Can Digital Transformation Reduce Enterprise Carbon Intensity? An Empirical Analysis of Chinese Manufacturers
Abstract
:1. Introduction
2. Theoretical Analysis and Study Hypothesis
2.1. DT and Enterprise Carbon Intensity
2.2. The Mechanism through Which DT Inhibits Enterprises’ Carbon Emission Intensity
3. Models and Variables
3.1. Selection of Variables
3.1.1. Dependent Variable: Corporate Emission Intensity of Carbon
3.1.2. Independent Variable: DT
3.1.3. Control Variables
3.2. Data Sources
4. Analyses and Empirical Findings
4.1. Results of Baseline Regression and Analysis
4.2. Endogenous Processing
4.3. Robustness Tests
4.4. Analysis of Heterogeneity
4.4.1. Firm Heterogeneity
4.4.2. Industrial Heterogeneity
4.4.3. Variability in the Level of Environmental Control
5. Further Discussion: Mechanism Analysis
5.1. Mechanism Modeling
5.2. Mechanism Analysis
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Management Insights
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Industry Name | Industry Code | Industry Name | Industry Name |
---|---|---|---|
Agricultural and Food Processing Industry | C13 | Rubber and plastic products industry | C29 |
Food Manufacturing | C14 | Non-metallic mineral products industry | C30 |
Alcohol, Beverage, and Refined Tea Manufacturing | C15 | Ferrous metal smelting and rolling processing industry | C31 |
Textile Industry | C17 | Non-ferrous metal smelting and rolling processing industry | C32 |
Textile clothing and apparel industry | C18 | Metal Products Industry | C33 |
Leather, Fur, Feather and its products, and footwear industry | C19 | General Equipment Manufacturing | C34 |
Wood Processing and Wood, Bamboo, Rattan, Palm, and Grass Products Industry | C20 | Specialty Equipment Manufacturing | C35 |
Furniture Manufacturing | C21 | Automobile Manufacturing | C36 |
Paper and paper products industry | C22 | Railroad, ship, aerospace, and other transportation equipment manufacturing industry | C37 |
Printing and recording media reproduction industry | C23 | Electrical machinery and equipment manufacturing | C38 |
Literary, Educational, Industrial, Sports, and Recreational Goods Manufacturing Industry | C24 | Computer, communication, and other electronic equipment manufacturing | C39 |
Petroleum Processing, Coking, and Nuclear Fuel Processing Industry | C25 | Instrumentation Manufacturing | C40 |
Chemical raw materials and chemical products manufacturing | C26 | Other manufacturing industries | C41 |
Pharmaceutical manufacturing | C27 | Comprehensive utilization of waste resources | C42 |
Chemical fiber manufacturing | C28 |
References
- Agency, I.E. Statistical Review of World Energy. Available online: https://www.energyinst.org/statistical-review (accessed on 7 June 2024).
