Research on the Impact of Digital-Real Integration on Logistics Industrial Transformation and Upgrading under Green Economy
Abstract
:1. Introduction
2. Literature Review
2.1. Logistics Industrial Transformation and Upgrading
2.2. Digital-Real Integration
2.3. Green Economy
3. Theoretical Analysis and Research Hypothesis
3.1. The Direct Impact of Logistics Industrial Transformation and Upgrading Affected by Digital-Real Integration
3.2. The Indirect Impact of Logistics Industrial Transformation and Upgrading Affected by Digital-Real Integration
3.3. The Nonlinear Impact of Logistics Industrial Transformation and Upgrading Affected by Digital-Real Integration
4. Research Methods and Data Sources
4.1. Model Construction
4.1.1. Entropy Weight–TOPSIS–Grey Correlation Model
- (1)
- Calculation of Indicator Weights
- (2)
- Calculation of Euclidean Distance
- (3)
- Calculation of Grey Correlation
- (4)
- Calculation of Comprehensive Closeness
4.1.2. Benchmark Regression Model
4.1.3. Moderation Effect Model
4.1.4. Threshold Effect Model
4.2. Variable Definitions
4.2.1. Explained Variable
4.2.2. Explanatory Variable
4.2.3. Moderator Variable
4.2.4. Controlled Variable
4.3. Data Sources and Descriptive Statistics
4.3.1. Data Sources
4.3.2. Descriptive Statistics
5. Results
5.1. Comprehensive Development Level
5.1.1. Level of Logistics Industrial Transformation and Upgrading
5.1.2. Level of Digital-Real Integration
5.1.3. Level of Green Economy
5.2. Benchmark Regression Analysis
5.2.1. Model Estimation
5.2.2. Robustness Test
5.3. Moderation Effect Analysis
5.3.1. Model Estimation
5.3.2. Robustness Test
5.4. Threshold Effect Analysis
5.4.1. Model Estimation
5.4.2. Robustness Test
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samadhiya, A.; Agrawal, R.; Kumar, A.; Garza-Reyes, J.A. Regenerating the logistics industry through the Physical Internet Paradigm: A systematic literature review and future research orchestration. Comput. Ind. Eng. 2023, 178, 109150. [Google Scholar] [CrossRef]
- Blichfeldt, H.; Faullant, R. Performance effects of digital technology adoption and product & service innovation—A process-industry perspective. Technovation 2021, 105, 102275. [Google Scholar]
- Zeb, R.; Salar, L.; Awan, U.; Zaman, K.; Shahbaz, M. Causal links between renewable energy, environmental degradation and economic growth in selected SAARC countries: Progress towards green economy. Renew. Energy 2014, 71, 123–132. [Google Scholar] [CrossRef]
- Tian, X.J.; Li, R. Digital Technology Empowers the Transformation and Development of Real Economy: An Analysis Framework Based on Schumpeter’s Endogenous Growth Theory. J. Manag. World 2022, 38, 56–73. [Google Scholar]
- Hamidi, S.M.M.; Hoseini, S.F.; Gholami, H.; Kananizadeh-Bahmani, M. A three-stage digital maturity model to assess readiness blockchain implementation in maritime logistics industry. J. Ind. Inf. Integr. 2024, 41, 100643. [Google Scholar] [CrossRef]
- Xu, X.G.; Fan, H.; Su, Y.S.; Zheng, Z.X. Research on the Driving Factors of China’s Green Economy Development Level. J. Quant. Technol. Econ. 2021, 38, 65–82. [Google Scholar]
- Long, R.Y.; Li, H.F.; Wu, M.F.; Li, W.B. Dynamic evaluation of the green development level of China’s coal-resource-based cities using the TOPSIS method. Resour. Policy 2021, 74, 102415. [Google Scholar] [CrossRef]
- Gereffi, G. International trade and industrial upgrading in the apparel commodity chain. J. Int. Econ. 1999, 48, 37–70. [Google Scholar] [CrossRef]
