Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia
Abstract
:1. Introduction
2. Research Methodology
2.1. Study Area Description
2.2. Research Design and Sampling Procedure
2.3. Data Sources and Collection Methods
2.4. Descriptions of Variables
2.4.1. Dependent Variable: CSA Practices
2.4.2. Explanatory Variables Employed in the Model
2.5. Analytical Model
Model Specifications: Multivariate Probit (MVP) Model
3. Results of the Study
3.1. Respondent’s Demographic and Socioeconomic Characteristics
3.2. Types and Spatial Variations of CSA Practices
3.3. The Intensity of CSA Technologies Implementation across Different Agroecology
3.4. Model Results
3.4.1. Interdependence of Multiple CSA Practices
3.4.2. Factors Affecting the Intensity of Practicing CSA Technology
3.4.3. Demographic and Social Factors Affecting the Decisions to Use Different CSA Technologies
3.4.4. Household Resource Variables
3.4.5. Plot Characteristics
3.4.6. Infrastructural and Institutional Factors
4. Discussion
5. Conclusions of the Study
6. Policy Implications and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrams, L. Unlocking the Potential of Enhanced Rainfed Agriculture; Report No. 39; SIWI: Stockholm, Sweden, 2018. [Google Scholar]
- Wani, S.P.; Sreedevi, T.; Rockström, J.; Ramakrishna, Y. Rainfed agriculture–past trends and future prospects. Rainfed Agric. Unlocking Potential 2009, 7, 1–33. [Google Scholar]
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.; Ringler, C. Climate change and agriculture: Impacts and adaptation options in South Africa. Water Resour. Econ. 2014, 5, 24–48. [Google Scholar] [CrossRef]
- Robinson, S.; Strzepek, K.; Cervigni, R. The Cost of Adapting to Climate Change in Ethiopia: Sector-Wise and Macro-Economic Estimates; Ethiopia Strategy Support Program II (ESSP) Working Paper; ESSP: Addis Ababa, Ethiopia, 2013; Volume 53, Available online: https://www.unisdr.org/preventionweb/files/33583_thecostofadaptingtoclimatechangeine.pdf (accessed on 9 February 2024).
- Nyasimi, M.; Amwata, D.; Hove, L.; Kinyangi, J.; Wamukoya, G. Evidence of Impact: Climate-Smart Agriculture in Africa; CCAFS Working Paper; CCAFS: Copenhagen, Denmark, 2014. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef]
- Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 2001, 17, 123–144. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2011, 365, 2973–2989. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 2008, 3, 034007. [Google Scholar] [CrossRef]
- Pal, B.D.; Joshi, P.K.; Tyagi, N.K. Two-Way Association between Agriculture and Climate Change. In Climate Smart Agriculture in South Asia; Springer: Singapore, 2019; pp. 1–16. [Google Scholar]
- Gebreegziabher, Z.; Stage, J.; Mekonnen, A.; Alemu, A. Climate Change and the Ethiopian Economy: A Computable General Equilibrium Analysis: Resources for the Future. Bulletin: Environment for Development Discussion Paper—Resources for the Future (RFF). 2011. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20113368197 (accessed on 9 February 2024).
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Deressa, T.T. Assessment of the Vulnerability of Ethiopian Agriculture to Climate Change and Farmers’ Adaptation Strategies. Ph.D. Thesis, University of Pretoria, Hatfield, South Africa, 2010. [Google Scholar]
- World Bank. The Economics of Adaptation to Climate Change: A Synthesis Report Final Consultation Draft August 2010; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 20 August 2010. [Google Scholar]
- Asfaw, A.; Simane, B.; Bantider, A.; Hassen, A. Determinants in the adoption of climate change adaptation strategies: Evidence from rainfed-dependent smallholder farmers in north-central Ethiopia (Woleka sub-basin). Environ. Dev. Sustain. 2019, 21, 2535–2565. [Google Scholar] [CrossRef]
- Camberlin, P. Nile basin climates. In The Nile; Springer: Dordrecht, The Netherlands, 2009; pp. 307–333. [Google Scholar]
- Mohammed, Y.; Yimer, F.; Tadesse, M.; Tesfaye, K. Meteorological drought assessment in northeast highlands of Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 142–160. [Google Scholar] [CrossRef]
- Seleshi, Y.; Zanke, U. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Climatol. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- AKLDP. Conservation Agriculture Experience Sharing and Networking Workshop; Jointly organized by the Agriculture Knowledge, Learning, Documentation and Policy (AKLDP) Project; Agri-Focus and the Canadian Food Grains Bank: Addis Ababa, Ethiopia, 2017. [Google Scholar]
- World Bank. The Federal Democratic Republic of Ethiopia for a Sustainable Land Management Project March 24; World Bank: Washington, DC, USA, 2014; Available online: http://documents.worldbank.org/curated/en/856611468244777857/Ethiopia-Sustainable-Land-Management-Project (accessed on 9 February 2024).