- Zhang, A.; Tay, H.L.; Alvi, M.F.; Wang, J.X.; Gong, Y. Carbon neutrality drivers and implications for firm performance and supply chain management. Bus. Strategy Environ. 2023, 32, 1966–1980. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Pham, Q.-V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 2022, 26, 100257. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity—Empirical evidence from China’s provinces. Energy Strategy Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Wang, X.; Qin, C.; Liu, Y.; Tanasescu, C.; Bao, J. Emerging enablers of green low-carbon development: Do digital economy and open innovation matter? Energy Econ. 2023, 127, 107065. [Google Scholar] [CrossRef]
- Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model. Energy Policy 2023, 172, 113338. [Google Scholar] [CrossRef]
- Guo, L.; Tan, W. Analyzing the synergistic influence of green credit and green technology innovation in driving the Low-Carbon transition of the energy consumption structure. Sustain. Energy Technol. 2024, 63, 103633. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, F. Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example. Econ. Anal. Policy 2023, 77, 658–679. [Google Scholar] [CrossRef]
- Dong, K.; Yang, S.; Wang, J. How digital economy lead to low-carbon development in China? The case of e-commerce city pilot reform. J. Clean. Prod. 2023, 391, 136177. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does the Internet development affect energy and carbon emission performance? Sustain. Prod. Consum. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Chhabra, M.; Giri, A.K.; Kumar, A. Do technological innovations and trade openness reduce CO2 emissions? Evidence from selected middle-income countries. Environ. Sci. Pollut. Res. 2022, 29, 65723–65738. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart innovative cities: The impact of Smart City policies on urban innovation. Technol. Forecast. Soc. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Cheba, K.; Kiba-Janiak, M.; Baraniecka, A.; Kołakowski, T. Impact of external factors on e-commerce market in cities and its implications on environment. Sustain. Cities Soc. 2021, 72, 103032. [Google Scholar] [CrossRef]
- Usman, A.; Ozturk, I.; Ullah, S.; Hassan, A. Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies. Technol. Soc. 2021, 67, 101692. [Google Scholar] [CrossRef]
- Lin, B.; Huang, C. How will promoting the digital economy affect electricity intensity? Energy Policy 2023, 173, 113341. [Google Scholar] [CrossRef]
- Afzal, M.N.I.; Gow, J.; Rahman, A. Economic and internet growth effect on electricity consumption in the BRICS countries. Int. Adv. Econ. Res. 2019, 25, 339–346. [Google Scholar] [CrossRef]
- Amuso, V.; Poletti, G.; Montibello, D. The digital economy: Opportunities and challenges. Glob. Policy 2019, 11, 124–127. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2022, 63, 102456. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Lin, W.; Wei, W. How does digital technology promote carbon emission reduction? Empirical evidence based on e-commerce pilot city policy in China. J. Environ. Manag. 2023, 325, 116524. [Google Scholar] [CrossRef]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China. Int. Rev. Econ. Financ. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Wu, H.; Liu, Y. Exploring the effects of manufacturing servitization on enterprise energy conservation and emissions reduction moderated by digital transformation. Energy Econ. 2023, 122, 106706. [Google Scholar] [CrossRef]
