The US Economy as a Network: A Comparison across Economic and Environmental Metrics
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Signed Multi-Layered Network
2.2. Ecological Economics Parallels
3. Materials and Methods
3.1. Methods of Analysis
3.1.1. Center of Gravity
3.1.2. Node Centrality
3.2. Data
- Commodity production totals 546 classification codes and county
- Industry output totals 546 classification codes and county
- Proportional industry output by commodity for US average
- Domestic commodity trade flow data by origin and destination county
Algorithm 1 Commodity-to-industry trade flow translation algorithm |
For each county:
|
4. Results
4.1. Center of Gravity
4.2. Eigenvector Centrality
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mackie, P.J.; Jara-Díaz, S.; Fowkes, A.S. The Value of Travel Time Savings in Evaluation. Transp. Res. Part E Logist. Transp. Rev. 2001, 37, 91–106. [Google Scholar] [CrossRef]
- Carney, M. Value(s): Building a Better World for All; PublicAffairs Press: New York, NY, USA, 2021. [Google Scholar]
- Meadows, D. Thinking in Systems; Chelsea Green Publishing: Chelsea, VT, USA, 2008. [Google Scholar]
- Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st Century Economist; Random House Books: New York, NY, USA, 2017. [Google Scholar]
- Newman, M. Networks, 2nd ed.; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Carnegie Mellon University Green Design Institute Economic Input–Output Life Cycle Assessment (EIO-LCA). Available online: https://web.archive.org/web/20221216053228/http://www.eiolca.net/copyright/index.html (accessed on 6 January 2022).
- Miller, R.E.; Blair, P.D. Input–Output Analysis: Foundations and Extensions; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-521-73902-3. [Google Scholar]
- Leontief, W. Input–Output Economics; Oxford University Press: Oxford, UK, 1951; Volume 185, ISBN 01950352590195035275 (pbk.). [Google Scholar]
- Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J.P.; Moreno, Y.; Porter, M.A. Multilayer Networks. J. Complex Netw. 2014, 2, 203–271. [Google Scholar] [CrossRef]
- Caschili, S.; Medda, F.R.; Wilson, A. An Interdependent Multi-Layer Model: Resilience of International Networks. Netw. Spat. Econ. 2015, 15, 313–335. [Google Scholar] [CrossRef]
- Alves, L.G.A.; Mangioni, G.; Cingolani, I.; Rodrigues, F.A.; Panzarasa, P.; Moreno, Y. The Nested Structural Organization of the Worldwide Trade Multi-Layer Network. Sci. Rep. 2019, 9, 2866. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.; Garcia, S.; Rajtmajer, S.; Grady, C.; Mejia, A. Fragility of a Multilayer Network of Intranational Supply Chains. Appl. Netw. Sci. 2020, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, Z.; Kramer, F. Multilayer Networks: Aspects, Implementations, and Application in Biomedicine. Big Data Anal. 2020, 5, 2. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S. Analyzing Negative Ties in Social Networks: A Survey. Egypt. Inform. J. 2016, 17, 21–43. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Wang, J.; Wei, Y. The Embodied CO2 Transfer across Sectors of Cities in Jing-Jin-Ji Region: Combining Multi-Regional Input-Output Analysis with Complex Network Analysis. Environ. Sci. Pollut. Res. 2021, 28, 44249–44263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, H.; Yang, Z.; Su, M.; Liu, G.; Li, Y. Multi-Regional Input-Output Model and Ecological Network Analysis for Regional Embodied Energy Accounting in China. Energy Policy 2015, 86, 651–663. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q. Demand-Driven Energy Requirement of World Economy 2007: A Multi-Region Input-Output Network Simulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1757–1774. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, S.; Sun, C. CO2 Emissions in the Global Supply Chains of Services: An Analysis Based on a Multi-Regional Input–Output Model. Energy Policy 2015, 86, 93–103. [Google Scholar] [CrossRef]
- Samuelson, P. Foreward. In Bioeconomics and Sustainability: Essays in Honor of Nicholas Georgescu-Roegen; Elgar Publishing: Cheltenham, UK, 1999. [Google Scholar]
- van den Bergh, J.C.J.M. Ecological Economics: Themes, Approaches, and Differences with Environmental Economics. Reg. Environ. Chang. 2001, 2, 13–23. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Ruth, M. When, Where, and by How Much Do Biophysical Limits Constrain the Economic Process? A Survey of Nicholas Georgescu-Roegen’s Contribution to Ecological Economics. Ecol. Econ. 1997, 22, 203–223. [Google Scholar] [CrossRef]
- Costanza, R.; Daly, H.E. Natural Capital and Sustainable Development. Conserv. Biol. 1992, 6, 37–46. [Google Scholar] [CrossRef]
- Common, M.; Perrings, C. Towards an Ecological Economics of Sustainability. Ecol. Econ. 1992, 6, 7–34. [Google Scholar] [CrossRef]
- An, P.; Qu, S.; Yu, K.; Xu, M. Mapping Analytical Methods between Input–Output Economics and Network Science. J. Ind. Ecol. 2024, 2024, 1–32. [Google Scholar] [CrossRef]
- IMPLAN Data Team Introduction to IMPLAN Data and Data Sources. Available online: https://support.implan.com/hc/en-us/articles/115009674688-Introduction-to-IMPLAN-Data-and-Data-Sources (accessed on 2 July 2024).
- Data Team Estimating Trade Flows. Available online: https://support.implan.com/hc/en-us/articles/24990374095131-Estimating-Trade-Flows (accessed on 2 July 2024).
- Leontief, W.; Strout, A. Multiregional Input-Output Analysis. In Structural Interdependence and Economic Development: Proceedings of an International Conference on Input–Output Techniques, Geneva, September 1961; Barna, T., Ed.; Palgrave Macmillan: London, UK, 1963; pp. 119–150. ISBN 978-1-349-81634-7. [Google Scholar]
- Ingwersen, W.W.; Li, M.; Young, B.; Vendries, J.; Birney, C. USEEIO v2.0, The US Environmentally-Extended Input-Output Model v2.0. Sci. Data 2022, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M. Aggregation Versus Disaggregation in Input–Output Analysis of the Environment. Econ. Syst. Res. 2011, 23, 73–89. [Google Scholar] [CrossRef]
- Data Team The RAS Method. Available online: https://support.implan.com/hc/en-us/articles/11646312866075-The-RAS-Method (accessed on 2 July 2024).
- US Census Bureau US Census Bureau QuickFacts: Greenlee County, Arizona. Available online: https://www.census.gov/quickfacts/fact/table/greenleecountyarizona/PST045222 (accessed on 7 June 2023).
- Mining Technology. Morenci Copper Mine, Arizona, USA; Mining Technology: New York, NY, USA, 2023. [Google Scholar]
- US Bureau of the Census. American Community Survey 5-Year Data (2009–2018); US Bureau of the Census: Suitland, MD, USA, 2019.