- Jin, B. The Mission and Value of Industry–The Theoretical Logic of Industrial Transformation and Upgrading in China. China Ind. Econ. 2014, 9, 51–64. [Google Scholar]
- Pipkin, S.; Fuentes, A. Spurred to upgrade: A review of triggers and consequences of industrial upgrading in the global value chain literature. World Dev. 2017, 98, 536–554. [Google Scholar] [CrossRef]
- Lin, J.Y.; Liu, Z.W.; Zhang, B. Endowment, technology choice, and industrial upgrading. Struct. Chang. Econ. D. 2023, 65, 364–381. [Google Scholar] [CrossRef]
- Elberry, A.M.; Garaffa, R.; Faaij, A.; Zwaan, B.V.D. A review of macroeconomic modelling tools for analysing industrial transformation. Renew. Sust. Energy Rev. 2024, 199, 114462. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J. Green supply chain management enablers: Mixed methods research. Sustain. Prod. Consump. 2015, 4, 72–88. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.T.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Zaman, K.; Shamsuddin, S. Green logistics and national scale economic indicators: Evidence from a panel of selected European countries. J. Clean. Prod. 2017, 143, 51–63. [Google Scholar] [CrossRef]
- Liu, H.W.; Wu, J.; Chu, J.F. Environmental efficiency and technological progress of transportation industry-based on large scale data. Technol. Forecast. Soc. 2019, 144, 475–482. [Google Scholar] [CrossRef]
- Winkelhaus, S.; Grosse, E.H. Logistics 4.0: A systematic review towards a new logistics system. Int. J. Prod. Res. 2020, 58, 18–43. [Google Scholar] [CrossRef]
- Belmonte, L.M.; Segura, E.; de la Rosa, F.L.; Gómez-Sirvent, J.L.; Fernández-Caballero, A.; Morales, R. Training industrial engineers in Logistics 4.0. Comput. Ind. Eng. 2023, 184, 109550. [Google Scholar] [CrossRef]
- Ar, I.M.; Erol, I.; Peker, I.; Ozdemir, A.I.; Medeni, T.D.; Medeni, I.T. Evaluating the feasibility of blockchain in logistics operations: A decision framework. Expert Syst. Appl. 2020, 158, 113543. [Google Scholar] [CrossRef]
- Görçün, Ö.F.; Pamucar, D.; Biswas, S. The blockchain technology selection in the logistics industry using a novel MCDM framework based on Fermatean fuzzy sets and Dombi aggregation. Inform. Sci. 2023, 635, 345–374. [Google Scholar] [CrossRef]
- Banerjee, P.; Deb, S.G. Capital investment, working capital management, and firm performance: Role of managerial ability in US logistics industry. Transp. Res. E-Log. 2023, 176, 103224. [Google Scholar] [CrossRef]
- Wang, X.H.; Xie, X. Mechanism and Path of Green and Low-carbon Transformation of Logistics Industry Driven by Digital Science and Technology Innovation-A Case Study of JD Logistics. Res. Econ. Manag. 2024, 45, 21–40. [Google Scholar]
- Eller, R.; Alford, P.; Kallmünzer, A.; Peters, M. Antecedents, consequences, and challenges of small and medium-sized enterprise digitalization. J. Bus. Res. 2020, 112, 119–127. [Google Scholar] [CrossRef]
- Elia, G.; Margherita, A.; Passiante, G. Digital entrepreneurship ecosystem: How digital technologies and collective intelligence are reshaping the entrepreneurial process. Technol. Forecast. Soc. 2020, 150, 119791. [Google Scholar] [CrossRef]
