Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Case Study Area
3.2. Data and Methods of Analysis
4. Results
4.1. REV’s Effects on Montreal’s Cycling Network Recovery from the COVID-19 Pandemic
4.2. REV Ridership Analysis
5. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ville De Montréal. The REV: An Expressed Bike Network. 2022. Available online: https://montreal.ca/en/articles/rev-express-bike-network-4666 (accessed on 12 December 2023).
- Freixo, Q. REV Saint-Denis: Boosting the Local Economy through Cycling and Walking in Montreal, QC; Eco-Compteur: Lannion, France, 2023; (accessed on 3 February 2024). [Google Scholar]
- Chapalain, R. Saint-Denis Street Redevelopment: Stimulating the Local Economy through Cycling and Walking in Montreal, Qc. Eco-Compteur. 2023. Available online: https://www.eco-counter.com/blog/saint-denis-street-stimulating-local-economy-cycling-walking-montreal/ (accessed on 3 May 2024).
- Mölenberg, F.J.; Panter, J.; Burdorf, A.; van Lenthe, F.J. A systematic review of the effect of infrastructural interventions to promote cycling: Strengthening causal inference from observational data. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Dill, J. Bikeway networks: A review of effects on cycling. Transp. Rev. 2016, 36, 9–27. [Google Scholar] [CrossRef]
- Young, M.; Savan, B.; Manaugh, K.; Scott, J. Mapping the demand and potential for cycling in Toronto. Int. J. Sustain. Transp. 2021, 15, 285–293. [Google Scholar] [CrossRef]
- Félix, R.; Cambra, P.; Moura, F. Build it and give ‘em bikes, and they will come: The effects of cycling infrastructure and bike-sharing system in Lisbon. Case Stud. Transp. Policy 2020, 8, 672–682. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. Cycling to work in 90 large American cities: New evidence on the role of bike paths and lanes. Transportation 2012, 39, 409–432. [Google Scholar] [CrossRef]
- Lowry, M.; Loh, T.H. Quantifying bicycle network connectivity. Prev. Med. 2017, 95, 5134–5140. [Google Scholar] [CrossRef] [PubMed]
- Furth, P.G.; Mekuria, M.C.; Nixon, H. Network connectivity for low-stress bicycling. Transp. Res. Rec. 2016, 2587, 41–49. [Google Scholar] [CrossRef]
- De Jong, T.; Böcker, L.; Weber, C. Road infrastructures, spatial surroundings, and the demand and route choices for cycling: Evidence from a GPS-based mode detection study from Oslo, Norway. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 2133–2150. [Google Scholar] [CrossRef]
- Dill, J.; Gliebe, J. Understanding and Measuring Bicycling Behavior: A Focus on Travel Time and Route Choice; Final Report OTREC-RR-08-03 Prepared for Oregon Transportation Research and Education Consortium (OTREC); OTREC: Portland, OR, USA, 2008. [Google Scholar] [CrossRef]
- Larsen, J.; El-Geneidy, A. A travel behavior analysis of urban cycling facilities in Montréal, Canada. Transp. Res. Part D Transp. Environ. 2011, 16, 172–177. [Google Scholar] [CrossRef]
- Krizek, K.J.; El-Geneidy, A.; Thompson, K. A detailed analysis of how an urban trail system affects cyclists’ travel. Transportation 2007, 34, 611–624. [Google Scholar] [CrossRef]
- Tilahun, N.Y.; Levinson, D.M.; Krizek, K.J. Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey. Transp. Res. Part A Policy Pract. 2007, 41, 287–301. [Google Scholar] [CrossRef]
- Pearson, L.; Berkovic, D.; Reeder, S.; Gabbe, B.; Beck, B. Adults’ self-reported barriers and enablers to riding a bike for transport: A systematic review. Transp. Rev. 2023, 43, 356–384. [Google Scholar] [CrossRef]
- Heinen, E.; Van Wee, B.; Maat, K. Commuting by bicycle: An overview of the literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Garrard, J.; Rose, G.; Lo, S.K. Promoting transportation cycling for women: The role of bicycle infrastructure. Prev. Med. 2008, 46, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Guirao, B.; Gálvez-Pérez, D.; Casado-Sanz, N. The impact of the cyclist infrastructure type on bike accidents: The experience of Madrid. Transp. Res. Procedia 2023, 71, 403–410. [Google Scholar] [CrossRef]
- Thomas, B.; DeRobertis, M. The safety of urban cycle tracks: A review of the literature. Accid. Anal. Prev. 2013, 52, 219–227. [Google Scholar] [CrossRef]
