Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Case Study Area
3.2. Data and Methods of Analysis
4. Results
4.1. REV’s Effects on Montreal’s Cycling Network Recovery from the COVID-19 Pandemic
4.2. REV Ridership Analysis
5. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ville De Montréal. The REV: An Expressed Bike Network. 2022. Available online: https://montreal.ca/en/articles/rev-express-bike-network-4666 (accessed on 12 December 2023).
- Freixo, Q. REV Saint-Denis: Boosting the Local Economy through Cycling and Walking in Montreal, QC; Eco-Compteur: Lannion, France, 2023; (accessed on 3 February 2024). [Google Scholar]
- Chapalain, R. Saint-Denis Street Redevelopment: Stimulating the Local Economy through Cycling and Walking in Montreal, Qc. Eco-Compteur. 2023. Available online: https://www.eco-counter.com/blog/saint-denis-street-stimulating-local-economy-cycling-walking-montreal/ (accessed on 3 May 2024).
- Mölenberg, F.J.; Panter, J.; Burdorf, A.; van Lenthe, F.J. A systematic review of the effect of infrastructural interventions to promote cycling: Strengthening causal inference from observational data. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Dill, J. Bikeway networks: A review of effects on cycling. Transp. Rev. 2016, 36, 9–27. [Google Scholar] [CrossRef]
- Young, M.; Savan, B.; Manaugh, K.; Scott, J. Mapping the demand and potential for cycling in Toronto. Int. J. Sustain. Transp. 2021, 15, 285–293. [Google Scholar] [CrossRef]
- Félix, R.; Cambra, P.; Moura, F. Build it and give ‘em bikes, and they will come: The effects of cycling infrastructure and bike-sharing system in Lisbon. Case Stud. Transp. Policy 2020, 8, 672–682. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. Cycling to work in 90 large American cities: New evidence on the role of bike paths and lanes. Transportation 2012, 39, 409–432. [Google Scholar] [CrossRef]
- Lowry, M.; Loh, T.H. Quantifying bicycle network connectivity. Prev. Med. 2017, 95, 5134–5140. [Google Scholar] [CrossRef] [PubMed]
- Furth, P.G.; Mekuria, M.C.; Nixon, H. Network connectivity for low-stress bicycling. Transp. Res. Rec. 2016, 2587, 41–49. [Google Scholar] [CrossRef]
- De Jong, T.; Böcker, L.; Weber, C. Road infrastructures, spatial surroundings, and the demand and route choices for cycling: Evidence from a GPS-based mode detection study from Oslo, Norway. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 2133–2150. [Google Scholar] [CrossRef]
- Dill, J.; Gliebe, J. Understanding and Measuring Bicycling Behavior: A Focus on Travel Time and Route Choice; Final Report OTREC-RR-08-03 Prepared for Oregon Transportation Research and Education Consortium (OTREC); OTREC: Portland, OR, USA, 2008. [Google Scholar] [CrossRef]
- Larsen, J.; El-Geneidy, A. A travel behavior analysis of urban cycling facilities in Montréal, Canada. Transp. Res. Part D Transp. Environ. 2011, 16, 172–177. [Google Scholar] [CrossRef]
- Krizek, K.J.; El-Geneidy, A.; Thompson, K. A detailed analysis of how an urban trail system affects cyclists’ travel. Transportation 2007, 34, 611–624. [Google Scholar] [CrossRef]
- Tilahun, N.Y.; Levinson, D.M.; Krizek, K.J. Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey. Transp. Res. Part A Policy Pract. 2007, 41, 287–301. [Google Scholar] [CrossRef]
- Pearson, L.; Berkovic, D.; Reeder, S.; Gabbe, B.; Beck, B. Adults’ self-reported barriers and enablers to riding a bike for transport: A systematic review. Transp. Rev. 2023, 43, 356–384. [Google Scholar] [CrossRef]
- Heinen, E.; Van Wee, B.; Maat, K. Commuting by bicycle: An overview of the literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Garrard, J.; Rose, G.; Lo, S.K. Promoting transportation cycling for women: The role of bicycle infrastructure. Prev. Med. 2008, 46, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Guirao, B.; Gálvez-Pérez, D.; Casado-Sanz, N. The impact of the cyclist infrastructure type on bike accidents: The experience of Madrid. Transp. Res. Procedia 2023, 71, 403–410. [Google Scholar] [CrossRef]
- Thomas, B.; DeRobertis, M. The safety of urban cycle tracks: A review of the literature. Accid. Anal. Prev. 2013, 52, 219–227. [Google Scholar] [CrossRef]