- McCarthy, N.; Lipper, L.; Branca, G. Climate-Smart Agriculture: Smallholder Adoption and Implications for Climate Change Adaptation and Mitigation; Mitigation of Climate Change in Agriculture Working Paper; FAO: Rome, Italy, 2011; Volume 3, pp. 1–37. [Google Scholar]
- Eshete, G.; Assefa, B.; Lemma, E.; Kibret, G.; Ambaw, G.; Samuel, S.; Seid, J.; Tesfaye, K.; Tamene, L.D.; Haile, A.; et al. Ethiopia Climate-Smart Agriculture Roadmap; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2020. [Google Scholar]
- Lipper, L.; Zilberman, D. A short history of the evolution of the climate-smart agriculture approach and its links to climate change and sustainable agriculture debates. In Climate-Smart Agriculture; Springer: Cham, Switzerland, 2018; pp. 13–30. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Henry, K. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- FDRE. Ethiopia’s Climate-Resilient Green Economy: Green Economy Strategy; Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2011. [Google Scholar]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; Van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010. [Google Scholar]
- FAO. Climate-Smart Agriculture Sourcebook; Food and Agriculture Organizations of United States: Rome, Italy, 2013. [Google Scholar]
- Williams, R. Understanding and interpreting generalized ordered logit models. J. Math. Sociol. 2016, 40, 7–20. [Google Scholar] [CrossRef]
- Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. Rethinking resilient agriculture: From climate-smart agriculture to vulnerable-smart agriculture. J. Clean. Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- Neufeldt, H.; Jahn, M.; Campbell, B.M.; Beddington, J.R.; DeClerck, F.; De Pinto, A.; Jarvis, A. Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agriculture & Food Security, 2, 1-6. Agric. Food Secur. 2013, 2, 1–6. [Google Scholar]
- Sova, C.A.; Grosjean, G.; Baedeker, T.; Nguyen, T.N.; Wallner, M.; Nowak, A.; Corner-Dolloff, C.; Girvetz, E.; Laderach, P.; Lizarazo, M. Bringing the Concept of Climate-Smart Agriculture to Life: Insights from CSA Country Profiles across Africa, Asia, and Latin America; World Bank, and the International Centre for Tropical Agriculture: Washington, DC, USA, 2018. [Google Scholar]
- Jirata, M.; Grey, S.; Kilawe, E. Ethiopia Climate-Smart Agriculture Scoping Study; FAO: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Brandt, P.; Kvakić, M.; Butterbach-Bahl, K.; Rufino, M.C. How to target climatesmart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”. Agric. Syst. 2017, 151, 234–245. [Google Scholar] [CrossRef]
- Araya, T. Conservation Agriculture for Enhancement of Livelihoods and Environments in Ethiopia. Climate-Smart Agriculture: Enhancing Resilient Agricultural Systems, Landscapes, and Livelihoods in Ethiopia and Beyond. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20203484702 (accessed on 9 February 2024).
- Asrat, P.; Simane, B. Adaptation benefits of climate-smart agricultural practices in the Blue Nile Basin: Empirical evidence from North-West Ethiopia. In Climate Change Adaptation in Africa; Springer: Cham, Switzerland, 2017; pp. 45–59. [Google Scholar]
- Habtewold, T.M. Impact of climate-smart agricultural technology on multidimensional poverty in rural Ethiopia. J. Integr. Agric. 2021, 20, 1021–1041. [Google Scholar] [CrossRef]
- Komarek, A.M.; Thurlow, J.; Koo, J.; De Pinto, A. Economywide effects of climate-smart agriculture in Ethiopia. Agric. Econ. 2019, 50, 765–778. [Google Scholar] [CrossRef]
- Sedebo, D.A.; Li, G.C.; Abebe, K.A.; Etea, B.G.; Ahiakpa, J.K.; Ouattara, N.B.; Olounlade, A.; Frimpong, S. Smallholder farmers’ climate change adaptation practices contribute to crop production efficiency in southern Ethiopia. Agron. J. 2021, 113, 4627–4638. [Google Scholar] [CrossRef]
- Tadesse, M.; Simane, B.; Abera, W.; Tamene, L.; Ambaw, G.; Recha, J.W.; Mekonnen, K.; Demeke, G.; Nigussie, A.; Solomon, D. The effect of climate-smart agriculture on soil fertility, crop yield, and soil carbon in southern ethiopia. Sustainability 2021, 13, 4515. [Google Scholar] [CrossRef]
- Teklewold, H.; Mekonnen, A.; Kohlin, G.; Di Falco, S. Does Adoption of Multiple Climate-Smart Practices Improve Farmers’ climate Resilience? Empirical Evidence from The Nile Basin of Ethiopia. Clim. Chang. Econ. 2017, 8, 1750001. [Google Scholar] [CrossRef]
- Tesfaye, K.; Kassie, M.; Cairns, J.E.; Michael, M.; Stirling, C.; Abate, T.; Prasanna, B.M.; Mekuria, M.; Hailu, H.; Rahut, D.B.; et al. Potential for scaling up climate smart agricultural practices: Examples from sub-Saharan Africa. In Climate Change Adaptation in Africa: Fostering Resilience and Capacity to Adapt; Springer: Berlin/Heidelberg, Germany, 2017; pp. 185–203. [Google Scholar]