- Harris, M.A.; Reynolds, C.C.; Winters, M.; Cripton, P.A.; Shen, H.; Chipman, M.L.; Cusimano, M.D.; Babul, S.; Brubacher, J.R.; Friedman, S.M.; et al. Comparing the effects of infrastructure on bicycling injury at intersections and non-intersections using a case–crossover design. Inj. Prev. 2013, 19, 303–310. [Google Scholar] [CrossRef]
- Jacobsen, P.L. Safety in numbers: More walkers and bicyclists, safer walking and bicycling. Inj. Prev. 2015, 21, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Nordback, K.; Marshall, W.E.; Janson, B.N. Bicyclist safety performance functions for a US city. Accid. Anal. Prev. 2014, 65, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Wysling, L.; Purves, R.S. Where to improve cycling infrastructure? Assessing bicycle suitability and bikeability with open data in the city of Paris. Transp. Res. Interdiscip. Perspect. 2022, 15, 100648. [Google Scholar] [CrossRef]
- Castañon, U.N.; Ribeiro, P.J.G. Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review. Sustainability 2021, 13, 2394. [Google Scholar] [CrossRef]
- Krenn, P.; Oja, P.; Titze, S. Development of a Bikeability Index to Assess the Bicycle-Friendliness of Urban Environments. Open J. Civ. Eng. 2015, 5, 451–459. [Google Scholar] [CrossRef]
- Fosgerau, M.; Łukawska, M.; Paulsen, M.; Rasmussen, T.K. Bikeability and the induced demand for cycling. Proc. Natl. Acad. Sci. USA 2023, 120, e2220515120. [Google Scholar] [CrossRef] [PubMed]
- Codina, O.; Maciejewska, M.; Nadal, J.; Marquet, O. Built environment bikeability as a predictor of cycling frequency: Lessons from Barcelona. Transp. Res. Interdiscip. Perspect. 2022, 16, 100725. [Google Scholar] [CrossRef]
- Cartenì, A. Urban sustainable mobility. Part 1: Rationality in transport planning. Transp. Probl. 2014, 9, 39–48. [Google Scholar]
- Henke, I.; Molitierno, C.; Errico, A. Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability 2020, 12, 764. [Google Scholar] [CrossRef]
- Cartenì, A.; Henke, I.; Molitierno, C.; Di Francesco, L. Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy). Sustainability 2020, 12, 7033. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Shahzad, M.; Ahmad, N.; Zamad, A.; Hussan, S.; Aslam, M.A.; Khan, A.R.; Asif, M.A.; Shahzadi, G.; Waseem, M. Performance Evaluation of Bus Rapid Transit System: A Comparative Analysis of Alternative Approaches for Energy Efficient Eco-Friendly Public Transport System. Energies 2020, 13, 1377. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. COVID-19 impacts on cycling, 2019–2020. Transp. Rev. 2021, 41, 393–400. [Google Scholar] [CrossRef]
- Combs, T.S.; Pardo, C.F. Shifting streets COVID-19 mobility data: Findings from a global dataset and a research agenda for transport planning and policy. Transp. Res. Interdiscip. Perspect. 2021, 9, 100322. [Google Scholar] [CrossRef]
- Woodward, C. Cities Want the Millions Who Biked during the Pandemic to Keep Pedaling. PBS News Hour. 2023. Available online: https://www.pbs.org/newshour/nation/cities-want-the-millions-who-biked-during-the-pandemic-to-keep-pedaling (accessed on 20 April 2024).
- Wilson, K. Cycling through COVID-19: Paris. StreetsBlog. USA. 2022. Available online: https://usa.streetsblog.org/2022/10/13/cycling-through-covid-19-paris-france (accessed on 29 January 2024).
- Buehler, R.; Pucher, J. Cycling through the COVID-19 pandemic to a more sustainable transport future: Evidence from case studies of 14 large bicycle-friendly cities in Europe and North America. Sustainability 2022, 14, 7293. [Google Scholar] [CrossRef]
- Rérat, P.; Haldimann, L.; Widmer, H. Cycling in the era of COVID-19: The effects of the pandemic and pop-up cycle lanes on cycling practices. Transp. Res. Interdiscip. Perspect. 2022, 15, 100677. [Google Scholar] [CrossRef] [PubMed]
- Doubleday, A.; Choe, Y.; Busch Isaksen, T.; Miles, S.; Errett, N.A. How did outdoor biking and walking change during COVID-19?: A case study of three US cities. PLoS ONE 2021, 16, e0245514. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada. (2017). Montréal [Census metropolitan area], Quebec and Canada Census Profile. 2016 Census. Statistics Canada Catalogue no. 98-316-X2016001. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm?Lang=E<Geo1=CMACA<Code1=462<Geo2=PR<Code2=01<Data=Count<SearchText=montreal<SearchType=Begins<SearchPR=01<B1=All<TABID=1 (accessed on 3 November 2023).
