Giving Wings to Sustainability: Brazil Needs to Consider Bats as Suppressors of Agricultural Pests and Tropical Disease Vectors
Abstract
:1. Introduction
2. Relevance of Bats for Agriculture, Public Health and Their Susceptibility to Pesticides
3. Gaps and Challenges in the Use of Insect-Eating Bats in Biological Pest Control in Brazil
3.1. Insect-Eating Bat Diet
3.2. Bioacoustics and Habitat Use
3.3. Use of Artificial Roosts
4. Where to Start and How to Move Forward
- -
- The use of more technological methods (e.g., DNA metabarcoding) to analyse faeces from insectivorous bats captured or guano from roosts. This will allow taxonomic identification of food items with greater precision and breadth;
- -
- The valuation of ecosystem services is essential for nature, translating the results into a more accessible language for public managers and businesspeople. In this way, knowledge becomes more accessible for the implementation of public policies and private sector actions;
- -
- Estimate the size and population dynamics of insectivorous bat species in Brazil, trying to understand the main characteristics of the roosts that allow bat species to remain occupied. For this type of study, carry out population monitoring in roosts using the mark–recapture technique;
- -
- Verify habitat use, mainly considering the effect of changing land use from natural habitats to agricultural systems and urban areas for Brazilian insectivorous bats. Furthermore, studies must verify the minimum amount of natural, regenerated or planted area to have maximum bat richness and activity, which facilitates the implementation of more bat-friendly urban green areas and improves the occupation and permanence of these species in agricultural ecosystems. For these studies, consider using more modern and accessible technologies such as ultrasound recorders, radio collars, GPS tags or radar systems;
- -
- Greater incentives for researchers to further study how artificial roosts can be used in agricultural areas and urban areas without increasing conflicts between bats and humans;
- -
- Carry out a diagnosis of the problems faced by agricultural producers, including key people from agribusiness and organic agriculture, seeking collaborative solutions that include the sustainable use of insectivorous bats;
- -
- Incentives for using environmental education and outreach to demystify bats, resolve conflict problems and improve the general population’s knowledge of how bats are essential for maintaining biodiversity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benton, T.G.; Bieg, C.; Harwatt, H.; Pudasaini, R.; Wellesley, L. Food system impacts on biodiversity loss. In Three Levers for Food System Transformation in Support of Nature; Chatham House: London, UK, 2021. [Google Scholar]
- Kumar, R.; Kumar, A.; Saikia, P. Deforestation and Forests Degradation Impacts on the Environment. In Environmental Degradation: Challenges and Strategies for Mitigation. Water Science and Technology Library; Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N., Eds.; Springer: Cham, Switzerland, 2022; Volume 104. [Google Scholar]
- De Oliveira, D.P.; Araújo, G.C. Brazil’s environment calls for help! Ecosyst. People 2020, 16, 135–136. [Google Scholar] [CrossRef]
- Fuchs, R.; Brown, C.; Rounsevell, M. Europe’s Green Deal offshores environmental damage to other nations. Nature 2020, 586, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Bebber, D.P.; Holmes, T.; Gurr, S.J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 2014, 23, 1398–1407. [Google Scholar] [CrossRef]
- Schneider, L.; Rebetez, M.; Rasmann, S. The effect of climate change on invasive crop pests across biomes. Curr. Opin. Insect Sci. 2022, 50, 100895. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agriculture Organization). Agricultural Production Statistics 2000–2021. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/58971ed8-c831-4ee6-ab0a-e47ea66a7e6a/content (accessed on 2 March 2024).
- FAO (Food and Agriculture Organization). FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 25 March 2024).
- Lage, M. Recordista em Liberações, Governo Bolsonaro Autoriza 51 Novos Agrotóxicos Apenas em Julho. 2021. Available online: https://manuelzao.ufmg.br/recordista-em-liberacoes-governo-bolsonaro-autoriza-51-novos-agrotoxicos-apenas-em-julho/ (accessed on 30 April 2024).