- Aweke, M. Climate-Smart Agriculture in Ethiopia. In Feed the Future; Climate-Smart Agriculture Country Profiles for Africa Series; International Center for Tropical Agriculture, USAID: Washington, DC, USA, 2017. [Google Scholar]
- Fentie, A.; Beyene, A.D. Climate-smart agricultural practices and welfare of rural smallholders in Ethiopia: Does planting method matter? Land Use Policy 2019, 85, 387–396. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef]
- Di Falco, S.; Yesuf, M.; Kohlin, G.; Ringler, C. Estimating the impact of climate change on agriculture in low-income countries: Household-level evidence from the Nile Basin, Ethiopia. Environ. Resour. Econ. 2012, 52, 457–478. [Google Scholar] [CrossRef]
- Debalke, N.M. Determinants of farmers’ preference for adaptation strategies to climate change: Evidence from north shoa zone of Amhara region Ethiopia. Munich Pers RePEc Arch 2013, 2, 1–12. [Google Scholar]
- Aryal, J.P.; Jat, M.L.; Sapkota, T.B.; Khatri-Chhetri, A.; Kassie, M.; Maharjan, S. Adoption of multiple climate-smart agricultural practices in the Gangetic plains of Bihar, India. Int. J. Clim. Chang. Strateg. Manag. 2018, 3, 407–427. [Google Scholar] [CrossRef]
- Bedeke, S.; Vanhove, W.; Gezahegn, M.; Natarajan, K.; Van Damme, P. Adoption of climate change adaptation strategies by maize-dependent smallholders in Ethiopia. NJAS-Wagening. J. Life Sci. 2019, 88, 96–104. [Google Scholar] [CrossRef]
- Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder farmers’ adaptation to climate change and determinants of their adaptation decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 6, 1–13. [Google Scholar] [CrossRef]
- Hirpha, H.H.; Mpandeli, S.; Bantider, A. Determinants of adaptation strategies to climate change among the smallholder farmers in Adama District, Ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 463–476. [Google Scholar] [CrossRef]
- Getahun, A.B.; Ayal, D.Y.; Ture, K.; Zeleke, T.T. Determinants of climate variability adaptation strategies: A case of Itang Special District, Gambella Region, Ethiopia. Clim. Serv. 2021, 23, 100245. [Google Scholar] [CrossRef]
- Kifle, T.; Ayal, D.Y.; Mulugeta, M. Factors influencing farmers adoption of climate smart agriculture to respond climate variability in Siyadebrina Wayu District, Central highland of Ethiopia. Clim. Serv. 2022, 26, 100290. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef] [PubMed]
- Teklewold, H.; Gebrehiwot, T.; Bezabih, M. Climate-smart agricultural practices and gender-differentiated nutrition outcome: An empirical evidence from Ethiopia. World Dev. 2019, 122, 38–53. [Google Scholar] [CrossRef]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of climate-smart agriculture technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Ewunetu, A.; Simane, B.; Teferi, E.; FZaitchik, B. Relationships and the determinants of sustainable land management technologies in North Gojjam Sub-basin, Upper Blue Nile, Ethiopia. Sustainability 2021, 13, 6365. [Google Scholar] [CrossRef]
- Negra, C.; Vermeulen, S.; Barioni, L.G.; Mamo, T.; Melville, P.; Tadesse, M. Brazil, Ethiopia, and New Zealand lead the way on climate-smart agriculture. Agric. Food Secur. 2014, 3, 19. [Google Scholar] [CrossRef]
- Nigussie, A.; Ambaw, G.; Tesfaye, A. Monitoring Biophysical and Socioeconomic Impacts of CSA Practices at Doyogena and Basona Climate-Smart Landscapes, Ethiopia; CCAFS Activity Report; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Addis Ababa, Ethiopia, 2021. [Google Scholar]
- Conway, D. Some aspects of climate variability in the north east Ethiopian Highlands-Wollo and Tigray. Ethiop. J. Sci. 2000, 23, 139–161. [Google Scholar] [CrossRef]
- Kothari, C.R. Research Methodology: Methods and Techniques; New Age International: Delhi, India, 2004. [Google Scholar]
- Admasu, A.; Habte, D.; Debela, D.; Debele, T. Short Term Effect of Conservation Agriculture for Sustainable Wheat Production in southeast Arsi, Ethiopia. Glob. J. Biol. Agric. Health Sci. 2021, 10, 104. [Google Scholar]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Process. 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Oicha, T.; Cornelis, W.M.; Verplancke, H.; Nyssen, J.; Govaerts, B.; Behailu, M.; Deckers, J. Short-term effects of conservation agriculture on Vertisols under tef (Eragrostis tef (Zucc.) Trotter) in the northern Ethiopian highlands. Soil Tillage Res. 2010, 106, 294–302. [Google Scholar] [CrossRef]