- Copenhagenize. The Most Bicycle-Friendly Cities of 2019. 2019. Available online: https://copenhagenizeindex.eu/ (accessed on 12 February 2024).
- Vélo Québec. Cycling in Québec in 2020. 2020. Available online: https://www.velo.qc.ca/wp-content/uploads/2021/06/vq-edv2020-en.pdf (accessed on 7 April 2024).
- Autorité Régionale de Transport Métropolitain (ARTM). Enquête Origine-Destination—Montréal 2018. 2020. Available online: https://www.artm.quebec/planification/enqueteod/ (accessed on 20 May 2024).
- Ouelette-Vézina, H. Le REV Saint-Denis Plus Populaire Que Jamais. La Presse. 2023. Available online: https://www.lapresse.ca/actualites/grand-montreal/2023-12-15/pistes-cyclables/le-rev-saint-denis-plus-populaire-que-jamais.php#:~:text=Avec%20plus%20de%201%2C5,plus%20en%20plus%20d’adeptes (accessed on 6 March 2024).
- Ville de Montréal. Comptage des Vélos sur les Pistes Cyclables. Données Ouvertes. 2023. Available online: https://donnees.montreal.ca/dataset/velos-comptage (accessed on 7 December 2023).
- Moritz, S.; Bartz-Beielstein, T. ImputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Young, M.; MacGregor, G.; Tanguay, A.G. Revisiting COVID-19’s impact on cycling: An examination of bicycle count data in Montreal. Transp. Find. 2024, 1–6. [Google Scholar] [CrossRef]
Ridership (×1000) | |||||||
---|---|---|---|---|---|---|---|
Sensor Street | Group | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
Berri_Ontario | Control | 952 | 855 | 414 | 866 | 1060 | 1165 |
CoteSainteCatherine_Stuart | Control | 418 | 419 | 407 | 486 | 486 | 562 |
Maisonneuve_Marcil | Control | 337 | 347 | 337 | 329 | 323 | 302 |
Maisonneuve_Peel | Control | 1059 | 1015 | 603 | 737 | 966 | |
NotreDame_Frontenac | Control | 328 | 269 | 230 | 252 | 247 | 280 |
Parc_Duluth | Control | 593 | 555 | 336 | 416 | 583 | 647 |
Rachel_HoteldeVille | Control | 710 | 668 | 659 | 713 | 716 | 746 |
Rachel_Papineau | Control | 1032 | 1142 | 1013 | 1044 | 1013 | 1010 |
ReneLevesque_Wolfe | Control | 392 | 413 | 314 | 375 | 334 | 325 |
University_Milton | Control | 688 | 701 | 272 | 343 | 528 | 518 |
Viger_SaintUrbain | Control | 132 | 139 | 44 | 75 | 91 | 96 |
Boyer_Everett | Parallel | 466 | 449 | 334 | 390 | 344 | 299 |
Boyer_Rosemont | Parallel | 711 | 683 | 447 | 435 | 432 | 244 |
Brebeuf_Rachel | Parallel | 741 | 741 | 383 | 366 | 345 | 303 |
ChristopheColomb_Louvain | Parallel | 234 | 223 | 223 | 247 | 205 | 205 |
SaintLaurent_Bellechasse | Parallel | 1342 | 1399 | 1140 | 1063 | 982 | 1224 |
SaintUrbain_Villeneuve | Parallel | 409 | 453 | 288 | 226 | 227 | 261 |
ClusterA_Rachel | REV | 932 | 1131 | 1298 | |||
ClusterB_Carrieres | REV | 1126 | 1321 | 1519 | |||
ClusterC_Castelnau | REV | 119 | 759 | 873 | |||
ClusterD_Sauve | REV | 434 | 442 | 462 |
Pre-COVID-19 Average Ridership | Percent Change from Pre-COVID-19 Average Ridership | |||||
---|---|---|---|---|---|---|
Name | Group | (2018–2019) | 2020 | 2021 | 2022 | 2023 |
Berri_Ontario | Control | 904 | −54.2 | −4.2 | 17.3 | 28.8 |
CoteSainteCatherine_Stuart | Control | 419 | −2.8 | 16.0 | 16.0 | 34.2 |
Maisonneuve_Marcil | Control | 342 | −1.6 | −3.8 | −5.4 | −11.8 |
Maisonneuve_Peel | Control | 1037 | −41.9 | −29.0 | −6.9 | |
NotreDame_Frontenac | Control | 299 | −23.0 | −15.8 | −17.5 | −6.4 |
Parc_Duluth | Control | 574 | −41.5 | −27.5 | 1.6 | 12.8 |