- Bombardi, L.M. Geografia do Uso de Agrotóxicos no Brasil e Conexões Com a União Europeia; FFLCH-USP: São Paulo, Brazil, 2017. [Google Scholar]
- Cardoso, A.D.; Barbero, R.P.; Romanzini, E.P.; Teobaldo, R.; Ongaratto, F.; Fernandes, M.H.; Ruggieri, A.C.; Reis, R.A. Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 2020, 12, 6656. [Google Scholar] [CrossRef]
- Feltran-Barbieri, R.; Féres, J.G. Degraded pastures in Brazil: Improving livestock production and forest restoration. R. Soc. Open Sci. 2021, 8, 201854. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, M.E.; Moffette, F.; Rausch, L.; Christie, M.; Munger, J.; Gibbs, H.K. Cattle ranchers and deforestation in the Brazilian Amazon: Production, location, and policies. Glob. Environ. Change 2021, 68, 102280. [Google Scholar] [CrossRef]
- Greenpeace; Imaflora; Imazon; Instituto Centro de Vida; Instituto Socioambiental; IPAM; The Nature Conservancy; WWF. A Pathway to Zero Deforestation in the Brazilian Amazon; Zero Deforestation Working Group: Cuiabá, Brasil, 2017. [Google Scholar]
- Gazzoni, D.L.; Cattelan, A.J.; Nogueira, M.A. Does the Brazilian Soybean Production Increase Pose a Threat on the Amazon Rainforest? Embrapa Soja: Londrina, Brasil, 2019. [Google Scholar]
- Rufino, C.; Landgraf, L. Brazilian Soybean Has Technology to Increase Production without Pressure for Forest Areas. 2021. Available online: https://www.embrapa.br/soja/busca-de-publicacoes/-/publicacao/1111175/does-the-brazilian-soybean-production-increase-pose-a-threat-on-the-amazon-rainforest (accessed on 4 December 2023).
- Braga, A.R.C.; de Rosso, V.V.; Harayashiki, C.A.Y.; Jimenez, P.C.; Castro, Í.B. Global health risks from pesticide use in Brazil. Nat. Food. 2020, 1, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Mukpo, A. European Supermarkets Say Brazilian Beef is Off the Menu. 2021. Available online: https://news.mongabay.com/2021/12/european-supermarkets-say-brazilian-beef-is-off-the-menu/ (accessed on 30 April 2024).
- Damalas, C.A. Safe food production with minimum and judicious use of pesticides. In Food Safety: Basic Concepts, Recent Issues, and Future Challenges; Selamat, J., Iqbal, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 43–55. [Google Scholar] [CrossRef]
- Bale, J.S.; Van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 761–776. [Google Scholar] [CrossRef]
- Parra, J.R.P. Biological control in Brazil: An overview. Sci. Agric. 2014, 71, 420–429. [Google Scholar] [CrossRef]
- Boyles, J.G.; Cryan, P.M.; McCracken, G.F.; Kunz, T.H. Economic importance of bats in agriculture. Science 2011, 332, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Riccucci, M.; Lanza, B. Bats and insect pest control: A review. Vespertilio 2014, 17, 161–169. [Google Scholar]
- Aguiar, L.M.; Bueno-Rocha, I.D.; Oliveira, G.; Pires, E.S.; Vasconcelos, S.; Nunes, G.L.; Frizzas, M.R.; Togni, P.H. Going out for dinner—The consumption of agriculture pests by bats in urban areas. PLoS ONE 2021, 16, e0258066. [Google Scholar] [CrossRef] [PubMed]
- Xavier, B.S.; Rainho, A.; Santos, A.; Vieira, M.V.; Carvalho, W.D. Global systematic map of research on bats in agricultural systems. Front. Ecol. Evol. 2023, 11, 1214176. [Google Scholar] [CrossRef]
- Cassano, C.R.; Silva, R.M.; Mariano-Neto, E.; Schroth, G.; Faria, D. Bat and bird exclusion but not shade cover influence arthropod abundance and cocoa leaf consumption in agroforestry landscape in northeast Brazil. Agr. Ecosyst. Environ. 2016, 232, 247–253. [Google Scholar] [CrossRef]