- Singh, B.R.; Safalaoh, A.; Amuri, N.A.; Eik, L.O.; Sitaula, B.K.; Lal, R. Climate Impacts on Agricultural and Natural Resource Sustainability in Africa; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Meragiaw, M. Role of agroforestry and plantation on climate change mitigation and carbon sequestration in Ethiopia. J. Tree Sci. 2017, 36, 1–15. [Google Scholar] [CrossRef]
- Linger, E. Agro-ecosystem and socio-economic role of homegarden agroforestry in Jabithenan District, North-Western Ethiopia: Implication for climate change adaptation. SpringerPlus 2014, 3, 154. [Google Scholar] [CrossRef]
- Chavarría, J.-Y.D.; Baudron, F.; Sunderland, T. Retaining forests within agricultural landscapes as a pathway to sustainable intensification: Evidence from Southern Ethiopia. Agric. Ecosyst. Environ. 2018, 263, 41–52. [Google Scholar] [CrossRef]
- Baudron, F.; Chavarría, J.-Y.D.; Remans, R.; Yang, K.; Sunderland, T. Indirect contributions of forests to dietary diversity in Southern Ethiopia. Ecol. Soc. 2017, 22, 23. [Google Scholar] [CrossRef]
- Ango, T.G.; Börjeson, L.; Senbeta, F.; Hylander, K. Balancing ecosystem services and disservices: Smallholder farmers’ use and management of forest and trees in an agricultural landscape in southwestern Ethiopia. Ecol. Soc. 2014, 19, 16. [Google Scholar] [CrossRef]
- Admasu, T.G.; Jenberu, A.A. The impacts of Apple-based Agroforestry Practices on the Livelihoods of Smallholder Farmers in Southern Ethiopia. Trees For. People 2022, 7, 100205. [Google Scholar] [CrossRef]
- Adela, F.A.; Aurbacher, J.; Abebe, G.K. Small-scale irrigation scheme governance-poverty nexus: Evidence from Ethiopia. Food Secur. 2019, 11, 897–913. [Google Scholar] [CrossRef]
- Bacha, D.; Namara, R.; Bogale, A.; Tesfaye, A. Impact of small-scale irrigation on household poverty: Empirical evidence from the Ambo district in Ethiopia. Irrig. Drain. 2011, 60, 1–10. [Google Scholar] [CrossRef]
- Tesfaye, A.; Bogale, A.; Namara, R.E.; Bacha, D. The impact of small-scale irrigation on household food security: The case of Filtino and Godino irrigation schemes in Ethiopia. Irrig. Drain. Syst. 2008, 22, 145–158. [Google Scholar] [CrossRef]
- Jambo, Y.; Alemu, A.; Tasew, W. Impact of small-scale irrigation on household food security: Evidence from Ethiopia. Agric. Food Secur. 2021, 10, 1–16. [Google Scholar] [CrossRef]
- Teshome, Y.; Biazin, B.; Wolka, K.; Burka, A. Evaluating performance of traditional surface irrigation techniques in Cheleleka watershed in Central Rift Valley, Ethiopia. Appl. Water Sci. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Tolossa, T.T.; Abebe, F.B.; Girma, A.A. Rainwater harvesting technology practices and implication of climate change characteristics in Eastern Ethiopia. Cogent Food Agric. 2020, 6, 1724354. [Google Scholar] [CrossRef]
- Addis, Z. Organic Fertilizers Use and Application for Cereal Crop Production in Ethiopia. J. Nat. Sci. Res. 2019, 9, 14–25. [Google Scholar]
- Girawale, V.; Naik, R. Adoption of Organic Fertilizer: A Way to Eco-friendly Agriculture. Adv. Life Sci. 2016, 5, 8118–8120. [Google Scholar]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Azadi, H.; Speelman, S. Impacts of socio-psychological factors on actual adoption of sustainable land management practices in dryland and water-stressed areas. Sustainability 2018, 10, 2963. [Google Scholar] [CrossRef]
- Bekeko, Z. Training Needs assessment Report on Challenges of Climate-Smart Agriculture in Ethiopia. AICCRA Report. Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA); Issued on 06-2022; USAID: Washington, DC, USA, 2017. [Google Scholar]
- Ekero, D.; Haile, W.; Lelago, A.; Bibiso, M. Response of Tef (Eragrostis tef (Zucc.) Trotter) to Balanced Fertilizer in Wolaita Zone, Southern Ethiopia. J. Agric. Chem. Environ. 2020, 10, 124–142. [Google Scholar]
- FAO. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Deressa, T.T.; Hassan, R.M. The economic impact of climate change on crop production in Ethiopia: Evidence from cross-section measures. J. Afr. Econ. 2009, 18, 529–554. [Google Scholar] [CrossRef]
- Tsige, M.; Synnevåg, G.; Aune, J.B. Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian women farmers. Sci. Afr. 2020, 7, e00250. [Google Scholar] [CrossRef]
- Beyene, A.D.; Mekonnen, A.; Kassie, M.; Di Falco, S.; Bezabih, M. Determinants of Adoption and Impacts of Sustainable Land Management and Climate Smart Agricultural Practices (SLM-CSA): Panel Data Evidence from the Ethiopian Highlands. 2017. Available online: http://hdl.handle.net/2077/65946 (accessed on 9 February 2024).