- Urbinati, A.; Chiaroni, D.; Chiesa, V.; Frattini, F. The role of digital technologies in open innovation processes: An exploratory multiple case study analysis. R&d Manag. 2018, 50, 136–160. [Google Scholar]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. 2021, 162, 120343. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Cheng, C.M.; Sun, G.L. Big data application, factor allocation, and green innovation in Chinese manufacturing enterprises. Technol. Forecast. Soc. 2023, 192, 122567. [Google Scholar] [CrossRef]
- Bendig, D.; Schulz, C.; Theis, L.; Raff, S. Digital orientation and environmental performance in times of technological change. Technol. Forecast. Soc. 2023, 188, 122272. [Google Scholar] [CrossRef]
- Meng, X.N.; Xu, S.C.; Hao, M.G. Can digital-real integration promote industrial green transformation: Fresh evidence from China’s industrial sector. J. Clean. Prod. 2023, 426, 139116. [Google Scholar] [CrossRef]
- Khayyat, M.; Balfaqih, M.; Balfaqih, H.; Ismail, M. Challenges and Factors Influencing the Implementation of Green Logistics: A Case Study of Saudi Arabia. Sustainability 2024, 16, 5617. [Google Scholar] [CrossRef]
- Yu, L.X.; Xu, J.; Yuan, X. Sustainable Digital Shifts in Chinese Transport and Logistics: Exploring Green Innovations and Their ESG Implications. Sustainability 2024, 16, 1877. [Google Scholar] [CrossRef]
- Chu, X.L.; Jia, Y.F.; Wu, X.T. Measurement of Digitalization Degree of Logistics Industry Based on Input-Output Technology. Stat. Decis. 2024, 40, 86–90. [Google Scholar]
- Wagner, R.; Kabalska, A. Sustainable value in the fashion industry: A case study of value construction/destruction using digital twins. Sustain. Dev. 2022, 31, 1652–1667. [Google Scholar] [CrossRef]
- Avelar, S.; Borges-Tiago, T.; Almeida, A.; Tiago, F. Confluence of sustainable entrepreneurship, innovation, and digitalization in SMEs. J. Bus. Res. 2024, 170, 114346. [Google Scholar] [CrossRef]
- Bagherian, A.; Gershon, M.; Kumar, S.; Mishra, M.K. Analyzing the relationship between digitalization and energy sustainability: A comprehensive ISM-MICMAC and DEMATEL approach. Expert Syst. Appl. 2024, 236, 121193. [Google Scholar] [CrossRef]
- Lei, X.; Shen, Z.Y.; Štreimikienė, D.; Baležentis, T.; Wang, G.; Mu, Y.G. Digitalization and sustainable development: Evidence from OECD countries. Appl. Energ. 2024, 357, 122480. [Google Scholar] [CrossRef]
- Tolentino-Zondervan, F.; DiVito, L. Sustainability performance of Dutch firms and the role of digitalization: The case of textile and apparel industry. J. Clean. Prod. 2024, 459, 142573. [Google Scholar] [CrossRef]
- Alsakka, F.; Yu, H.T.; El-Chami, I.; Hamzeh, F.; Al-Hussein, M. Digital twin for production estimation, scheduling and real-time monitoring in offsite construction. Comput. Ind. Eng. 2024, 191, 110173. [Google Scholar] [CrossRef]
- Kosoy, N.; Brown, P.G.; Bosselmann, K.; Duraiappah, A.; Mackey, B.; Martinez-Alier, J.; Rogers, D.; Thomson, R. Pillars for a flourishing Earth: Planetary boundaries, economic growth delusion and green economy. Curr. Opin. Environ. Sust. 2012, 4, 74–79. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, C.; Xu, T.; Wang, D. Green Economy and Low Carbon Transition: An overview of International Symposium on Market-Oriented Green and Low Carbon Development. Econ. Res. J. 2014, 49, 184–188. [Google Scholar]
- Siyal, A.W.; Chen, H.Z.; Shahzad, F.; Bano, S. Investigating the role of institutional pressures, technology compatibility, and green transformation in driving manufacturing industries toward green development. J. Clean. Prod. 2023, 428, 139416. [Google Scholar] [CrossRef]
