[71] | MW (70 °C) with 0.04% of H2O2 dosage | Increased SCOD from 52.8 (control) to 812 mg/L; negligible residual fecal coliform concentrations (<1000 CFU/L) |
Reference | Combined Pretreatment | Main Result |
---|---|---|
[34] | 60 min O3 at 0.6 g/h and US at 0.26 W/mL) | Increased SCOD from 83 to 3040 mg/L |
[77] | pH of 3.0, H2O2/Fe2+ weight ratio of 10:1, ultrasonic power of 100 W, and treatment time of 10 min | Petroleum hydrocarbon removal rate of up to 84.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Vander Elst, M.; Smets, I.; Zhang, H.; Li, S.; Baeyens, J.; Deng, Y. Reviewing Improved Anaerobic Digestion by Combined Pre-Treatment of Waste-Activated Sludge (WAS). Sustainability 2024, 16, 6419. https://doi.org/10.3390/su16156419
Yang M, Vander Elst M, Smets I, Zhang H, Li S, Baeyens J, Deng Y. Reviewing Improved Anaerobic Digestion by Combined Pre-Treatment of Waste-Activated Sludge (WAS). Sustainability. 2024; 16(15):6419. https://doi.org/10.3390/su16156419
Chicago/Turabian StyleYang, Miao, Margot Vander Elst, Ilse Smets, Huili Zhang, Shuo Li, Jan Baeyens, and Yimin Deng. 2024. "Reviewing Improved Anaerobic Digestion by Combined Pre-Treatment of Waste-Activated Sludge (WAS)" Sustainability 16, no. 15: 6419. https://doi.org/10.3390/su16156419
APA StyleYang, M., Vander Elst, M., Smets, I., Zhang, H., Li, S., Baeyens, J., & Deng, Y. (2024). Reviewing Improved Anaerobic Digestion by Combined Pre-Treatment of Waste-Activated Sludge (WAS). Sustainability, 16(15), 6419. https://doi.org/10.3390/su16156419