- Elmqvist, T.; Zipperer, W.C.; Güneralp, B. Urbanization, habitat loss and biodiversity decline: Solution pathways to break the cycle. In The Routledge Handbook of Urbanization and Global Environmental Change; Seta, K., Solecki, W.D., Griffith, C.A., Eds.; Routledge: London, UK; New York, NY, USA, 2016; pp. 139–151. [Google Scholar]
- Nava, A.; Shimabukuro, J.S.; Chmura, A.A.; Luz, S.L.B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 2017, 58, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.B. Biological control of human disease vectors: A perspective on challenges and opportunities. BioControl 2018, 63, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.M.M.; Regis, L.N.; Silva-Filha, M.H.; Barbosa, R.M.; Melo-Santos, M.A.; Gomes, T.C.; Oliveira, C.M. The effectiveness of a combined bacterial larvicide for mosquito control in an endemic urban area in Brazil. BioControl 2018, 1, 190–198. [Google Scholar] [CrossRef]
- Ghanem, S.J.; Voigt, C.C. Increasing awareness of ecosystem services provided by bats. In Advances in the Study of Behavior; Brockmann, H.J., Roper, T.J., Naguib, M., Mitani, J.C., Simmons, L.W., Eds.; Academic Press: San Diego, CA, USA, 2012; Volume 44, pp. 279–302. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Flaquer, C.; Gómez-Aguilera, N.; Burgas, A.; Mas, M.; Tuneu, C.; Marquès, E.; López-Baucells, A. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 2020, 76, 3759–3769. [Google Scholar] [CrossRef]
- Ramírez-Fráncel, L.A.; García-Herrera, L.V.; Losada-Prado, S.; Reinoso-Flórez, G.; Sánchez-Hernández, A.; Estrada-Villegas, S.; Lim, B.K.; Guevara, G. Bats and their vital ecosystem services: A global review. Integr. Zool. 2022, 17, 2–23. [Google Scholar] [CrossRef]
- Maslo, B.; Mau, R.L.; Kerwin, K.; McDonough, R.; McHale, E.; Foster, J.T. Bats provide a critical ecosystem service by consuming a large diversity of agricultural pest insects. Agric. Ecosyst. Environ. 2022, 324, 107722. [Google Scholar] [CrossRef]
- Guaraldo, M.C. Brazil is the World’s Fourth Largest Grain Producer and Top Beef Exporter, Study Shows. 2021. Available online: https://www.embrapa.br/en/busca-de-noticias/-/noticia/62619259/brazil-is-the-worlds-fourth-largest-grain-producer-and-top-beef-exporter-study-shows (accessed on 1 April 2024).
- Kunz, T.H.; Torrez, E.B.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef]
- Reis, N.R.; Peracchi, A.L.; Batista, C.B.; De Lima, I.P. História Natural dos Morcegos Brasileiros: Chave de Identificação de Espécies; Technical Books Editora Ltda: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Garbino, G.S.T.; Gregorin, R.; Lima, I.P.; Loureiro, L.; Moras, L.; Moratelli, R.; Nogueira, M.R.; Pavan, A.C.; Tavares, V.C.; Nascimento, M.C.; et al. Updated Checklist of Brazilian Bats: Versão 2020. Comitê da Lista de Morcegos do Brasil—CLMB. Sociedade Brasileira para o Estudo de Quirópteros (Sbeq). Available online: https://www.sbeq.net/lista-de-especies (accessed on 1 April 2024).
- Kemp, J.; López-Baucells, A.; Rocha, R.; Wangensteen, O.S.; Andriatafika, Z.; Nair, A.; Cabeza, M. Bats as potential suppressors of multiple agricultural pests: A case study from Madagascar. Agric. Ecosyst. Environ. 2019, 269, 88–96. [Google Scholar] [CrossRef]
- Maine, J.J.; Boyles, J.G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. USA 2015, 112, 12438–12443. [Google Scholar] [CrossRef]
- Tuneu-Corral, C.; Puig-Montserrat, X.; Riba-Bertolín, D.; Russo, D.; Rebelo, H.; Cabeza, M.; López-Baucells, A. Pest suppression by bats and management strategies to favour it: A global review. Biol. Rev. 2023, 98, 1564–1582. [Google Scholar] [CrossRef]
- Breviglieri, C.P.B. Influência de Aves e Morcegos Insetívoros no Controle da Herbivoria em Sistemas Agroflorestais de Café. Ph.D. Thesis, Universidade Estadual de Campinas, São Paulo, Brazil, 2013. [Google Scholar]