- Harris, M.A.; Reynolds, C.C.; Winters, M.; Cripton, P.A.; Shen, H.; Chipman, M.L.; Cusimano, M.D.; Babul, S.; Brubacher, J.R.; Friedman, S.M.; et al. Comparing the effects of infrastructure on bicycling injury at intersections and non-intersections using a case–crossover design. Inj. Prev. 2013, 19, 303–310. [Google Scholar] [CrossRef]
- Jacobsen, P.L. Safety in numbers: More walkers and bicyclists, safer walking and bicycling. Inj. Prev. 2015, 21, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Nordback, K.; Marshall, W.E.; Janson, B.N. Bicyclist safety performance functions for a US city. Accid. Anal. Prev. 2014, 65, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Wysling, L.; Purves, R.S. Where to improve cycling infrastructure? Assessing bicycle suitability and bikeability with open data in the city of Paris. Transp. Res. Interdiscip. Perspect. 2022, 15, 100648. [Google Scholar] [CrossRef]
- Castañon, U.N.; Ribeiro, P.J.G. Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review. Sustainability 2021, 13, 2394. [Google Scholar] [CrossRef]
- Krenn, P.; Oja, P.; Titze, S. Development of a Bikeability Index to Assess the Bicycle-Friendliness of Urban Environments. Open J. Civ. Eng. 2015, 5, 451–459. [Google Scholar] [CrossRef]
- Fosgerau, M.; Łukawska, M.; Paulsen, M.; Rasmussen, T.K. Bikeability and the induced demand for cycling. Proc. Natl. Acad. Sci. USA 2023, 120, e2220515120. [Google Scholar] [CrossRef] [PubMed]
- Codina, O.; Maciejewska, M.; Nadal, J.; Marquet, O. Built environment bikeability as a predictor of cycling frequency: Lessons from Barcelona. Transp. Res. Interdiscip. Perspect. 2022, 16, 100725. [Google Scholar] [CrossRef]
- Cartenì, A. Urban sustainable mobility. Part 1: Rationality in transport planning. Transp. Probl. 2014, 9, 39–48. [Google Scholar]
- Henke, I.; Molitierno, C.; Errico, A. Decision-Making in the Transport Sector: A Sustainable Evaluation Method for Road Infrastructure. Sustainability 2020, 12, 764. [Google Scholar] [CrossRef]
- Cartenì, A.; Henke, I.; Molitierno, C.; Di Francesco, L. Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy). Sustainability 2020, 12, 7033. [Google Scholar] [CrossRef]
- Shah, S.A.R.; Shahzad, M.; Ahmad, N.; Zamad, A.; Hussan, S.; Aslam, M.A.; Khan, A.R.; Asif, M.A.; Shahzadi, G.; Waseem, M. Performance Evaluation of Bus Rapid Transit System: A Comparative Analysis of Alternative Approaches for Energy Efficient Eco-Friendly Public Transport System. Energies 2020, 13, 1377. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. COVID-19 impacts on cycling, 2019–2020. Transp. Rev. 2021, 41, 393–400. [Google Scholar] [CrossRef]
- Combs, T.S.; Pardo, C.F. Shifting streets COVID-19 mobility data: Findings from a global dataset and a research agenda for transport planning and policy. Transp. Res. Interdiscip. Perspect. 2021, 9, 100322. [Google Scholar] [CrossRef]
- Woodward, C. Cities Want the Millions Who Biked during the Pandemic to Keep Pedaling. PBS News Hour. 2023. Available online: https://www.pbs.org/newshour/nation/cities-want-the-millions-who-biked-during-the-pandemic-to-keep-pedaling (accessed on 20 April 2024).
- Wilson, K. Cycling through COVID-19: Paris. StreetsBlog. USA. 2022. Available online: https://usa.streetsblog.org/2022/10/13/cycling-through-covid-19-paris-france (accessed on 29 January 2024).
- Buehler, R.; Pucher, J. Cycling through the COVID-19 pandemic to a more sustainable transport future: Evidence from case studies of 14 large bicycle-friendly cities in Europe and North America. Sustainability 2022, 14, 7293. [Google Scholar] [CrossRef]
- Rérat, P.; Haldimann, L.; Widmer, H. Cycling in the era of COVID-19: The effects of the pandemic and pop-up cycle lanes on cycling practices. Transp. Res. Interdiscip. Perspect. 2022, 15, 100677. [Google Scholar] [CrossRef] [PubMed]
- Doubleday, A.; Choe, Y.; Busch Isaksen, T.; Miles, S.; Errett, N.A. How did outdoor biking and walking change during COVID-19?: A case study of three US cities. PLoS ONE 2021, 16, e0245514. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada. (2017). Montréal [Census metropolitan area], Quebec and Canada Census Profile. 2016 Census. Statistics Canada Catalogue no. 98-316-X2016001. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm?Lang=E<Geo1=CMACA<Code1=462<Geo2=PR<Code2=01<Data=Count<SearchText=montreal<SearchType=Begins<SearchPR=01<B1=All<TABID=1 (accessed on 3 November 2023).
