Mortality of Boreal Trees
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mortality Model Results
3.2. Survival Probability Model Results
3.3. Stand-Level Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reineke, L.H. Perfection a stand-density index for even-aged forest. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Yoda, K.; Kira, T.; Ogawa, H.; Hozumi, K. Self-Thinning in Overcrowded Pure Stands under Cultivated and Natural Conditions. J. Biol. 1963, 14, 107–129. [Google Scholar]
- Urgoiti, J.; Messier, C.; Keeton, W.S.; Belluau, M.; Paquette, A. Functional diversity and identity influence the self-thinning process in young forest communities. J. Ecol. 2023, 111, 2010–2022. [Google Scholar] [CrossRef]
- Peet, R.K.; Christensen, N.L. Competition and tree death. BioScience 1987, 37, 586–595. [Google Scholar] [CrossRef]
- Mohler, C.L.; Marks, P.L.; Sprugel, D.G. Stand Structure and Allometry of Trees During Self-Thinning of Pure Stands. J. Ecol. 1978, 66, 599–614. [Google Scholar] [CrossRef]
- Monserud, R.A.; Ledermann, T.; Sterba, H. Are Self-Thinning Constraints Needed in a Tree-Specific Mortality Model? For. Sci. 2004, 50, 848–858. [Google Scholar] [CrossRef]
- Mrad, A.; Manzoni, S.; Oren, R.; Vico, G.; Lindh, M.; Katul, K. Recovering the Metabolic, Self-Thinning, and Constant Final Yield Rules in Mono-Specific Stands. Front. For. Glob. Chang. 2020, 3, 62. [Google Scholar] [CrossRef]
- Bravo-Oviedo, A.; Sterba, H.; Del Río, M.; Bravo, F. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For. Ecol. Manag. 2006, 222, 88–98. [Google Scholar] [CrossRef]
- Juknys, R.; Vencloviene, J.; Jurkonis, N.; Bartkevicius, E.; Sepetiene, J. Relation between individual tree mortality and tree characteristics in a polluted and non-polluted environment. Environ. Monitor. Assess. 2006, 121, 519–542. [Google Scholar] [CrossRef]
- Westoby, M. The self-thinning rule. Adv. Ecol. Res. 1984, 14, 167–225. [Google Scholar]
- Smith, N.J.; Hann, D.W. A growth model based on the self-thinning rule. Can. J. For. Res. 1986, 16, 330–334. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Q.V.; Wang, H.; Duan, A.; Zhang, J. Projecting Stand Survival and Basal Area Based on a Self-Thinning Model for Chinese Fir Plantations. For. Sci. 2020, 66, 361–370. [Google Scholar] [CrossRef]
- Stephenson, N.L.; van Mantgem, P.J.; Bunn, A.G.; Bruner, H.; Harmon, M.E.; O’Connell, K.B.; Urban, D.L.; Franklin, J.F. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 2011, 81, 527–555. [Google Scholar] [CrossRef]
- Wyckoff, P.H.; Clark, J.S. Predicting tree mortality from diameter growth: A comparison of maximum likelihood and Bayesian approaches. Can. J. For. Res. 2000, 30, 156–167. [Google Scholar] [CrossRef]
- Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Chang. Biol. 2017, 23, 4788–4797. [Google Scholar] [CrossRef]
- Smith, T.F.; Rizzo, D.M.; North, M. Patterns of mortality in an old-growth mixed-conifer forest of the southern Sierra Nevada, California. For. Sci. 2005, 51, 266–275. [Google Scholar] [CrossRef]
- Csilléry, K.; Seignobosc, M.; Lafond, V.; Kunstler, G.; Courbaud, B. Estimating long-term tree mortality rate time series by combining data from periodic inventories and harvest reports in a Bayesian state-space model. For. Ecol. Manag. 2013, 292, 64–74. [Google Scholar] [CrossRef]
- Bredenkamp, B.V.; Burkhart, H.E. An examination of spacing indices for Eucalyptusgrandis. Can. J. For. Res. 1990, 20, 1909–1916. [Google Scholar] [CrossRef]
- Del Río, M.; Montero, G.; Bravo, F. Analysis of diameter–density relationships and self-thinning in non-thinned even-aged Scots pine stands. For. Ecol. Manag. 2001, 142, 79–87. [Google Scholar] [CrossRef]