- Bisseleua, D.H.B.; Vidal, S. Dispersion models and sampling of cacao mirid bug Sahlbergella singularis (Hemiptera: Miridae) on Theobroma cacao in Southern Cameroon. Environ. Entomol. 2011, 40, 111–119. [Google Scholar] [CrossRef]
- Cleveland, C.; Betke, M.; Federico, P.; Frank, J.D.; Hallam, T.G.; Horn, J.; López, J.D., Jr.; Mccracken, G.F.; Medellín, R.A.; Moreno-Valdez, A.; et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 2006, 4, 238–243. [Google Scholar] [CrossRef]
- Kasso, M.; Balakrishnan, M. Ecological and economic importance of bats (Order Chiroptera). ISRN Biodivers. 2013, 2013, 187415. [Google Scholar] [CrossRef]
- Williams-Guillén, K.; Olimpi, E.; Maas, B.; Taylor, P.J.; Arlettaz, R. Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of Chiroptera and their ecosystem services in agricultural landscapes. In Bats in the Anthropocene: Conservation of Bats in a Changing World, 1st ed.; Voigt, C.C., Kingston, T., Eds.; Espringer Open: Cham, Switzerland, 2016; pp. 151–186. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Allendes, J.L.; Beltrán, C.A.; Chaperon, P.N.; Saldarriaga-Córdoba, M.M.; Silva, A.X.; Grez, A.A. Quantifying ecological and economic value of pest control services provided by bats in a vineyard landscape of central Chile. Agric. Ecosyst. Environ. 2020, 302, 107063. [Google Scholar] [CrossRef]
- Puig-Montserrat, X.; Torre, I.; López-Baucells, A.; Guerrieri, E.; Monti, M.M.; Ràfols-García, R.; Ferrer, X.; Gisbert, D.; Flaquer, C. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 2015, 80, 237–245. [Google Scholar] [CrossRef]
- Gonsalves, L.; Lamb, S.; Webb, C.; Law, B.; Monamy, V. Do mosquitoes influence bat activity in coastal habitats? Wildl. Res. 2013, 40, 10–24. [Google Scholar] [CrossRef]
- Cohen, Y.; Bar-David, S.; Nielsen, M.; Bohmann, K.; Korine, C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol. Ecol. 2020, 29, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Reiskind, M.H.; Wund, M.A. Experimental assessment of the impacts of northern long-eared bats on ovipositing Culex (Diptera: Culicidae) mosquitoes. J. Med. Entomol. 2009, 46, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Aizpurua, O.; Budinski, I.; Georgiakakis, P.; Gopalakrishnan, S.; Ibañez, C.; Mata, V.; Rebelo, H.; Russo, D.; Szodoray-Parádi, F.; Zhelyazkova, V.; et al. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding. Mol. Ecol. 2018, 27, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Baroja, U.; Garin, I.; Aihartza, J.; Arrizabalaga-Escudero, A.; Vallejo, N.; Aldasoro, M.; Goiti, U. Pest consumption in a vineyard system by the lesser horseshoe bat (Rhinolophus hipposideros). PLoS ONE 2019, 14, e0219265. [Google Scholar] [CrossRef] [PubMed]
- Baroja, U.; Garin, I.; Vallejo, N.; Aihartza, J.; Rebelo, H.; Goiti, U. Bats actively track and prey on grape pest populations. Ecol. Indic. 2021, 126, 107718. [Google Scholar] [CrossRef]
- Whitby, M.D.; Kieran, T.J.; Glenn, T.C.; Allen, C. Agricultural pests consumed by common bat species in the United States corn belt: The importance of DNA primer choice. Agric. Ecosyst. Environ. 2020, 303, 107105. [Google Scholar] [CrossRef]
- Scott, T.W. Containment of arthropod disease vectors. ILAR J. 2005, 46, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Leitner, W.W.; Wali, T.; Kincaid, R.; Costero-Saint, A.D. Arthropod Vectors and Disease Transmission: Translational Aspects. PLoS Negl. Trop. Dis. 2015, 9, e0004107. [Google Scholar] [CrossRef]