Rachel_HoteldeVille | Control | 689 | −4.3 | 3.5 | 4.0 | 8.3 |
Rachel_Papineau | Control | 1087 | −6.8 | −4.0 | −6.8 | −7.1 |
ReneLevesque_Wolfe | Control | 391 | −21.9 | −6.7 | −16.9 | −19.2 |
University_Milton | Control | 625 | −60.0 | −50.6 | −24.0 | −25.4 |
Viger_SaintUrbain | Control | 135 | −67.5 | −44.1 | −32.6 | −28.7 |
Weighted average | Control | −29.7 | −14.4 | −3.5 | 1.9 | |
Boyer_Everett | Parallel (Cluster C) | 458 | −27.0 | −14.8 | −25.0 | −34.8 |
Boyer_Rosemont | Parallel (Cluster B) | 697 | −35.9 | −37.6 | −38.0 | −65.0 |
Brebeuf_Rachel | Parallel (Cluster A) | 741 | −48.3 | −50.7 | −53.4 | −59.1 |
ChristopheColomb_Louvain | Parallel (Cluster D) | 229 | −2.7 | 8.0 | −10.7 | −10.4 |
SaintLaurent_Bellechasse | Parallel (Cluster B) | 1370 | −16.8 | −22.4 | −28.3 | −10.6 |
SaintUrbain_Villeneuve | Parallel (Cluster A) | 431 | −33.2 | −47.6 | −47.4 | −39.5 |
Weighted average | Parallel | −28.3 | −30.5 | −35.4 | −35.4 |
2021 | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
Observed Drop | Expected Drop | Observed Drop | Expected Drop | Observed Drop | Expected Drop | |
Parallel sensors—Cluster A | −785,606 | −213,156 | −803,837 | −37,663 | −778,263 | 54,972 |
Parallel sensors—Cluster B | −568,986 | −274,987 | −653,444 | −48,588 | −599,282 | 70,918 |
Parallel sensors—Cluster C | −67,586 | −60,877 | −114,060 | −10,757 | −158,922 | 15,700 |
Parallel sensors—Cluster D | 18,687 | −30,419 | −24,153 | −5375 | −23,600 | 7845 |
2021 | 2022 | 2023 | |||||||
---|---|---|---|---|---|---|---|---|---|
Displaced (%) | Pent-Up (%) | Total (%) | Displaced (%) | Pent-Up (%) | Total (%) | Displaced (%) | Pent-Up (%) | Total (%) | |
Cluster A | 572,450 (61) | 359,820 (39) | 932,270 (100) | 766,174 (68) | 364,953 (32) | 1,131,127 (100) | 833,235 (64) | 464,616 (36) | 1,297,851 (100) |
Cluster B | 293,999 (26) | 832,431 (74) | 1,126,430 (100) | 604,856 (46) | 715,728 (54) | 1,320,584 (100) | 670,200 (44) | 848,371 (56) | 1,518,571 (100) |
Cluster C | 6709 (6) | 112,525 (94) | 119,234 (100) | 103,303 (14) | 655,730 (86) | 759,033 (100) | 174,622 (20) | 698,559 (80) | 873,181 (100) |
Cluster D | 0 (0) | 433,923 (100) | 433,923 (100) | 18,778 (4) | 423,508 (96) | 442,286 (100) | 31,445 (7) | 430,216 (93) | 461,661 (100) |
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
Change in cycling ridership measured by control sensors | −28.7% | −13.3% | −2.4% | 3.4% |
Change in cycling ridership measured by parallel sensors | −28.3% | −30.5% | −35.4% | −35.4% |
Overall change in cycling ridership | −28.5% | −19.8% | −14.8% | −12.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, M.; MacGregor, G.; Tanguay, G.A. Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery. Sustainability 2024, 16, 5992. https://doi.org/10.3390/su16145992
Young M, MacGregor G, Tanguay GA. Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery. Sustainability. 2024; 16(14):5992. https://doi.org/10.3390/su16145992
Chicago/Turabian StyleYoung, Mischa, Gavin MacGregor, and Georges A. Tanguay. 2024. "Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery" Sustainability 16, no. 14: 5992. https://doi.org/10.3390/su16145992
APA StyleYoung, M., MacGregor, G., & Tanguay, G. A. (2024). Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery. Sustainability, 16(14), 5992. https://doi.org/10.3390/su16145992