- Walsh, P.P.; Murphy, E.; Horan, D. The role of science, technology and innovation in the UN 2030 agenda. Technol. Forecast. Soc. 2020, 154, 119957. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Chatterjee, S.; Gupta, S.; Kamble, S. Green supply chain technology and organization performance: Moderating role of environmental dynamism and product-service innovation capability. Technovation 2023, 128, 102857. [Google Scholar] [CrossRef]
- Shou, Y.Y.; Wu, C.; Shao, J.N.; Hu, W.J.; Lai, K.H. Does green technology innovation contribute to logistics companies’ market value? The effects of stakeholder engagement and public attention. Transp. Res. E-Log. 2023, 176, 103227. [Google Scholar] [CrossRef]
- Aisbett, E.; Raynal, W.; Steinhauser, R.; Jones, B. International green economy collaborations: Chasing mutual gains in the energy transition. Energy Res. Soc. Sci. 2023, 104, 103249. [Google Scholar] [CrossRef]
- Akalibey, S.; Ahenkan, A.; Duho, K.C.T.; Maloreh-Nyamekye, T.; Schneider, J. Drivers of green economy in an emerging market: Generic and sector-specific insights. J. Clean. Prod. 2023, 425, 138857. [Google Scholar] [CrossRef]
- Ning, J.; Jiang, X.Y.; Luo, J.M. Relationship between enterprise digitalization and green innovation: A mediated moderation model. J. Innov. Knowl. 2023, 8, 100326. [Google Scholar] [CrossRef]
- Yadav, S.; Samadhiya, A.; Kumar, A.; Luthra, S.; Kumar, V.; Garza-Reyes, J.A.; Upadhyay, A. The interplay effects of digital technologies, green integration, and green innovation on food supply chain sustainable performance: An organizational information processing theory perspective. Technol. Soc. 2024, 77, 102585. [Google Scholar] [CrossRef]
- Soto, G.H. The role of foreign direct investment and green technologies in facilitating the transition toward green economies in Latin America. Energy 2024, 288, 129933. [Google Scholar] [CrossRef]
- Xiong, W.; Guo, X.N.; Sun, Y.; Ou, J.J. Green standard and green development: Theory and empirical evidence. J. Clean. Prod. 2023, 414, 137768. [Google Scholar] [CrossRef]
- Wu, H.H. The Introduction of Western Industrial Organization Theory in China with Related Comments. China Rev. Polit. Econ. 2019, 10, 3–21. [Google Scholar]
- Jazairy, A.; von Haartman, R. Analysing the institutional pressures on shippers and logistics service providers to implement green supply chain management practices. Int. J. Logist. Res. Appl. 2020, 23, 44–84. [Google Scholar] [CrossRef]
- Oztaysi, B. A decision model for information technology selection using AHP integrated TOPSIS-Grey: The case of content management systems. Knowl-Based. Syst. 2014, 70, 44–54. [Google Scholar] [CrossRef]
- Alao, M.A.; Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Popoola, O.M. Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria. Energy 2020, 201, 117675. [Google Scholar] [CrossRef]
- Jiang, T. Mediating Effects and Moderating Effects in Causal Inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar]
- Hansen, B.E. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econometrics 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Che, C.M. Panel threshold analysis of Taiwan’s outbound visitors. Econ. Model. 2013, 33, 787–793. [Google Scholar] [CrossRef]
- Saqib, Z.A.; Qin, L. Investigating Effects of Digital Innovations on Sustainable Operations of Logistics: An Empirical Study. Sustainability 2024, 16, 5518. [Google Scholar] [CrossRef]