- Jordao, A.C.S.J. Análise da Dieta de Morcegos Insetívoros em Ambientes Cavernícolas Através de Metabarcoding de eDNA. Master’s Thesis, Universidade Federal de Pernambuco, Instituto Tecnológico, Vale, Recife, Brazil, 2019. [Google Scholar]
- Burgar, J.M.; Hitchen, Y.; Prince, J. Effectiveness of bat boxes for bat conservation and insect suppression in a Western Australian urban riverine reserve. Austral Ecol. 2021, 46, 186–191. [Google Scholar] [CrossRef]
- Stechert, C.; Kolb, M.; Bahadir, M.; Djossa, B.A.; Fahr, J. Insecticide residues in bats along a land use-gradient dominated by cotton cultivation in northern Benin, West Africa. Environ. Sci. Pollut. Res. 2014, 21, 8812–8821. [Google Scholar] [CrossRef]
- Sandoval-Herrera, N.; Paz Castillo, J.; Herrera Montalvo, G.; Welch, K.C. Micronucleus test reveals genotoxic effects in bats associated with agricultural activity. Environ. Toxicol. Chem. 2021, 40, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Bayat, S.; Geiser, F.; Kristiansen, P.; Wilson, S.C. Organic contaminants in bats: Trends and new issues. Environ. Int. 2014, 63, 40–52. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, T.J.; Clark, D.R.J. An overview of contaminants and bats, with special reference to insecticides and the Indiana bat. In The Indiana Bat: Biology and Management of an Endangered Species; Kurta, A., Kennedy, J., Eds.; Bat Conservation International: Austin, TX, USA, 2002; pp. 237–253. [Google Scholar]
- Hooper, S.; Amelon, S. Pesticide Exposure Risks to Chiropteran Species and the Impacts on Emerging Zoonotic Diseases. In Bats Disease-Prone but Beneficial; Mikkola, H., Ed.; Intechopen Limited: London, UK, 2022; pp. 25–42. [Google Scholar]
- Oliveira, J.M.; Destro, A.L.F.; Freitas, M.B.; Oliveira, L.L. How do pesticides affect bats?—A brief review of recent publications. Braz. J. Biol. 2021, 81, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Lin, C.L.; Wang, S.E.; Lu, C.W. Effects of imidacloprid, a neonicotinoid insecticide, on the echolocation system of insectivorous bats. Pestic. Biochem. Physiol. 2020, 163, 94–101. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Plant Protection Products and their Residues (PPR); Hernández-Jerez, A.; Adriaanse, P.; Aldrich, A.; Berny, P.; Coja, T.; Duquesne, S.; Gimsing, A.L.; Marina, M.; Millet, M.; et al. Scientific statement on the coverage of bats by the current pesticide risk assessment for birds and mammals. EFSA J. 2019, 17, 575. [Google Scholar] [CrossRef]
- Torquetti, C.G.; Bittencourt, A.T.; Soto-Blancoet, B. Exposure to Pesticides in Bats. Sci. Total Environ. 2021, 755, 142509. [Google Scholar] [CrossRef] [PubMed]
- Esbérard, C.E.L. Variação do tamanho de colônias de Molossus molossus e Molossus rufus no Estado do Rio de Janeiro, sudeste do Brasil. Neotrop. Biol. Conserv. 2011, 6, 71–77. [Google Scholar] [CrossRef]
- Fabián, M.E.; Marques, R.V. Aspectos do comportamento de Tadarida brasiliensis brasiliensis (I. Geoffroy, 1824) (Chiroptera; Molossidae) em ambiente urbano. Biociências 1996, 4, 65–86. [Google Scholar]
- Freitas, G.P.; Carvalho, W.D.; Costa, L.M.; Esbérard, C.E.L. Activity and foraging efficiency of the aerial insectivorous bat Molossus molossus (Molossidae) in Brazilian Atlantic Forest. J. Bat. Res. Conserv. 2020, 13, 52–59. [Google Scholar] [CrossRef]
- Marques, S.A. Activity cycle, feeding and reproduction of Molossus ater (Chiroptera: Molossidae) in Brazil. Bol. Mus. Para. Emílio Goeldi 1986, 2, 159–179. [Google Scholar]
- Pimentel, N.T.; da Rocha, P.A.; Pedroso, M.A.; Bernard, E. Estimates of insect consumption and guano input in bat caves in Brazil. Mam. Res. 2022, 67, 355–366. [Google Scholar] [CrossRef]