- Miheretu, B.A.; Yimer, A.A. Determinants of farmers’ adoption of land management practices in Gelana sub-watershed of Northern highlands of Ethiopia. Ecol. Process. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Marenya, P.; Jaleta, M.; Erenstein, O. Production risks and food security under alternative technology choices in Malawi: Application of a multinomial endogenous switching regression. J. Agric. Econ. 2015, 66, 640–659. [Google Scholar] [CrossRef]
- Pender, J.; Gebremedhin, B. Determinants of agricultural and land management practices and impacts on crop production and household income in the highlands of Tigray, Ethiopia. J. Afr. Econ. 2008, 17, 395–450. [Google Scholar] [CrossRef]
- Asfaw, A.; Bantider, A.; Simane, B.; Hassen, A. Smallholder farmers’ livelihood vulnerability to climate change-induced hazards: An agroecology-based comparative analysis in Northcentral Ethiopia (Woleka Sub-basin). Heliyon 2021, 7, e06761. [Google Scholar] [CrossRef]
- Balew, S.; Agwata, J.; Anyango, S. Determinants of adoption choices of climate change adaptation strategies in crop production by small-scale farmers in some regions of central Ethiopia. J. Nat. Sci. Res. 2014, 4. [Google Scholar]
- Mwungu, C.M.; Mwongera, C.; Shikuku, K.M.; Acosta, M.; Läderach, P. Determinants of adoption of climate-smart agriculture technologies at farm plot level: An assessment from southern Tanzania. In Handbook of Climate Change Resilience; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–15. [Google Scholar]
- CSA. Federal Democratic Republic of Ethiopia, Central Statistical Agency. Population Projection of Ethiopia for All Regions At Wereda Level from 2014–2017; CSA: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Salazar, O.; Casanova, M.; Kätterer, T. The impact of agroforestry combined with water harvesting on soil carbon and nitrogen stocks in central Chile evaluated using the ICBM/N model. Agric. Ecosyst. Environ. 2010, 140, 123–136. [Google Scholar] [CrossRef]
- Goshu, D.; Kassa, B.; Ketema, M. Does crop diversification enhance household food security? Evidence from rural Ethiopia. Adv. Agric. Sci. Eng. Res. 2012, 2, 503–515. [Google Scholar]
- Atinkut, B.; Mebrat, A. Determinants of farmers’ choice of adaptation to climate variability in Dera woreda, south Gondar zone, Ethiopia. Environ. Syst. Res. 2016, 5, 1–8. [Google Scholar] [CrossRef]
- Sileshi, M.; Kadigi, R.; Mutabazi, K.; Sieber, S. Determinants for the adoption of physical soil and water conservation measures by smallholder farmers in Ethiopia. Int. Soil Water Conserv. Res. 2019, 7, 354–361. [Google Scholar] [CrossRef]
- Cholo, T.C.; Fleskens, L.; Sietz, D.; Peerlings, J. Land fragmentation, climate change adaptation, and food security in the Gamo Highlands of Ethiopia. Agric. Econ. 2019, 50, 39–49. [Google Scholar] [CrossRef]
- Leonhardt, H.; Penker, M.; Salhofer, K. Do farmers care about rented land? A multi-method study on land tenure and soil conservation. Land Use Policy 2019, 82, 228–239. [Google Scholar] [CrossRef]
- Jones, L.; Ludi, E.; Levine, S. Towards a Characterization of Adaptive Capacity: A Framework for Analyzing Adaptive Capacity at the Local Level; Overseas Development Institute: London, UK, 2010; Available online: https://ssrn.com/abstract=2782323 (accessed on 9 February 2024).