- Copenhagenize. The Most Bicycle-Friendly Cities of 2019. 2019. Available online: https://copenhagenizeindex.eu/ (accessed on 12 February 2024).
- Vélo Québec. Cycling in Québec in 2020. 2020. Available online: https://www.velo.qc.ca/wp-content/uploads/2021/06/vq-edv2020-en.pdf (accessed on 7 April 2024).
- Autorité Régionale de Transport Métropolitain (ARTM). Enquête Origine-Destination—Montréal 2018. 2020. Available online: https://www.artm.quebec/planification/enqueteod/ (accessed on 20 May 2024).
- Ouelette-Vézina, H. Le REV Saint-Denis Plus Populaire Que Jamais. La Presse. 2023. Available online: https://www.lapresse.ca/actualites/grand-montreal/2023-12-15/pistes-cyclables/le-rev-saint-denis-plus-populaire-que-jamais.php#:~:text=Avec%20plus%20de%201%2C5,plus%20en%20plus%20d’adeptes (accessed on 6 March 2024).
- Ville de Montréal. Comptage des Vélos sur les Pistes Cyclables. Données Ouvertes. 2023. Available online: https://donnees.montreal.ca/dataset/velos-comptage (accessed on 7 December 2023).
- Moritz, S.; Bartz-Beielstein, T. ImputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Young, M.; MacGregor, G.; Tanguay, A.G. Revisiting COVID-19’s impact on cycling: An examination of bicycle count data in Montreal. Transp. Find. 2024, 1–6. [Google Scholar] [CrossRef]
Ridership (×1000) | |||||||
---|---|---|---|---|---|---|---|
Sensor Street | Group | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
Berri_Ontario | Control | 952 | 855 | 414 | 866 | 1060 | 1165 |
CoteSainteCatherine_Stuart | Control | 418 | 419 | 407 | 486 | 486 | 562 |
Maisonneuve_Marcil | Control | 337 | 347 | 337 | 329 | 323 | 302 |
Maisonneuve_Peel | Control | 1059 | 1015 | 603 | 737 | 966 | |
NotreDame_Frontenac | Control | 328 | 269 | 230 | 252 | 247 | 280 |
Parc_Duluth | Control | 593 | 555 | 336 | 416 | 583 | 647 |
Rachel_HoteldeVille | Control | 710 | 668 | 659 | 713 | 716 | 746 |
Rachel_Papineau | Control | 1032 | 1142 | 1013 | 1044 | 1013 | 1010 |
ReneLevesque_Wolfe | Control | 392 | 413 | 314 | 375 | 334 | 325 |
University_Milton | Control | 688 | 701 | 272 | 343 | 528 | 518 |
Viger_SaintUrbain | Control | 132 | 139 | 44 | 75 | 91 | 96 |
Boyer_Everett | Parallel | 466 | 449 | 334 | 390 | 344 | 299 |
Boyer_Rosemont | Parallel | 711 | 683 | 447 | 435 | 432 | 244 |
Brebeuf_Rachel | Parallel | 741 | 741 | 383 | 366 | 345 | 303 |
ChristopheColomb_Louvain | Parallel | 234 | 223 | 223 | 247 | 205 | 205 |
SaintLaurent_Bellechasse | Parallel | 1342 | 1399 | 1140 | 1063 | 982 | 1224 |
SaintUrbain_Villeneuve | Parallel | 409 | 453 | 288 | 226 | 227 | 261 |
ClusterA_Rachel | REV | 932 | 1131 | 1298 | |||
ClusterB_Carrieres | REV | 1126 | 1321 | 1519 | |||
ClusterC_Castelnau | REV | 119 | 759 | 873 | |||
ClusterD_Sauve | REV | 434 | 442 | 462 |
Pre-COVID-19 Average Ridership | Percent Change from Pre-COVID-19 Average Ridership | |||||
---|---|---|---|---|---|---|
Name | Group | (2018–2019) | 2020 | 2021 | 2022 | 2023 |
Berri_Ontario | Control | 904 | −54.2 | −4.2 | 17.3 | 28.8 |
CoteSainteCatherine_Stuart | Control | 419 | −2.8 | 16.0 | 16.0 | 34.2 |
Maisonneuve_Marcil | Control | 342 | −1.6 | −3.8 | −5.4 | −11.8 |
Maisonneuve_Peel | Control | 1037 | −41.9 | −29.0 | −6.9 | |
NotreDame_Frontenac | Control | 299 | −23.0 | −15.8 | −17.5 | −6.4 |