- Willig, M.R.; Camilo, G.R.; Noble, S.J. Dietary overlap in frugivorous and insectivorous bats from edaphic cerrado habitats of Brazil. J. Mammal. 1993, 74, 117–128. [Google Scholar] [CrossRef]
- Fenton, M.B.; Whitaker, J.O., Jr.; Vonhof, M.J.; Waterman, J.M.; Pedro, W.A.; Aguiar, L.; Baumgarten, J.E.; Bouchard, S.; Faria, D.M.; Portfors, C.V.; et al. The diet of bats from Southeastern Brazil: The relation to echolocation and foraging behaviour. Rev. Bras. Zool. 1999, 16, 1081–1085. [Google Scholar] [CrossRef]
- Aguiar, L.; Antonini, Y. Diet of two sympatric insectivores bats (Chiroptera: Vespertilionidae) in the Cerrado of Central Brazil. Rev. Bras. Zool. 2008, 25, 28–31. [Google Scholar] [CrossRef]
- Stein, E.D.; Martinez, M.C.; Stiles, S.; Miller, P.E.; Zakharov, E.V. Is DNA Barcoding Actually Cheaper and Faster than Traditional Morphological Methods: Results from a Survey of Freshwater Bioassessment Efforts in the United States? PLoS ONE 2014, 9, e95525. [Google Scholar] [CrossRef] [PubMed]
- Overbeck, G.E.; Bergallo, H.G.; Grelle, C.E.; Akama, A.; Bravo, F.; Colli, G.R.; Magnusson, W.E.; Tomas, W.M.; Fernandes, G.W. Global biodiversity threatened by science budget cuts in Brazil. BioScience 2018, 68, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Silva Junior, C.H.; Moura, Y.M.; Pessôa, A.C.; Trevisan, D.P.; Mendes, F.S.; Reis, J.B.; Picoli, M.C.; Wiederkehr, N.C.; Carvalho, N.S.; Dalagnol, R.; et al. Surviving as a young scientist in Brazil. Science 2021, 374, 948. [Google Scholar] [CrossRef]
- Del-Claro, K.; Stefani, V.; Lange, D.; Vilela, A.A.; Nahas, L.; Velasques, M.; Torezan-Silingardi, H.M. The importance of natural history studies for a better comprehension of animal-plant interaction networks. Biosci. J. 2013, 29, 439–448. [Google Scholar] [CrossRef]
- Medellín, R.A.; Equihua, M.; Amin, M.A. Bat diversity and abundance as indicators of disturbance in Neotropical Rainforests. Conserv. Biol. 2000, 14, 1666–1675. [Google Scholar] [CrossRef]
- Esbérard, C.E.L. Morcegos no Estado do Rio de Janeiro. Ph.D. Thesis, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil, 2004. [Google Scholar]
- Appel, G.; Capaverde, U.D.; De Oliveira, L.Q.; do Amaral Pereira, L.G.; Tavares, V.C.; López-Baucells, A.; Magnusson, W.E.; Baccaro, F.B.; Bobrowiec, P.E. Use of complementary methods to sample bats in the Amazon. Acta Chiropt. 2021, 23, 499–511. [Google Scholar] [CrossRef]
- Carvalho, W.D.; Miguel, J.D.; Xavier, B.S.; Lopez-Baucells, A.; de Castro, I.J.; Hilário, R.R.; de Toledo, J.J.; Rocha, R.; Palmeirim, J.M. Complementarity between mist-netting and low-cost acoustic recorders to sample bats in Amazonian rainforests and savannahs. Community Ecol. 2023, 24, 47–60. [Google Scholar] [CrossRef]
- Barros, M.A.; Pessoa, D.; Rui, A.M. Habitat use and seasonal activity of insectivorous bats (Mammalia: Chiroptera) in the grasslands of southern Brazil. Zoologia 2014, 31, 153–161. [Google Scholar] [CrossRef]
- Dias-Silva, L.H.; Amaral, A.S.; Talamoni, S.A. Comparison of the bat assemblages of a botanical garden and the surrounding native forest in southeastern Brazil. Mastozoología Neotrop. 2019, 26, 475–481. [Google Scholar] [CrossRef]
- Da Costa, C.F.; Arias-Aguilar, A.; Pereira, M.J.R. Aerial insectivorous bats in the Brazilian Pantanal: Diversity and activity patterns in response to habitat and microclimate. Mastozoología Neotrop. 2021, 28, e0604. [Google Scholar] [CrossRef]
- Cabral, R.C.C.; Appel, G.; de Oliveira, L.Q.; Lopez-Baucells, A.; Magnusson, W.E.; Bobrowiec, P.E.D. Effect of environmental gradients on community structuring of aerial insectivorous bats in a continuous forest in Central Amazon. Mamm. Biol. 2023, 103, 227–237. [Google Scholar] [CrossRef]