- Lännenpää, A.; Aakala, T.; Kauhanen, H.; Kuuluvainen, T. Tree mortality agents in pristine Norway spruce forests in northern Fennoscandia. Silva Fenn. 2008, 42, 151–163. [Google Scholar] [CrossRef]
- Greenwood, D.L.; Weisberg, P.J. Density-dependent tree mortality in pinyonjuniper woodlands. For. Ecol. Manag. 2008, 255, 2129–2137. [Google Scholar] [CrossRef]
- Senecal, D.; Kneeshaw, D.; Messier, C. Temporal, spatial, and structural patterns of adult trembling aspen and white spruce mortality in Quebec’s boreal forest. Can. J. For. Res. 2004, 34, 396–404. [Google Scholar] [CrossRef]
- Laarmann, D.; Korjus, H.; Sims, A.; Stanturf, J.A.; Kiviste, A.; Köster, K. Analysis of forest naturalness and tree mortality patterns in Estonia. For. Ecol. Manag. 2009, 258, S187–S195. [Google Scholar] [CrossRef]
- Laiho, O. Metsiköiden alttius tuulituhoille Etelä-Suomessa. Folia For. 1987, 706, 1–24, (Susceptibility of forest stands to wind throw in Southern Finland. In Finnish with English summary). [Google Scholar]
- Valinger, E.; Pettersson, N. Wind and snow damage in a thinning and fertilization experiment in Picea abies in southern Sweden. Forestry 1996, 69, 25–33. [Google Scholar] [CrossRef]
- Pellikka, P.; Järvenpää, E. Forest stand characteristics and wind and snow induced forest damage in boreal forest. In Proceedings of the International Conference on Wind Effects on Trees, Karlsruhe, Germany, 16–18 September 2003; University of Karlsruhe: Karlsruhe, Germany, 2003. [Google Scholar]
- Pukkala, T.; Laiho, O.; Lähde, E. Continuous cover management reduces wind damage. For. Ecol. Manag. 2016, 372, 120–127. [Google Scholar] [CrossRef]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Valinger, E.; Lundqvist, L.; Brandel, G. Wind and snow damage in a thinning and fertilisation experiment in Pinus sylvestris. Scand. J. For. Res. 1994, 9, 129–134. [Google Scholar] [CrossRef]
- Reilly, M.J.; Spies, T.A. Disturbance, tree mortality, and implications for contemporary regional forest change in the Pacific Northwest. For. Ecol. Manag. 2016, 374, 102–110. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread increase of tree mortality rates in the western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef]
- Jakoby, O.; Lischke, H.; Wermelinger, B. Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Glob. Chang. Biol. 2019, 25, 4048–4063. [Google Scholar] [CrossRef] [PubMed]
- Netherer, S.; Panassiti, B.; Pennerstorfer, J.; Matthews, B. Acute Drought Is an Important Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands. Front. For. Glob. Chang. 2019, 2, 39. [Google Scholar] [CrossRef]
- Lindner, M.; Verkerk, H. How Has Climate Change Affected EU Forests and What Might Happen Next? European Forest Institute. Available online: https://efi.int/forestquestions/q4 (accessed on 21 November 2022).
- Nagel, T.A.; Mikac, S.; Dolinar, M.; Klopcic, M.; Keren, S.; Svoboda, M.; Diaci, J.; Boncina, A.; Paulic, V. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. For. Ecol. Manag. 2017, 388, 29–42. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R.; Steyrer, G.; Krehan, H.; Formayer, H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manag. 2013, 307, 293–302. [Google Scholar] [CrossRef]
- Økland, B.; Nikolov, C.; Krokene, P.; Vakula, J. Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. For. Ecol. Manag. 2016, 363, 63–73. [Google Scholar] [CrossRef]