System Layer | Dimension Layer | Index Layer | Attribute | Unit |
---|---|---|---|---|
Logistics Industrial Transformation and Upgrading (L) | Development Condition (L1) | Road Mileage (L11) | + | km |
Percentage of Fiscal Expenditure on Transportation (L12) | + | % | ||
Industrial Scale (L2) | Gross Regional Product—Transportation, Storage, and Postal Services (L21) | + | 100 million yuan | |
Logistics Value Added as Share of GDP (L22) | + | % | ||
Investment in Fixed Assets for Transportation, Storage, and Postal Services (L23) | + | 10,000 yuan | ||
Supply Quality (L3) | Freight Turnover (L31) | + | 100 million tons-km | |
Freight Volume (L32) | + | 10,000 tons | ||
Total Imports of Goods (L33) | + | 10,000 dollars | ||
Total Exports of Goods (L34) | + | 10,000 dollars | ||
Green Environmental Protection (L4) | Electricity Consumption in Transportation, Storage, and Postal Services (L41) | − | kWh/10,000 yuan | |
Sulfur Dioxide Emissions from Logistics Industrial Output Value Per 10,000 Yuan (L42) | − | ton |
System Layer | Dimension Layer | Index Layer | Attribute | Unit |
---|---|---|---|---|
Digital-Real Integration (D) | Integration Foundation (D1) | Internet Broadband Access Users (D11) | + | 10,000 households |
Mobile Phone Penetration Rate (D12) | + | phone/100 people | ||
Percentage of Persons Employed in the Information Technology Industry (D13) | + | % | ||
Integration Input (D2) | Local Fiscal Expenditure on Science and Technology (D21) | + | 10,000 yuan | |
Expenditures on New Product Development of Industrial Enterprises Above Scale (D22) | + | 10,000 yuan | ||
Gross Power of Agricultural Machinery (D23) | + | 10,000 kW | ||
Fixed-Asset Investment Growth in Information Technology Industry (D24) | + | % | ||
Integration Utility (D3) | Sales Revenue on New Products of Industrial Enterprises Above Scale (D31) | + | 10,000 yuan | |
Patents Granted Per 10,000 People (D32) | + | item | ||
Profit-to-Cost Ratio of Industrial Enterprises Above Scale (D33) | + | % | ||
Electricity Consumption Per 10,000 GDP (D34) | − | kWh |
System Layer | Dimension Layer | Index Layer | Attribute | Unit |
---|---|---|---|---|
Green Economy (G) | Economic Support (G1) | Per Capita GDP (G11) | + | yuan/person |
The Ratio of Retail Sales of Consumer Goods to Total Population (G12) | + | % | ||
Total Labor Productivity (G13) | + | yuan/person | ||
Innovation Elements (G2) | R&D Spending as a Scale of GDP (G21) | + | % | |
Percentage of Education Employees (G22) | + | % | ||
Telecommunication Services Revenue (G23) | + | 10,000 yuan | ||
Green Invention Patent Application (G24) | + | item | ||
Green Development (G3) | Greening Coverage in Built-Up Areas (G31) | + | % | |
Green Invention Patent Authorization (G32) | + | item | ||
Percentage of Expenditure on Environmental Protection (G33) | + | % | ||
Harmless Treatment Rate of Life Waste (G34) | + | % |
Variable Type | Variable | Obs. | Mean | Std. Dev. | Min. | Max. | VIF |
---|---|---|---|---|---|---|---|
Explained Variable | Log | 110 | 0.269 | 0.023 | 0.241 | 0.335 | — |
Explanatory Variable | Drf | 110 | 0.300 | 0.025 | 0.263 | 0.389 | 4.09 |
Moderator Variable | Ged | 110 | 0.335 | 0.025 | 0.298 | 0.413 | 5.91 |
Controlled Variable | Tech | 110 | 8.534 | 0.894 | 6.547 | 10.078 | 3.64 |
Fdi | 110 | 10.991 | 0.894 | 7.870 | 12.252 | 2.58 | |
Indus | 110 | 3.807 | 0.172 | 3.451 | 4.132 | 3.43 | |