- Araújo, M.L.V.S.; Bernard, E. Green remnants are hotspots for bat activity in a large Brazilian urban area. Urban Ecosyst. 2016, 19, 287–296. [Google Scholar] [CrossRef]
- Sales, J.; Rocha, P.A. Relevance of forest fragments and synanthropic habitats for the maintenance of non-phyllostomid bats in an anthropogenic matrix. Urban Ecosyst. 2024, 2024, 1–14. [Google Scholar] [CrossRef]
- Gunnell, K.; Grant, G.; Williams, C. Landscape and Urban Design for Bats and Biodiversity; Bat Conservation Trust: London, UK, 2012. [Google Scholar]
- Lintott, P.R.; Bunnefeld, N.; Park, K.J. Opportunities for improving the foraging potential of urban waterways for bats. Biol. Conserv. 2015, 191, 224–233. [Google Scholar] [CrossRef]
- Olimpi, E.M.; Philpott, S.M. Agroecological farming practices promote bats. Agric. Ecosyst. Environ. 2018, 265, 282–291. [Google Scholar] [CrossRef]
- Arias-Aguilar, A.; Hintze, F.; Aguiar, L.M.; Rufray, V.; Bernard, E.; Pereira, M.J. Who’s calling? Acoustic identification of Brazilian bats. Mammal Res. 2018, 63, 231–253. [Google Scholar] [CrossRef]
- Hill, A.P.; Prince, P.; Piña Covarrubias, E.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [Google Scholar] [CrossRef]
- Ramalho, D.F.; Silveira, M.; Aguiar, L.M. Hit the road bat! High bat activity on the road verges in Brazilian savanna. J. Mammal. 2021, 102, 695–704. [Google Scholar] [CrossRef]
- Silva, C.R.; Bernard, E. Bioacoustics as an important complementary tool in bat inventories in the Caatinga drylands of Brazil. Acta Chiropterol. 2017, 19, 409–418. [Google Scholar] [CrossRef]
- Falcão, F.; Dodonov, P.; Caselli, C.B.; dos Santos, J.S.; Faria, D. Landscape structure shapes activity levels and composition of aerial insectivorous bats at different spatial scales. Biodivers. Conserv. 2021, 30, 2545–2564. [Google Scholar] [CrossRef]
- Rocha, R.; López-Baucells, A.; Farneda, F.Z.; Meyer, C.F.J. Bat responses to anthropogenic forest fragmentation: Insights from an Aazonian fragmentation experiment in Brazil. In Amazonian Mammals; Spironello, W.R., Barnett, A.A., Lynch, J.W., Bobrowiec, P.E.D., Boyle, S.A., Eds.; Springer: Cham, Switzerland, 2003. [Google Scholar]
- López-Baucells, A.; Puig-Montserrat, X.; Torre, I.; Freixas, L.; Mas, M.; Arrizabalaga, A.; Flaquer, C. Bat boxes in urban non-native forests: A popular practice that should be reconsidered. Urban Ecosyst. 2017, 20, 217–225. [Google Scholar] [CrossRef]
- Mering, E.D.; Chambers, C.L. Thinking outside the box: A review of artificial roosts for bats. Wildl. Soc. Bull. 2014, 38, 741–751. [Google Scholar] [CrossRef]
- Weier, S.M.; Linden, V.M.; Grass, I.; Tscharntke, T.; Taylor, P.J. The use of bat houses as day roosts in macadamia orchards, South Africa. PeerJ 2019, 7, e6954. [Google Scholar] [CrossRef]
- Griffiths, S.R.; Bender, R.; Godinho, L.N.; Lentini, P.E.; Lumsden, L.F.; Robert, K.A. Bat boxes are not a silver bullet conservation tool. Mammal. Rev. 2017, 47, 261–265. [Google Scholar] [CrossRef]
- Esbérard, C. Composição de colônia e reprodução de Molossus rufus (E. Geoffroy) (Chiroptera, Molossidae) em um refúgio no sudeste do Brasil. Rev. Bras. Zool. 2002, 19, 1153–1160. [Google Scholar] [CrossRef]
- Breviglieri, C.P.B.; Esbérard, C.E.L. Use of roof as roost of Eumops perotis (Molossidae: Chiroptera) in southeast Brazil. Iheringia Ser. Zool. 2018, 108, e2018033. [Google Scholar] [CrossRef]
- UFPEL (Universidade Federal de Pelotas). UFPel Adota Método para Manejo de Morcegos Inédito na América Latina. Available online: https://ccs2.ufpel.edu.br/wp/2020/06/22/ufpel-adota-metodo-para-manejo-de-morcegos-inedito-na-america-do-sul/ (accessed on 30 January 2024).