- Wood, J.D.; Knapp, B.O.; Muzika, R.M.; Stambaugh, M.C.; Gu, L. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region. Environ. Res. Lett. 2018, 13, 015004. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Etzold, S.; Ziemińska, K.; Rohner, B.; Bottero, A.; Bose, A.K.; Ruehr, N.K.; Zingg, A.; Rigling, A. One century of forest monitoring data in Switzerland reveals species-and site-specific trends of climate-induced tree mortality. Front. Plant Sci. 2019, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, I.; Kämäräinen, M.; Gregow, H.; Venäläinen, A.; Peltola, H. Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Nat. Hazards Earth Syst. Sci. 2016, 16, 2259–2271. [Google Scholar] [CrossRef]
- Eid, T.; Tuhus, E. Models for individual tree mortality in Norway. For. Ecol. Manag. 2001, 154, 69–84. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Lines, E.R.; Gómez-Aparicio, L.; Zavala, M.A.; Coomes, D.A. Patterns and drivers of tree mortality in Iberian forests: Climatic effects are modified by competition. PLoS ONE 2013, 8, e56843. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, A.; Mattila, U. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For. Ecol. Manag. 2000, 135, 315–330. [Google Scholar] [CrossRef]
- Wallentin, C.; Nilsson, U. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. Forestry 2014, 87, 229–238. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Liu, Z.; Cao, W.; Gonda, Y.; Matsuzaki, T. Factors affecting the snow and wind induced damage of a montane secondary forest in northeastern China. Silva Fenn. 2006, 40, 37. [Google Scholar] [CrossRef]
- Klopcic, M.; Poljanec, A.; Gartner, A.; Boncina, A. Factors related to natural disturbances in mountain Norway spruce (Picea abies) forests in the Julian Alps. Écoscience 2009, 16, 48–57. [Google Scholar] [CrossRef]
- Nykänen, M.-L.; Peltola, H.; Quine, C.; Kellomäki, S.; Broadgate, M. Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn. 1997, 31, 193–213. [Google Scholar] [CrossRef]
- Solantie, R. Effect of weather and climatological background on snow damage of forests in Southern Finland in November 1991. Silva Fenn. 1994, 28, 203–211. [Google Scholar] [CrossRef]
- Hlásny, T.; Křístek, Š.; Holuša, J.; Trombik, J.; Urbaňcová, N. Snow disturbances in secondary Norway spruce forests in Central Europe: Regression modeling and its implications for forest management. For. Ecol. Manag. 2011, 262, 2151–2161. [Google Scholar] [CrossRef]
- Suvanto, S.; Lehtonen, A.; Nevalainen, S.; Lehtonen, I.; Viiri, H.; Strandström, M.; Peltoniemi, M. Mapping the probability of forest snow disturbances in Finland. PLoS ONE 2021, 16, e0254876. [Google Scholar] [CrossRef]
- Bollandsås, O.M.; Buongiorno, J.; Gobakken, T. Predicting the growth of stands of trees of mixed species and size: A matrix model for Norway. Scand. J. For. Res. 2008, 23, 167–178. [Google Scholar] [CrossRef]
- Suominen, O. Metsiköiden alttius lumituhoon. Tutkimus Etelä-Suomessa talvella 1958–59 sattuneesta lumituhosta. (No. 112). Silva Fenn. 1963, 112. (In Finnish, summary in English: Susceptibility of stands to devastation by snow. Investigation into snow devastation in South Finland in winter 1958–59). [Google Scholar]
- Jalkanen, R.; Konocpka, B. Snow-packing as a potential harmful factor on Picea abies, Pinus sylvestris and Betula pubescens at high altitude in northern Finland. Eur. J. For. Pathol. 1998, 28, 373–382. [Google Scholar] [CrossRef]
- Díaz-Yáñez, O.; Mola-Yudego, B.; González-Olabarria, J.R. Modelling damage occurrence by snow and wind in forest ecosystems. Ecol. Model. 2019, 408, 108741. [Google Scholar] [CrossRef]
- Andreassen, K.; Øyen, B. Comparison of selected Nordic stand growth models for Norway spruce, Scots pine and birch. For. Stud. 2014, 55, 46–59. [Google Scholar] [CrossRef]