Parc_Duluth | Control | 574 | −41.5 | −27.5 | 1.6 | 12.8 |
Rachel_HoteldeVille | Control | 689 | −4.3 | 3.5 | 4.0 | 8.3 |
Rachel_Papineau | Control | 1087 | −6.8 | −4.0 | −6.8 | −7.1 |
ReneLevesque_Wolfe | Control | 391 | −21.9 | −6.7 | −16.9 | −19.2 |
University_Milton | Control | 625 | −60.0 | −50.6 | −24.0 | −25.4 |
Viger_SaintUrbain | Control | 135 | −67.5 | −44.1 | −32.6 | −28.7 |
Weighted average | Control | −29.7 | −14.4 | −3.5 | 1.9 | |
Boyer_Everett | Parallel (Cluster C) | 458 | −27.0 | −14.8 | −25.0 | −34.8 |
Boyer_Rosemont | Parallel (Cluster B) | 697 | −35.9 | −37.6 | −38.0 | −65.0 |
Brebeuf_Rachel | Parallel (Cluster A) | 741 | −48.3 | −50.7 | −53.4 | −59.1 |
ChristopheColomb_Louvain | Parallel (Cluster D) | 229 | −2.7 | 8.0 | −10.7 | −10.4 |
SaintLaurent_Bellechasse | Parallel (Cluster B) | 1370 | −16.8 | −22.4 | −28.3 | −10.6 |
SaintUrbain_Villeneuve | Parallel (Cluster A) | 431 | −33.2 | −47.6 | −47.4 | −39.5 |
Weighted average | Parallel | −28.3 | −30.5 | −35.4 | −35.4 |
2021 | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
Observed Drop | Expected Drop | Observed Drop | Expected Drop | Observed Drop | Expected Drop | |
Parallel sensors—Cluster A | −785,606 | −213,156 | −803,837 | −37,663 | −778,263 | 54,972 |
Parallel sensors—Cluster B | −568,986 | −274,987 | −653,444 | −48,588 | −599,282 | 70,918 |
Parallel sensors—Cluster C | −67,586 | −60,877 | −114,060 | −10,757 | −158,922 | 15,700 |
Parallel sensors—Cluster D | 18,687 | −30,419 | −24,153 | −5375 | −23,600 | 7845 |
2021 | 2022 | 2023 | |||||||
---|---|---|---|---|---|---|---|---|---|
Displaced (%) | Pent-Up (%) | Total (%) | Displaced (%) | Pent-Up (%) | Total (%) | Displaced (%) | Pent-Up (%) | Total (%) | |
Cluster A | 572,450 (61) | 359,820 (39) | 932,270 (100) | 766,174 (68) | 364,953 (32) | 1,131,127 (100) | 833,235 (64) | 464,616 (36) | 1,297,851 (100) |
Cluster B | 293,999 (26) | 832,431 (74) | 1,126,430 (100) | 604,856 (46) | 715,728 (54) | 1,320,584 (100) | 670,200 (44) | 848,371 (56) | 1,518,571 (100) |
Cluster C | 6709 (6) | 112,525 (94) | 119,234 (100) | 103,303 (14) | 655,730 (86) | 759,033 (100) | 174,622 (20) | 698,559 (80) | 873,181 (100) |
Cluster D | 0 (0) | 433,923 (100) | 433,923 (100) | 18,778 (4) | 423,508 (96) | 442,286 (100) | 31,445 (7) | 430,216 (93) | 461,661 (100) |
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
Change in cycling ridership measured by control sensors | −28.7% | −13.3% | −2.4% | 3.4% |
Change in cycling ridership measured by parallel sensors | −28.3% | −30.5% | −35.4% | −35.4% |
Overall change in cycling ridership | −28.5% | −19.8% | −14.8% | −12.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, M.; MacGregor, G.; Tanguay, G.A. Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery. Sustainability 2024, 16, 5992. https://doi.org/10.3390/su16145992
Young M, MacGregor G, Tanguay GA. Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery. Sustainability. 2024; 16(14):5992. https://doi.org/10.3390/su16145992
Chicago/Turabian StyleYoung, Mischa, Gavin MacGregor, and Georges A. Tanguay. 2024. "Analyzing the Impact of Montreal’s Réseau Express Vélo (REV) on Surrounding Bike Lanes’ Ridership and the COVID-19 Cycling Recovery" Sustainability 16, no. 14: 5992. https://doi.org/10.3390/su16145992