- Cerina, F.; Zhu, Z.; Chessa, A.; Riccaboni, M. World Input–Output Network. PLoS ONE 2015, 10, e0134025. [Google Scholar] [CrossRef]
- Lenzen, M.; Pade, L.-L.; Munksgaard, J. CO2 Multipliers in Multi-Region Input-Output Models. Econ. Syst. Res. 2004, 16, 391–412. [Google Scholar] [CrossRef]
- Prell, C.; Sun, L.; Feng, K.; He, J.; Hubacek, K. Uncovering the Spatially Distant Feedback Loops of Global Trade: A Network and Input-Output Approach. Sci. Total Environ. 2017, 586, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Sheng, D.; Owen, S.; Lambert, D.M.; English, B.C.; Menard, R.J.; Hughes, D.W.; He-Lambert, L.; Clark, C.D. A Multiregional Input-Output Analysis of Water Withdrawals in the Southeastern United States. Rev. Reg. Stud. 2019, 49, 323–350. [Google Scholar] [CrossRef]
- Garcia, S.; Gomez, M.; Rushforth, R.; Ruddell, B.L.; Mejia, A. Multilayer Network Clarifies Prevailing Water Consumption Telecouplings in the United States. Water Resour. Res. 2021, 57, e2020WR029141. [Google Scholar] [CrossRef]
- Li, M.; Ferraira, J.P.; Court, C.D.; Meyer, D.; Li, M.; Ingerwersen, W.W. StateIO—Open Source Economic Input-Output Models for the 50 States of the United States of America. Int. Reg. Sci. Rev. 2023, 46, 428–481. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Derecynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
Metric | Direction | County | State | Change |
---|---|---|---|---|
Energy flow | O | Harris | TX | 0.98 |
Energy flow | D | Harris | TX | 0.99 |
Water flow | O | Maricopa | AZ | 0.51 |
Mineral metals flow | O | Harris | TX | 0.98 |
Mineral metals flow | O | Los Angeles | CA | −0.94 |
Mineral metals flow | D | Harris | TX | 0.99 |
Mineral metals flow | D | Los Angeles | CA | −1.00 |
Metric | Direction | County | State | Change |
---|---|---|---|---|
Energy flow | O | Jefferson | TX | 0.95 |
Energy flow | O | Galveston | TX | 0.88 |
Energy flow | O | Los Angeles | CA | −1.00 |
Energy flow | D | Matagorda | TX | 0.99 |
Energy flow | D | Los Angeles | CA | −1.00 |
Water flow | O | Greenlee | AZ | 0.80 |
Water flow | O | Los Angeles | CA | −0.95 |
Water flow | D | La Paz | AZ | 0.95 |
Water flow | D | Imperial | CA | 0.55 |
Water flow | D | Hayes | NE | 0.50 |
Water flow | D | Los Angeles | AC | −0.95 |
GHG flow | O | Greenlee | AZ | 0.80 |
GHG flow | D | Midland | TX | 0.55 |
Land flow | O | Dallas | AR | 0.98 |
Land flow | O | Sabine | TX | 0.93 |
Land flow | O | Polk | TX | 0.70 |
Land flow | O | Columbia | AR | 0.65 |
Land flow | O | Pike | AR | 0.62 |
Land flow | D | Hayes | NE | 0.93 |
Land flow | D | Perkins | NE | 0.88 |
Land flow | D | Harding | SD | 0.84 |
Land flow | D | Chase | NE | 0.69 |
Land flow | D | Faulk | SD | 0.65 |
Land flow | D | Los Angeles | CA | −0.94 |
Mineral metals flow | O | Cameron | LS | 0.76 |
Mineral metals flow | O | Los Angeles | CA | −1.00 |
Mineral metals flow | D | Livingston | KT | 0.98 |
Mineral metals flow | D | Los Angeles | CA | −1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawkins, J.; Karki, S. The US Economy as a Network: A Comparison across Economic and Environmental Metrics. Sustainability 2024, 16, 6418. https://doi.org/10.3390/su16156418
Hawkins J, Karki S. The US Economy as a Network: A Comparison across Economic and Environmental Metrics. Sustainability. 2024; 16(15):6418. https://doi.org/10.3390/su16156418
Chicago/Turabian StyleHawkins, Jason, and Sagun Karki. 2024. "The US Economy as a Network: A Comparison across Economic and Environmental Metrics" Sustainability 16, no. 15: 6418. https://doi.org/10.3390/su16156418
APA StyleHawkins, J., & Karki, S. (2024). The US Economy as a Network: A Comparison across Economic and Environmental Metrics. Sustainability, 16(15), 6418. https://doi.org/10.3390/su16156418