- Mutyasira, V.; Hoag, D.; Pendell, D. The adoption of sustainable agricultural practices by smallholder farmers in Ethiopian highlands: An integrative approach. Cogent Food Agric. 2018, 4, 1552439. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopia. Nat. Resour. Forum. 2009, 33, 189–198. [Google Scholar] [CrossRef]
- Asfaw, D.; Neka, M. Factors affecting adoption of soil and water conservation practices: The case of Wereillu Woreda (District), South Wollo Zone, Amhara Region, Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 273–279. [Google Scholar] [CrossRef]
- Amsalu, A.; De Graaff, J. Determinants of adoption and continued use of stone terraces for soil and water conservation in an Ethiopian highland watershed. Ecol. Econ. 2007, 61, 294–302. [Google Scholar] [CrossRef]
- Zeleke, M.T.; Aberra, Y. Determinants of the adoption of land management strategies against climate change in Northwest Ethiopia. Ethiop. Renaiss. J. Soc. Sci. Humanit. 2014, 1. Available online: https://erjssh.uog.edu.et/index.php/ERJSSH/article/view/109 (accessed on 9 February 2024).
- Beyene, A.D.; Mekonnen, A.; Randall, B.; Deribe, R. Household-level determinants of agroforestry practices adoption in rural Ethiopia. For. Trees Livelihoods 2019, 28, 194–213. [Google Scholar] [CrossRef]
- Tafere, S.M.; Nigussie, Z.A. The adoption of introduced agroforestry innovations: Determinants of a high adoption rate—A case-study from Ethiopia. For. Trees Livelihoods 2018, 27, 175–194. [Google Scholar] [CrossRef]
- Yirga, C.; Hassan, R. Determinants of inorganic fertilizer use in the mixed crop-livestock farming systems of the central highlands of Ethiopia. Afr. Crop Sci. J. 2013, 21, 669–682. [Google Scholar]
- Paul, M.; wa Gĩthĩnji, M. Small farms, smaller plots: Land size, fragmentation, and productivity in Ethiopia. J. Peasant Stud. 2018, 45, 757–775. [Google Scholar] [CrossRef]
- Marenya, P.P.; Kassie, M.; Jaleta, M.; Erenstein, O. Predicting minimum tillage adoption among smallholder farmers using micro-level and policy variables. Agric. Food Econ. 2017, 5, 1–22. [Google Scholar] [CrossRef]
- Gebru, G.W.; Ichoku, H.E.; Phil-Eze, P.O. Determinants of smallholder farmers’ adoption of adaptation strategies to climate change in Eastern Tigray National Regional State of Ethiopia. Heliyon 2020, 6, e04356. [Google Scholar] [CrossRef] [PubMed]
- Moges, D.M.; Taye, A.A. Determinants of farmers’ perception to invest in soil and water conservation technologies in the North-Western Highlands of Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 56–61. [Google Scholar] [CrossRef]
- Mihiretu, A.; Okoyo, E.N.; Lemma, T. Determinants of adaptation choices to climate change in agro-pastoral drylands of Northeastern Amhara, Ethiopia. Cogent Environ. Sci. 2019, 5, 1636548. [Google Scholar] [CrossRef]
- Saguye, T.S. Determinants of the Adoption of Sustainable Land Management Practices among Smallholder Farmers in Jeldu District, West Shewa Zone, Oromia Region, Ethiopia. Glob. J. Econ. Sustain. Dev 2017, 8, 96–116. [Google Scholar]
- Tesfahun, A.A.; Chawla, A.S. Risk perceptions and adaptation strategies of smallholder farmers to climate change and variability in North Shoa Zone, Ethiopia. Manag. Environ. Qual. Int. J. 2019, 31, 254–272. [Google Scholar] [CrossRef]
- Destaw, F.; Fenta, M.M. Climate change adaptation strategies and their predictors amongst rural farmers in Ambassel district, Northern Ethiopia. Jàmbá J. Disaster Risk Stud. 2021, 13, 1–11. [Google Scholar] [CrossRef]
Agroecological Zones | Kebele | Major Crop Type | Major Livestock | Total HH | Sample HH |
---|---|---|---|---|---|
Midland (Woyina Dega) | Gedober | Teff, Sorghum, Millet | Cattle, sheep, goat | 1515 | 87 |