- Kunkel, S.; Tyfield, D. Digitalisation, sustainable industrialisation and digital rebound–Asking the right questions for a strategic research agenda. Energy Res. Soc. Sci. 2021, 82, 102295. [Google Scholar] [CrossRef]
- Wan, Y.; Sheng, N.; Wei, X.; Su, H. Study on the spatial spillover effect and path mechanism of green finance development on China’s energy structure transformation. J. Clean. Prod. 2023, 415, 137820. [Google Scholar] [CrossRef]
- Andriole, S.J. Five myths about digital transformation. Manag. Rev. 2017, 58, 20–22. [Google Scholar]
- Anser, M.K.; Ahmad, M.; Khan, M.A.; Zaman, K.; Nassani, A.A.; Askar, S.E.; Abro, M.M.Q.; Kabbani, A. The role of information and communication technologies in mitigating carbon emissions: Evidence from panel quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 21065–21084. [Google Scholar] [CrossRef]
- Iqbal, R.; Doctor, F.; More, B.; Mahmud, S.; Yousuf, U. Big Data analytics and Computational Intelligence for Cyber–Physical Systems: Recent trends and state of the art applications. Future Gener. Comput. Syst. 2020, 105, 766–778. [Google Scholar] [CrossRef]
- Rehman, N.U.; Nunziante, G. The effect of the digital economy on total factor productivity in European regions. Telecommun. Policy 2023, 47, 102650. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B. The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int. J. Prod. Res. 2019, 57, 829–846. [Google Scholar] [CrossRef]
- Noussan, M.; Tagliapietra, S. The effect of digitalization in the energy consumption of passenger transport: An analysis of future scenarios for Europe. J. Clean. Prod. 2020, 258, 120926. [Google Scholar] [CrossRef]
- Viriyasitavat, W.; Da Xu, L.; Bi, Z.; Pungpapong, V. Blockchain and internet of things for modern business process in digital economy—The state of the art. IEEE Trans. Comput. Soc. Syst. 2019, 6, 1420–1432. [Google Scholar] [CrossRef]
- Skobelev, P.O.; Borovik, S.Y. On the way from Industry 4.0 to Industry 5.0: From digital manufacturing to digital society. Industry 4.0 2017, 2, 307–311. [Google Scholar]
- Gaglio, C.; Kraemer-Mbula, E.; Lorenz, E. The effects of digital transformation on innovation and productivity: Firm-level evidence of South African manufacturing micro and small enterprises. Technol. Forecast. Soc. 2022, 182, 121785. [Google Scholar] [CrossRef]
- Ballestar, M.T.; Díaz-Chao, Á.; Sainz, J.; Torrent-Sellens, J. Knowledge, robots and productivity in SMEs: Explaining the second digital wave. J. Bus. Res. 2020, 108, 119–131. [Google Scholar] [CrossRef]
- Lahouel, B.B.; Taleb, L.; Zaied, Y.B.; Managi, S. Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model. Energy Econ. 2021, 101, 105406. [Google Scholar] [CrossRef]
- Bianchini, S.; Damioli, G.; Ghisetti, C. The environmental effects of the “twin” green and digital transition in European regions. Environ. Resour. Econ. 2023, 84, 877–918. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Z.; Liu, Z. Substantive response or strategic response? The induced green innovation effects of carbon prices. Int. Rev. Financ. Anal. 2024, 93, 103139. [Google Scholar] [CrossRef]
- Feng, S.; Liu, J.; Xu, D. Digital financial development and indirect household carbon emissions: Empirical evidence from China. Environ. Dev. Sustain. 2023, 1–35. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhang, L. Carbon Emissions and Assets Pricing—Evidence from Chinese Listed Firms. China J. Econ. 2022, 9, 28–75. [Google Scholar]
- Wu, F.; Hu, H.; Lin, H.; Ren, X. Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity. Manag. World 2021, 37, 130–144. [Google Scholar]