- Marques, R.V.; Ramos, F.M. Utilização de “bat house” por morcegos insetívoros em floresta com araucárias. In Proficiência do Conhecimento Biológico 2; Oliveira-Júnior, J.M.B., Moreno, M.A.G., Calvão, L.B., Eds.; Atena Editora: Ponta Grossa, Brazil, 2022. [Google Scholar]
- Davy, C.M.; Banerjee, A.; Korine, C.; Guy, C.; Mubareka, S. Urban Bats, Public Health, and Human-Wildlife Conflict. In Urban Bats; Moretto, L., Coleman, J.L., Davy, C.M., Fenton, M.B., Korine, C., Patriquin, K.J., Eds.; Fascinating Life Sciences; Springer: Cham, Switzerland, 2022; pp. 153–166. [Google Scholar] [CrossRef]
- Mckenzie, A.J.; Emery, S.B.; Franks, J.R.; Whittingham, M.J. FORUM: Landscape-scale conservation: Collaborative agri-environment schemes could benefit both biodiversity and ecosystem services, but will farmers be willing to participate? J. Appl. Ecol. 2013, 50, 1274–1280. [Google Scholar] [CrossRef]
- Kross, S.M.; Ingram, K.P.; Long, R.F.; Niles, M.T. Farmer perceptions and behaviors related to wildlife and on-farm conservation actions. Conserv. Lett. 2018, 11, e12364. [Google Scholar] [CrossRef]
Species | Number of Studies |
---|---|
Diet | |
Molossus molossus | 3 |
Molossus rufus | 2 |
Myotis nigricans | 2 |
Eptesicus furinalis | 2 |
Histiotus diaphanopterus | 1 |
Eumops perotis | 1 |
Nyctinomops laticaudatus | 1 |
Molossus molossus | 1 |
Cynomops planirostris | 1 |
Tadarida brasiliensis | 1 |
Saccopteryx bilineata | 1 |
Saccopteryx leptura | 1 |
Thyroptera wynneae | 1 |
Eptesicus diminutus | 1 |
Myotis albescens | 1 |
Rhynchonycteris naso | 1 |
Artificial roosts | |
Molossus rufus | 4 |
Molossus molossus | 2 |
Saccopteryx leptura | 2 |
Peropteryx kappleri | 1 |
Peropteryx macrotis | 1 |
Pteronotus parnellii | 1 |
Furipterus horrens | 1 |
Natalus macrourus | 1 |
Molossops temminckii | 1 |
Nyctinomops laticaudatus | 1 |
Rhogeessa hussoni | 1 |
Myotis lavali | 1 |
Peropteryx leucoptera | 1 |
Eumops perotis | 1 |
Myotis nigricans | 1 |
Eptesicus furinalis | 1 |
Myotis levis | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, W.D.; Lourenço, E.C.; Luz, J.L.; Xavier, B.S.; Yantén, A.V.; Costa, L.M. Giving Wings to Sustainability: Brazil Needs to Consider Bats as Suppressors of Agricultural Pests and Tropical Disease Vectors. Sustainability 2024, 16, 5858. https://doi.org/10.3390/su16145858
Carvalho WD, Lourenço EC, Luz JL, Xavier BS, Yantén AV, Costa LM. Giving Wings to Sustainability: Brazil Needs to Consider Bats as Suppressors of Agricultural Pests and Tropical Disease Vectors. Sustainability. 2024; 16(14):5858. https://doi.org/10.3390/su16145858
Chicago/Turabian StyleCarvalho, William D., Elizabete C. Lourenço, Júlia L. Luz, Bruna S. Xavier, Angélica V. Yantén, and Luciana M. Costa. 2024. "Giving Wings to Sustainability: Brazil Needs to Consider Bats as Suppressors of Agricultural Pests and Tropical Disease Vectors" Sustainability 16, no. 14: 5858. https://doi.org/10.3390/su16145858
APA StyleCarvalho, W. D., Lourenço, E. C., Luz, J. L., Xavier, B. S., Yantén, A. V., & Costa, L. M. (2024). Giving Wings to Sustainability: Brazil Needs to Consider Bats as Suppressors of Agricultural Pests and Tropical Disease Vectors. Sustainability, 16(14), 5858. https://doi.org/10.3390/su16145858