- Hülsmann, L.; Bugmann, H.; Brang, P. How to predict tree death from inventory data—Lessons from a systematic assessment of European tree mortality models. Can. J. For. Res. 2017, 900, 890–900. [Google Scholar] [CrossRef]
- Dietze, M.C.; Moorcroft, P.R. Tree mortality in the eastern and central United States: Patterns and drivers. Glob. Chang. Biol. 2011, 17, 3312–3326. [Google Scholar] [CrossRef]
- Archambeau, J.; Ruiz-Benito, P.; Ratcliffe, S.; Fréjaville, T.; Changenet, A.; Muñoz Castañeda, J.M.; Lehtonen, A.; Dahlgren, J.; Zavala, M.A.; Benito Garzón, M. Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric. For. Meteorol. 2020, 280, 107772. [Google Scholar] [CrossRef]
- Palahi, M.; Pukkala, T.; Miina, J.; Montero, G. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 2003, 60, 1–10. [Google Scholar] [CrossRef]
- Acker, S.A.; Boetsch, J.R.; Bivin, M.; Whiteaker, L.; Cole, C.; Philippi, T. Recent tree mortality and recruitment in mature and old-growth forests in western Washington. For. Ecol. Manag. 2015, 336, 109–118. [Google Scholar] [CrossRef]
- Das, A.J.; Stephenson, N.L.; Davis, K.P. Why do trees die? Characterizing the drivers of background tree mortality. Ecology 2016, 97, 2616–2627. [Google Scholar] [CrossRef]
- Palik, B.J.; Pederson, N. Overstory mortality and canopy disturbances in longleaf pine ecosystems. Can. J. For. Res. 1996, 26, 2035–2047. [Google Scholar] [CrossRef]
- Chen, C.; Weiskittel, A.; Bataineh, M.; MacLean, D.A. Evaluating the influence of varying levels of spruce budworm defoliation on annualized individual tree growth and mortality in Maine, USA and New Brunswick, Canada. For. Ecol. Manag. 2017, 396, 184–194. [Google Scholar] [CrossRef]
- Mugasha, W.A.; Tron Eid, T.; Ole, M.; Bollandsås, O.M.; Lawrence Mbwambo, L. Modelling diameter growth, mortality and recruitment of trees in miombo woodlands of Tanzania. South. For. J. For. Sci. 2017, 79, 51–64. [Google Scholar] [CrossRef]
- Buchman, R.G.; Pederson, S.P.; Walters, N.R. A tree survival model with application to species of the Great Lakes region. Can. J. For. Res. 1983, 13, 601–608. [Google Scholar] [CrossRef]
- Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/country/finland/climate-data-historical#country-map (accessed on 10 June 2024).
- Climate Change Is Already Visible in Finland’s Nature. Available online: https://www.ymparisto.fi/en/state-environment/climate-change/climate-change-advances (accessed on 10 June 2024).
Measurement Interval | |||||
3 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Species code | 1 | 2 | 3 | 4 | |
Number of trees | 460 | 1286 | 217 | 153 | |
Number of dead trees | 9 | 56 | 5 | 3 | |
Measurement Interval | |||||
4 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Species code | 1 | 2 | 3 | 4 | |
Number of trees | 499 | 1950 | 549 | 147 | |
Number of dead trees | 36 | 166 | 11 | 15 | |
Measurement Interval | |||||
5 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Species code | 1 | 2 | 3 | 4 | |
Number of trees | 639 | 1854 | 171 | 184 | |
Number of dead trees | 60 | 190 | 25 | 21 | |
Measurement Interval | |||||
6 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Species code | 1 | 2 | 3 | 4 | |
Number of trees | 1011 | 1659 | 277 | 244 | |
Number of dead trees | 208 | 280 | 28 | 25 |
Tree Diameter | Stand Basal Area | Basal Area of Larger Trees | Basal Area Increment Rate | Stem Count [1/ha] | Age | |
---|---|---|---|---|---|---|
[mm] | [m2/ha] | [m2/ha] | [m2/(ha*a)] | [a] | ||
Pinus sylvestris | ||||||
min | 48 | 14.5 | 0.1 | 0.08 | 352 | 20 |
max | 583 | 75.1 | 67.5 | 1.54 | 3016 | 161 |
mean | 216 | 29.5 | 15.5 | 0.59 | 1160 | 60 |