Fsc | 110 | 5.730 | 0.293 | 5.044 | 6.292 | 6.26 | |
Gov | 110 | 2.934 | 0.330 | 2.095 | 3.694 | 5.01 |
Variable | Model (1) | Model (2) | Model (3) |
---|---|---|---|
Drf | 0.2854 ** | 0.3250 ** | 0.2988 ** |
(2.42) | (2.04) | (2.16) | |
Tech | −0.0072 | −0.0068 | −0.0077 |
(−1.16) | (−1.20) | (−1.17) | |
Fdi | 0.0050 * | 0.0073 * | 0.0061 ** |
(1.91) | (1.95) | (2.00) | |
Indus | 0.0273 * | 0.0347 ** | 0.0357 |
(1.83) | (1.96) | (1.47) | |
Fsc | −0.0131 | −0.0154 | −0.0146 |
(−1.30) | (−1.27) | (−1.16) | |
Gov | −0.0004 | −0.0147 | −0.0041 |
(−0.04) | (−1.15) | (−0.30) | |
_cons | 0.1881 *** | 0.1485 | 0.1632 |
(4.13) | (1.55) | (1.49) | |
id | Yes | No | Yes |
year | No | Yes | Yes |
R2 | 0.4448 | 0.4695 | 0.4851 |
N | 110 | 110 | 110 |
Variable | Model (4) | Model (5) | Model (6) | Model (7) | Model (8) |
---|---|---|---|---|---|
Drf | 0.2690 * | 0.2801 ** | 0.2882 ** | ||
(1.94) | (2.10) | (2.00) | |||
Drf_0 | 0.3947 *** | ||||
(2.62) | |||||
L.Drf | 0.3078 *** | ||||
(2.98) | |||||
Urb | −0.0681 ** | ||||
(−2.49) | |||||
Tech | −0.0066 | −0.0091 | −0.0065 | −0.0080 | −0.0078 |
(−1.16) | (−1.38) | (−1.06) | (−1.26) | (−1.13) | |
Fdi | 0.0053 * | 0.0057 * | 0.0062 ** | 0.0059 ** | 0.0062 * |
(1.96) | (1.92) | (2.23) | (2.33) | (1.92) | |
Indus | 0.0298 | 0.0441 * | 0.0257 | 0.0341 | 0.0381 |
(1.41) | (1.71) | (1.02) | (1.31) | (1.53) | |
Fsc | −0.0139 | −0.0133 | 0.0009 | −0.0051 | −0.0149 |
(−1.21) | (−0.97) | (0.07) | (−0.28) | (−1.19) | |
Gov | −0.0025 | −0.0077 | −0.0058 | −0.0080 | −0.0040 |
(−0.19) | (−0.57) | (−0.50) | (−0.56) | (−0.28) | |
_cons | 0.1204 | 0.4323 ** | 0.1047 | 0.1344 | 0.1597 |
(1.50) | (2.41) | (0.92) | (1.22) | (1.39) | |
Id and year | Yes | Yes | Yes | Yes | Yes |
R2 | 0.5134 | 0.5113 | 0.4998 | 0.4837 | 0.4762 |
N | 110 | 110 | 99 | 88 | 110 |
Variable | Model (9) | Model (10) |
---|---|---|
Drf | 0.2272 ** | 0.1516 |
(2.04) | (1.45) | |
Ged | 0.2555 | 0.0569 |
(1.33) | (0.29) | |
Drf*Ged | 3.8317 *** | |
(2.78) | ||
Tech | −0.0084 | −0.0029 |
(−1.31) | (−0.41) | |
Fdi | 0.0050 * | 0.0052 * |
(1.66) | (1.65) | |
Indus | 0.0289 | 0.0291 |
(1.10) | (1.11) | |
Fsc | −0.0071 | −0.0044 |
(−0.48) | (−0.31) | |
Gov | −0.0135 | −0.0138 |
(−0.96) | (−1.14) | |
_cons | 0.1199 | 0.1390 |
(0.95) | (1.02) | |
Id and year | Yes | Yes |
R2 | 0.5107 | 0.5495 |
N | 110 | 110 |
Variable | Economic Support | Innovative Elements | Green Development | |||
---|---|---|---|---|---|---|
Model (11) | Model (12) | Model (13) | Model (14) | Model (15) | Model (16) | |
Drf | 0.2967 ** | 0.2540 * | 0.2305 ** | 0.1293 | 0.2493 * | 0.2204 * |
(2.38) | (1.96) | (2.56) | (1.46) | (1.88) | (1.73) | |
Eco | −0.0753 * | −0.1030 * | ||||
(−1.68) | (−1.91) | |||||
Drf*Eco | 0.6659 | |||||
(1.54) | ||||||
Innov | 0.2225 | −0.1064 | ||||
(1.28) | (−0.48) | |||||
Drf*Innov | 5.6139 *** | |||||
(2.87) | ||||||
Green | 0.1363 | 0.0960 | ||||
(1.54) | (1.13) | |||||
Drf*Green | 1.9166 *** | |||||
(2.59) | ||||||
Tech | −0.0067 | −0.0050 | −0.0069 | 0.0000 | −0.0089 | −0.0068 |
(−1.10) | (−0.81) | (−1.19) | (0.00) | (−1.42) | (−1.04) | |
Fdi | 0.0060 ** | 0.0061 ** | 0.0054 ** | 0.0042 | 0.0051 * | 0.0052 * |
(2.19) | (2.09) | (2.04) | (1.58) | (1.65) | (1.69) | |
Indus | 0.0433 * | 0.0494 ** | 0.0366 | 0.0163 | 0.0318 | 0.0299 |
(1.86) | (2.08) | (1.47) | (0.69) | (1.29) | (1.26) | |
Fsc | −0.0266 ** | −0.0197 | −0.0126 | −0.0204 | −0.0128 | −0.0119 |