- Ramu, S.P.; Boopalan, P.; Pham, Q.-V.; Maddikunta, P.K.R.; Huynh-The, T.; Alazab, M.; Nguyen, T.T.; Gadekallu, T.R. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions. Sustain. Cities Soc. 2022, 79, 103663. [Google Scholar] [CrossRef]
- Li, L.; Lin, J. Digital transformation for the sustainable development of firms: The role of green capability and green culture. Sustain. Dev. 2023, 32, 1861–1875. [Google Scholar] [CrossRef]
- Ma, K. Digital inclusive finance and corporate green technology innovation. Financ. Res. Lett. 2023, 55, 104015. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Hoai, T.T.; Vo, H.V.; Nguyen, N.P. Digital approach toward environmental sustainability in supply chains: Evidence from Vietnamese firms. Sustain. Dev. 2023, 31, 3303–3317. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhao, X.; Zhong, S.; Xing, Y. Digital financial inclusion, resident consumption, and urban carbon emissions in China: A transaction cost perspective. Econ. Anal. Policy 2024, 81, 1336–1352. [Google Scholar] [CrossRef]
- Dai, X.; Yang, S. Digital empowerment, source of digital input and green manufacturing. China Ind. Econ. 2022, 9, 83–101. [Google Scholar]
- Peng, X.; Li, B. The study on economic carbon emissions effect of China’s embedding in the manufacturing sector under global value chain perspective. Financ. Trade Res. 2013, 24, 18–26. [Google Scholar]
- Wang, X.; Zhang, X.; Niu, Y. “Data Driven” and “Capability Curse”: Strategic Paradox of Enterprise Digital Transformation Under the Guidance of Green Innovation Strategy Upgrade. RD Manag. 2022, 34, 51–65. [Google Scholar]
- Liu, G.; Liu, B. How digital technology improves the high-quality development of enterprises and capital markets: A liquidity perspective. Financ. Res. Lett. 2023, 53, 103683. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, Y.; Wang, X.; Yuan, R. Digitalization Level and Green-Oriented Transition Development of Highly Energy-Intensive Enterprises Based on Carbon Reduction Perspective. Sustainability 2023, 15, 15549. [Google Scholar] [CrossRef]
- Li, Z.; He, L.; Zhong, Z.; Xia, Y. Financial–industrial integration, green technology innovation, and enterprise’s green development performance: An empirical analysis of 625 listed industrial enterprises of China. Environ. Dev. Sustain. 2024, 26, 4029–4054. [Google Scholar] [CrossRef]
- Qian, S. The effect of ESG on enterprise value under the dual carbon goals: From the perspectives of financing constraints and green innovation. Int. Rev. Econ. Financ. 2024, 93, 318–331. [Google Scholar] [CrossRef]
- Liu, G.; Ye, Y.; Zhang, J. Social security contributions, liquidity constraint and employment stabilization–a quasi-natural experiment from the enactment of social insurance law. China Ind. Econ. 2021, 5, 152–169. [Google Scholar]
- Song, Y.; Yang, L.; Sindakis, S.; Aggarwal, S.; Chen, C. Analyzing the Role of High-Tech Industrial Agglomeration in Green Transformation and Upgrading of Manufacturing Industry: The Case of China. J. Knowl. Econ. 2023, 14, 3847–3877. [Google Scholar] [CrossRef]
- Noordewier, T.G.; Lucas, M.T. On being green and profitable: Does industry context matter? Int. J. Prod. Econ. 2020, 223, 107528. [Google Scholar] [CrossRef]
- He, Y.; Luo, Q. Environmental Regulation, Technological Innovation and Industrial Total Factor Productivity of China—Reexamination of the “Strong Potter Hypothesis”. Soft Sci. 2018, 32, 20–25. [Google Scholar]
- Zhang, L.; Wang, Q.; Zhang, M. Environmental regulation and CO2 emissions: Based on strategic interaction of environmental governance. Ecol. Complex. 2021, 45, 100893. [Google Scholar] [CrossRef]