Lay_Aluwuha | Teff, Sorghum | Cattle, camel, goat | 1600 | 91 | |
Lowland (Kolla) | Humo | Sorghum, Teff | Camel, cattle, goat, chicken | 718 | 41 |
Dodota | Sorghum, Pepper | Camel, cattle, goat | 847 | 48 | |
Highland (Dega) | Worka-Worku | Barely, wheat, lentil, bean, pea | Sheep, cattle, mules, | 1674 | 95 |
Kanbat | Barely, wheat, lentil, bean, pea | Sheep, cattle, mules, | 1031 | 59 | |
Total | 7385 | 421 |
CSA Practices | Definitions |
---|---|
Crop diversification (CD) | Growing more than one improved crop variety that survives in adverse climatic conditions across farmland or time [58,65]. |
Improved crop varieties (CV) | Adopting improved seed varieties such as pest resistance, high-yielding, drought tolerant, and early maturing especially for the major staple that could improve crop yield [66,67]. |
Minimum or reduced tillage (MT) | Reducing soil disturbance and allowing crop residue to remain on the ground, increasing soil organic carbon, vital for soil fertility and structure [37,68,69]. |
Agroforestry (AF) | Cultivating trees that can be woody perennials and deliberately integrated with crops [70,71,72,73,74,75] |
Small-scale Irrigation (IR) | Year-round cropping uses both surface and sub-surface water resources. Effective means of smoothing out yield instability in rainfed systems [76,77,78,79] |
Rainwater harvesting (RW) | Intentional collection of rainwater from a surface known as a catchment and its storage in physical structures (micro-catchments, broad beds, and furrows) or within the soil profile [80,81]. |
Compost/Organic fertilizer (OF) | Using organic materials, such as animal waste, weeds, farm waste, straw/hay leftovers, dried leaves, and ash [82,83,84]. |
Chemical fertilizers (Diammoniate phosphates (DAP) and Urea) (CF) | Using chemical fertilizers with proper timing and amount to boost yield and yield components of crops [45,47,85,86] |
Variable’s Name | Variable Description (Coding/Units) | Mean | SD |
---|---|---|---|
Demographic and Social factors | |||
Gender | Household head gender type, 1 = Male, Female = 0 | 0.87 | 0.33 |
Age | Farm household head’s age (years) | 46.90 | 9.74 |
Education | 1 = if the literate household head | 0.36 | 0.48 |
Family size | Number of family members (count) | 5.57 | 2.02 |
Dependency ratio | Household members aged below 15 and above 64 (count) | 2.08 | 1.52 |
Social Membership | =1 if farmers belong to at least one social membership, 0 otherwise | 0.88 | 0.32 |
Farm characteristics | |||
Plot number | Number of plots to be cultivated as land (count) | 2.94 | 1.18 |
Farm distance | Walking distance of the plot from home, minutes | 37.73 | 19.38 |
Steep slope | The slope of farmland is perceived as very steep, hectare | 0.12 | 0.24 |
Moderate slope | The slope of farmland is perceived as moderate, hectare | 0.37 | 0.35 |
Gentle slope | The slope of farmland is perceived as gentle, hectare | 0.60 | 0.40 |
Tenure | =1 if the household head owns the farmland ownership certificate, 0 otherwise | 0.99 | 0.09 |
Poor soil fertility | =1 if farmland soil status is perceived as poor fertility, 0 otherwise | 0.11 | 0.31 |
Cropland Rent | =1 if the household head shared cropland with others, 0 otherwise | 0.31 | 0.46 |
Farm resources | |||
Irrigable land | =1 if the household heads own irrigable land, 0 otherwise | 0.27 | 0.44 |
Farm size | Area of cultivated land, in Timad2 | 1.10 | 0.57 |
TLU | Livestock size (tropical livestock unit; TLU) | 4.01 | 2.19 |
Credit access | =1 if the household received credit when they needed it, 0 otherwise | 0.70 | 0.46 |
Institutional and infrastructural-related factors | |||
Information on climate | 1 = if extension experts give climatic information to farmers, 0 otherwise | 0.25 | 0.43 |