(−2.44) | (−1.56) | (−1.00) | (−1.56) | (−0.91) | (−0.86) | |
Gov | −0.0037 | −0.0086 | −0.0105 | −0.0057 | −0.0131 | −0.0131 |
(−0.27) | (−0.61) | (−0.80) | (−0.50) | (−0.91) | (−0.98) | |
_cons | 0.2242 ** (2.34) | 0.1806 * (1.95) | 0.1154 (0.94) | 0.2960 * (1.83) | 0.1806 (1.43) | 0.1828 (1.47) |
Id and year | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.4989 | 0.5139 | 0.5126 | 0.5851 | 0.5106 | 0.5257 |
N | 110 | 110 | 110 | 110 | 110 | 110 |
Threshold Variable | Threshold Number | F | p | Critical Value | Threshold Value | Confidence Interval of 95% | ||
---|---|---|---|---|---|---|---|---|
10% | 5% | 1% | ||||||
Drf | Single | 37.41 *** | 0.0033 | 14.0481 | 18.4518 | 27.7001 | 0.3541 | (0.3483, 0.3554) |
Double | 11.40 | 0.1233 | 12.1217 | 13.3977 | 16.9845 | 0.3181 | (0.3140, 0.3183) | |
Ged | Single | 30.60 ** | 0.0167 | 19.3161 | 22.2026 | 32.8191 | 0.3820 | (0.3756, 0.3821) |
Double | −15.30 | 1.0000 | 29.3390 | 38.3409 | 64.0972 | 0.3827 | (0.3756, 0.3852) |
Threshold Variable: Drf | Threshold Variable: Ged | ||
---|---|---|---|
Variable | Model (17) | Variable | Model (18) |
Drf·1 (Drf ≤ 0.3541) | 0.1101 | Drf·1 (Ged ≤ 0.3820) | 0.1297 |
(1.25) | (1.41) | ||
Drf·1 (Drf > 0.3541) | 0.1814 ** | Drf·1 (Ged > 0.3820) | 0.1772 * |
(2.33) | (1.95) | ||
Tech | −0.0007 | Tech | −0.0026 |
(−0.16) | (−0.58) | ||
Fdi | 0.0045 * | Fdi | 0.0049 * |
(1.82) | (1.88) | ||
Indus | 0.0260 ** | Indus | 0.0306 ** |
(2.26) | (2.76) | ||
Fsc | −0.0132 | Fsc | −0.0162 |
(−1.42) | (−1.72) | ||
Gov | −0.0012 | Gov | −0.0008 |
(−0.12) | (−0.10) | ||
_cons | 0.1715 *** | _cons | 0.1757 *** |
(4.73) | (4.51) | ||
R2 | 0.5960 | R2 | 0.5255 |
N | 110 | N | 110 |
Threshold Variable: Drf | Threshold Variable: Ged | ||
---|---|---|---|
Variable | Model (19) | Variable | Model (20) |
Drf·1 (Drf ≤ 0.3541) | 0.1238 (1.48) | Drf·1 (Ged ≤ 0.3820) | 0.1466 (1.72) |
Drf·1 (Drf > 0.3541) | 0.1947 ** (2.68) | Drf·1 (Ged > 0.3820) | 0.1922 ** (2.28) |
Tech | −0.0002 | Tech | −0.0023 |
(−0.05) | (−0.53) | ||
Fdi | 0.0052 * | Fdi | 0.0055 * |
(1.86) | (1.89) | ||
Indus | 0.0387 ** | Indus | 0.0413 ** |
(2.52) | (2.63) | ||
Fsc | −0.0046 | Fsc | −0.0088 |
(−0.49) | (−0.87) | ||
Gov | −0.0050 | Gov | −0.0041 |
(−0.53) | (−0.49) | ||
Urb | −0.0391 | Urb | −0.0333 |
(−1.59) | (−1.26) | ||
_cons | 0.2265 *** | _cons | 0.2220 *** |
(4.43) | (4.30) | ||
R2 | 0.6142 | R2 | 0.5385 |
N | 110 | N | 110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhao, Y.; Guo, C.; Xin, Z. Research on the Impact of Digital-Real Integration on Logistics Industrial Transformation and Upgrading under Green Economy. Sustainability 2024, 16, 6173. https://doi.org/10.3390/su16146173
Liu Z, Zhao Y, Guo C, Xin Z. Research on the Impact of Digital-Real Integration on Logistics Industrial Transformation and Upgrading under Green Economy. Sustainability. 2024; 16(14):6173. https://doi.org/10.3390/su16146173
Chicago/Turabian StyleLiu, Zhiqiang, Yaping Zhao, Caiyun Guo, and Ziwei Xin. 2024. "Research on the Impact of Digital-Real Integration on Logistics Industrial Transformation and Upgrading under Green Economy" Sustainability 16, no. 14: 6173. https://doi.org/10.3390/su16146173
APA StyleLiu, Z., Zhao, Y., Guo, C., & Xin, Z. (2024). Research on the Impact of Digital-Real Integration on Logistics Industrial Transformation and Upgrading under Green Economy. Sustainability, 16(14), 6173. https://doi.org/10.3390/su16146173