- Dong, Z.; Ullah, S. Towards a Green Economy in China? Examining the Impact of the Internet of Things and Environmental Regulation on Green Growth. Sustainability 2023, 15, 12528. [Google Scholar] [CrossRef]
- Jiang, T. Mediating effects and moderating effects in causal inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar]
- Li, X.; Fan, D.; Li, Z.; Pan, M. The Impact Mechanism of Digitalization on Green Innovation of Chinese Manufacturing Enterprises: An Empirical Study. Sustainability 2023, 15, 9637. [Google Scholar] [CrossRef]
- Du, Y.; Guo, Q. Green credit policy and green innovation in green industries: Does climate policy uncertainty matter? Financ. Res. Let. 2023, 58, 104512. [Google Scholar] [CrossRef]
- Lou, S.; Yao, C.; Zhang, D. The effects of green finance on enterprises’ green innovation under the “dual carbon” goal: An exploratory study based on fsQCA. Environ. Sci. Pollut. Res. 2024, 31, 2451–2465. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Bai, Y. Strategic or substantive innovation?—The impact of institutional investors’ site visits on green innovation evidence from China. Technol. Soc. 2022, 68, 101904. [Google Scholar] [CrossRef]
- Akhmadi, S.; Tsakalerou, M. Innovation Propensity and Firm Size: Evidence from Manufacturing. Procedia Manuf. 2021, 55, 543–549. [Google Scholar] [CrossRef]
- Ilg, P. How to foster green product innovation in an inert sector. J. Innov. Knowl. 2019, 4, 129–138. [Google Scholar] [CrossRef]
- Yang, Z. Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization. Sustainability 2023, 15, 9006. [Google Scholar] [CrossRef]
Variable | N | Mean | Sd | Min | Max |
---|---|---|---|---|---|
CEI | 12,242 | 0.001 | 1.000 | −3.187 | 0.906 |
DT | 12,242 | −0.003 | 0.991 | −1.116 | 2.538 |
Mange | 12,242 | 18.977 | 1.109 | 15.401 | 23.967 |
FA | 12,242 | 0.194 | 0.099 | 0.020 | 0.455 |
CI | 12,242 | 1.060 | 0.323 | 0.398 | 2.096 |
Pro | 12,242 | 0.089 | 0.146 | −0.626 | 0.483 |
Indep | 12,242 | 0.318 | 0.038 | 0.134 | 0.588 |
Size | 12,242 | 7.904 | 1.147 | 3.892 | 13.253 |
GP 1 | 12,242 | 0.548 | 0.979 | 0.000 | 7.062 |
GIP 2 | 12,242 | 0.378 | 0.814 | 0.000 | 6.594 |
GUP 3 | 12,242 | 0.337 | 0.717 | 0.000 | 6.080 |
Variables | (1) | (2) |
---|---|---|
DT | −0.011 ***1 | −0.010 *** |
(−3.450) | (−3.096) | |
Mange | −0.020 | |
(−1.153) | ||
FA | −0.031 | |
(−0.595) | ||
CI | 0.027 | |
(1.345) | ||
Pro | −0.060 ** | |
(−2.398) | ||
Indep | −0.004 | |
(−0.032) | ||
Size | −0.002 | |
(−0.239) | ||
Constant | 0.000 *** | 0.388 |
(15.267) | (1.273) | |
Company FE | Yes | Yes |
Year FE | Yes | Yes |
Observations | 12,242 | 12,242 |
R-squared | 0.933 | 0.933 |
Variables | (1) | (2) |
---|---|---|
DT | CEI | |
Indep | −0.545 *** | 0.089 |
(0.293) | (0.143) | |
Size | 0.099 *** | −0.009 |
(0.021) | (0.011) | |
KP-LM statistic | 7.841 ** | |
Cragg–Donald Wald F statistic | 104.046 | |
Hansen J statistic p value | 0.012 | |
Company FE | Yes | Yes |
Year FE | Yes | Yes |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Replacement of the Dependent Variable | Replacement of Independent Variables | Fixed-Time and Provincial Shock | Excluding Municipalities | |
DT | −8.691 *** | −0.009 *** | −0.012 *** | |
(−4.550) | (−3.036) | (−3.679) | ||
DTB | −1.258 * | |||
(−1.751) | ||||
Mange | −0.009 | −0.020 | −0.017 | −0.009 |
(−0.477) | (−1.125) | (−1.081) | (−0.477) | |
FA | −0.013 | −0.035 | −0.022 | −0.013 |
(−0.211) | (−0.619) | (−0.438) | (−0.211) | |
CI | 0.039 * | 0.023 | 0.030 | 0.039 * |
(1.929) | (1.145) | (1.529) | (1.929) | |
Pro | −0.050 | −0.062 ** | −0.061 ** | −0.050 |
(−1.544) | (−2.411) | (−2.629) | (−1.544) | |
Indep | 0.015 | −0.013 | −0.017 | 0.015 |