stdev | 86 | 11.6 | 10.4 | 0.20 | 587 | 30 |
Picea abies | ||||||
min | 24 | 14.5 | 0.0 | 0.08 | 340 | 10 |
max | 996 | 75.1 | 75.1 | 1.54 | 2892 | 150 |
mean | 172 | 29.5 | 22.9 | 0.59 | 1211 | 66 |
stdev | 85 | 11.6 | 12.4 | 0.24 | 615 | 29 |
Betula pendula | ||||||
min | 29 | 13.7 | 0.1 | 0.08 | 340 | 10 |
max | 459 | 75.1 | 70.6 | 1.54 | 2892 | 137 |
mean | 182 | 27.5 | 17.3 | 0.57 | 1152 | 50 |
stdev | 70 | 10.5 | 11.5 | 0.20 | 570 | 20 |
Betula pubescens | ||||||
min | 38 | 13.7 | 0.4 | 0.08 | 340 | 17 |
max | 280 | 75.1 | 75.1 | 1.38 | 2711 | 132 |
mean | 129 | 26.0 | 20.8 | 0.62 | 1334 | 48 |
stdev | 55 | 9.4 | 9.7 | 0.19 | 660 | 17 |
a. | |||||
Measurement Interval | |||||
3 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Explanatory variable | 1 | 2 | 3 | 4 | |
D | 0.04179 | 0.07725 | 0.03989 | 0.04121 | |
BA | 0.04108 | 0.07772 | 0.04762 | 0.03650 | |
BAL | 0.04031 | 0.07776 | 0.04477 | 0.03589 | |
D + BA | 0.03999 | 0.07725 | 0.03987 | 0.03513 | |
D + BAL | 0.04031 | 0.07706 | 0.03900 | 0.03242 | |
D + D2 + BA | 0.03948 | 0.07702 | 0.03932 | 0.03475 | |
D + D2 + BAL | 0.03975 | 0.07683 | 0.03791 | 0.03242 | |
b. | |||||
Measurement Interval | |||||
4 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Explanatory variable | 1 | 2 | 3 | 4 | |
D | 0.10962 | 0.12640 | 0.03364 | 0.14173 | |
BA | 0.11101 | 0.12599 | 0.03788 | 0.14215 | |
BAL | 0.10754 | 0.12420 | 0.03230 | 0.13582 | |
D + BA | 0.10894 | 0.12594 | 0.03210 | 0.14000 | |
D + BAL | 0.10742 | 0.12360 | 0.03102 | 0.13542 | |
D + D2 + BA | 0.10888 | 0.12590 | 0.02953 | 0.13972 | |
D + D2 + BAL | 0.10740 | 0.12338 | 0.02926 | 0.13459 | |
c. | |||||
Measurement Interval | |||||
5 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Explanatory variable | 1 | 2 | 3 | 4 | |
D | 0.12772 | 0.13962 | 0.15299 | 0.14007 | |
BA | 0.13415 | 0.14353 | 0.18063 | 0.15359 | |
BAL | 0.13442 | 0.14066 | 0.16593 | 0.14958 | |
D + BA | 0.12704 | 0.13933 | 0.15287 | 0.14004 | |
D + BAL | 0.12752 | 0.13836 | 0.15231 | 0.14000 | |
D + D2 + BA | 0.12502 | 0.13928 | 0.14967 | 0.13943 | |
D + D2 + BAL | 0.12506 | 0.13831 | 0.14947 | 0.13950 | |
d. | |||||
Measurement Interval | |||||
6 years | Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens |
Explanatory variable | 1 | 2 | 3 | 4 | |
D | 0.21055 | 0.19007 | 0.11696 | 0.14206 | |
BA | 0.21948 | 0.19694 | 0.14221 | 0.14036 | |
BAL | 0.21501 | 0.19731 | 0.13644 | 0.13792 | |
D + BA | 0.20866 | 0.19001 | 0.10519 | 0.13889 | |
D + BAL | 0.20556 | 0.19000 | 0.10473 | 0.13791 | |
D + D2 + BA | 0.20750 | 0.18021 | 0.10497 | 0.13136 | |
D + D2 + BAL | 0.20462 | 0.18022 | 0.10445 | 0.12975 |
Survival Model [Equation (4)] Parameters | |||||
---|---|---|---|---|---|
Tree species | Pinus sylvestris | Picea abies | Betula pendula | Betula pubescens | |
Explanatory variable | 1 | 2 | 3 | 4 | |
Constant | a0 | 3.489919 | 1.297552 | 2.724741 | 1.341536 |
D | a1 | −2.92 × 10−5 | 0.025801 | 0.038834 | 0.06468 |
D^2 | a2 | 3.28 × 10−5 | −4.9 × 10−5 | −3.04 × 10−5 | −0.00023 |
BAL | a3 | −0.046928 | 0.001631 | −0.084363 | −0.038454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kärenlampi, P.P. Mortality of Boreal Trees. Sustainability 2024, 16, 6370. https://doi.org/10.3390/su16156370
Kärenlampi PP. Mortality of Boreal Trees. Sustainability. 2024; 16(15):6370. https://doi.org/10.3390/su16156370
Chicago/Turabian StyleKärenlampi, Petri P. 2024. "Mortality of Boreal Trees" Sustainability 16, no. 15: 6370. https://doi.org/10.3390/su16156370
APA StyleKärenlampi, P. P. (2024). Mortality of Boreal Trees. Sustainability, 16(15), 6370. https://doi.org/10.3390/su16156370