(0.106) | (−0.106) | (−0.150) | (0.106) | |
Size | −0.010 | −0.003 | −0.005 | −0.010 |
(−0.904) | (−0.327) | (−0.611) | (−0.904) | |
Constant | 0.222 | 0.410 | 0.354 | 0.222 |
(0.717) | (1.322) | (1.295) | (0.717) | |
Company FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Year × Province FE | No | No | Yes | No |
Observations | 12,242 | 12,242 | 12,242 | 9940 |
R-squared | 0.933 | 0.933 | 0.935 | 0.933 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
State-Owned Enterprises | Non-State-Owned Enterprises | Low Concentration Ratio | High Concentration Ratio | Low Environmental Regulation | High Environmental Regulation | |
DT | −0.007 | −0.011 *** | −0.000 | −0.014 * | −0.021 *** | 0.001 |
(−0.670) | (-3.378) | (−0.032) | (−1.746) | (−4.490) | (0.169) | |
Mange | 0.013 | −0.034 * | 0.008 | −0.042 | −0.002 | −0.034 |
(0.362) | (−1.799) | (0.629) | (−1.217) | (−0.144) | (−1.693) | |
FA | −0.090 | 0.008 | −0.131 * | −0.019 | 0.061 | −0.156 ** |
(−0.825) | (0.143) | (−1.829) | (−0.214) | (0.717) | (−2.070) | |
CI | 0.002 | 0.034 | 0.047 | 0.003 | 0.011 | 0.044* |
(0.039) | (1.525) | (1.660) | (0.122) | (0.470) | (1.799) | |
Pro | −0.027 | −0.071 *** | −0.041 | −0.089 ** | −0.002 | −0.111 ** |
(−0.264) | (−2.905) | (−1.010) | (−2.557) | (−0.055) | (−2.628) | |
Indep | −0.080 | 0.090 | −0.025 | 0.094 | 0.057 | −0.138 |
(−0.295) | (0.680) | (−0.169) | (0.507) | (0.392) | (−0.940) | |
Size | −0.003 | 0.004 | −0.043 *** | 0.019 | −0.018 * | 0.014 |
(−0.221) | (0.331) | (−2.972) | (0.786) | (−1.767) | (1.159) | |
Constant | −0.125 | 0.534 * | 0.195 | 0.659 | 0.155 | 0.554 |
(−0.175) | (1.726) | (0.758) | (1.292) | (0.691) | (1.462) | |
Company FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 2532 | 9666 | 5883 | 5916 | 6049 | 6118 |
R-squared | 0.917 | 0.937 | 0.942 | 0.934 | 0.934 | 0.935 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Overall Green Innovation | Substantive Green Innovation | Strategic Green Innovation | |
DT | 0.061 *** | 0.054 *** | 0.034 * |
(3.715) | (4.924) | (1.991) | |
Mange | 0.005 | −0.006 | 0.027 |
(0.194) | (−0.240) | (1.352) | |
FA | 0.020 | 0.046 | 0.069 |
(0.098) | (0.318) | (0.402) | |
CI | −0.065 | −0.036 | −0.043 |
(−1.507) | (−0.942) | (−1.380) | |
Pro | 0.055 | 0.052 | 0.044 |
(1.646) | (1.449) | (1.304) | |
Indep | 0.494 ** | 0.510 ** | 0.100 |
(2.208) | (2.746) | (0.522) | |
Size | 0.081 *** | 0.067 *** | 0.039 ** |
(3.955) | (4.126) | (2.499) | |
Constant | −0.296 | −0.173 | −0.493 |
(−0.518) | (−0.317) | (−1.061) | |
Company FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Observations | 12,242 | 12,242 | 12,242 |
R-squared | 0.753 | 0.747 | 0.695 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, S.; Xiao, Y.; Zhou, Q. Can Digital Transformation Reduce Enterprise Carbon Intensity? An Empirical Analysis of Chinese Manufacturers. Sustainability 2024, 16, 5236. https://doi.org/10.3390/su16125236
Chen Y, Liu S, Xiao Y, Zhou Q. Can Digital Transformation Reduce Enterprise Carbon Intensity? An Empirical Analysis of Chinese Manufacturers. Sustainability. 2024; 16(12):5236. https://doi.org/10.3390/su16125236
Chicago/Turabian StyleChen, Yu, Shuangshuang Liu, Yanqiu Xiao, and Qian Zhou. 2024. "Can Digital Transformation Reduce Enterprise Carbon Intensity? An Empirical Analysis of Chinese Manufacturers" Sustainability 16, no. 12: 5236. https://doi.org/10.3390/su16125236
APA StyleChen, Y., Liu, S., Xiao, Y., & Zhou, Q. (2024). Can Digital Transformation Reduce Enterprise Carbon Intensity? An Empirical Analysis of Chinese Manufacturers. Sustainability, 16(12), 5236. https://doi.org/10.3390/su16125236