Visits of extension agent | Number of yearly visits for extension agents | 2.95 | 1.02 |
Distance to market | Market distance to the residence (minutes of walking) | 99.64 | 125.24 |
Distance to extension service | Extension service office distance to the residence (minutes of walking) | 47.62 | 36.91 |
Radio | =1 if household heads own radio/mobile, otherwise | 0.81 | 0.40 |
CV | CD | OF | IR | AF | RW | MT | CF | |
---|---|---|---|---|---|---|---|---|
CV | 1.000 | |||||||
CD | 0.444 (***) | 1.000 | ||||||
OF | 0.425 (***) | 0.291 *** | 1.000 | |||||
IR | 0.190 | 0.169 | 0.394 *** | 1.000 | ||||
AF | 0.123 | 0.485 *** | 0.416 *** | 0.304 ** | 1.000 | |||
RW | −0.046 | 0.200 | 0.418 *** | 0.176 | 0.582 *** | 1.000 | ||
MT | 0.085 | 0.396 *** | 0.356 *** | 0.468 *** | 0.370 *** | 0.332 ** | 1.000 | |
CF | 0.407 *** | 0.424 *** | 0.208 ** | 0.254 ** | 0.127 | −0.102 | 0.296 *** | 1.000 |
Explanatory Variables | (MVP) Model of Climate-Smart Agricultural Practices (Dependent Variables) | |||||||
---|---|---|---|---|---|---|---|---|
ICV | CD | OF | IR | AGF | RWH | MT | CF | |
Demographic and Social factors | ||||||||
Gender | −0.075 (0.242) | 0.437 (0.285) a | −0.283 (0.224) | 0.420 (0.413) | 0.477 (0.419) | 0.560 (0.585) | −0.540 (0.247) b | 0.094 (0.240) |
Age | 0.008 (0.009) | 0.014 (0.009) a | 0.009 (0.008) | 0.015 (0.015) | 0.031 (0.011) c | 0.041 (0.014) c | 0.003 (0.010) | −0.008 (0.009) |
Education | 0.437 (0.164) c | 0.202 (0.164) | 0.228 (0.150) a | −0.031 (0.250) | 0.213 (0.207) | 0.611 (0.253) b | 0.055 (0.181) | 0.296 (0.160) a |
Family Size | 0.023 (0.053) | 0.037 (0.055) | −0.004 (0.050) | −0.202 (0.099) b | −0.047 (0.070) | −0.063 (0.090) | 0.046 (0.059) | 0.057 (0.054) |
Age Dependency Ratio (ADR) | −0.010 (0.062) | −0.083 (0.064) | −0.021 (0.060) | −0.091 (0.109) | 0.111 (0.079) | 0.183 (0.098) | 0.018 (0.071) | −0.256 (0.065) |
Social Membership | 0.382 (0.271) | 0.374 (0.256) a | −0.312 (0.233) | 1.246 (0.515) c | −0.272 (0.366) | 0.557 (0.586) | −0.281 (0.294) | 0.168 (0.255) |
Farm resources | ||||||||
Farm size | −0.781 (0.675) | −0.184 (0.677) | 0.553 (0.580) | 0.407 (1.149) | 1.285 (0.725) a | 2.115 (0.852) | −1.154 (0.886) | 1.281 (0.550) b |
TLU | −0.039 (0.042) | −0.018 (0.045) | 0.031 (0.042) | −0.016 (0.062) | 0.086 (0.051) a | 0.123 (0.064) b | −0.033 (0.047) | 0.135 (0.044) c |
Irrigable land | 0.566 (0.253) b | 0.575 (0.258) b | 0.191 (0.244) | 2.472 (0.346) c | −0.060 (0.348) | 0.038 (0.417) | 0.117 (0.354) a | 0.199 (0.282) |
Credit | 0.033 (0.175) | −0.135 (0.184) | −0.176 (0.167) | −0.786 (0.308) c | 0.095 (0.234) | 0.346 (0.335) | −0.790 (0.189) c | −0.167 (0.185) |
Farm characteristics | ||||||||
Plot number | 0.052 (0.077) | −0.074 (0.084) | 0.002 (0.078) | 0.006 (0.135) | 0.063 (0.098) | 0.246 (0.113) b | 0.217 (0.091) b | 0.271 (0.085) c |
Gentle slope | 0.917 (0.679) | 0.776 (0.691) | −0.065 (0.588) | −0.435 (1.182) | −0.779 (0.739) | −2.176 (0.884) | 1.806 (0.902) b | −0.933 (0.546) |
Moderate slope | 0.661 (0.669) | 0.571 (0.669) | −0.170 (0.585) | −0.754 (1.136) | −0.502 (0.723) | −2.579 (0.900) | 1.473 (0.883) b | −1.117 (0.551) |
Steep slope | 1.237 (0.735) a | 0.678 (0.727) | −0.293 (0.636) | 0.520 (1.217) | −0.822 (0.777) | 2.393 (0.944) c | 1.121 (0.902) | 0.938 (0.633) a |
Soil fertility | 0.069 (0.250) | 0.338 (0.264 | 0.135 (0.238) | −0.134 (0.445) | 0.240 (0.367) | 0.537 (0.402) | 0.359 (0.319) | 0.039 (0.245) |
Farmland rent | 0.322 (0.162) b | −0.006 (0.180) | 0.290 (0.155) a | 0.468 (0.266) a | 0.586 (0.219) c | 0.763 (0.256) c | −0.443 (0.207) b | 0.542 (0.170) c |
Farm distance | 0.008 (0.004) b | 0.010 (0.004) a | 0.002 (0.004) | 0.006 (0.007) | 0.003 (0.005) | −0.004 (0.007) | 0.004 (0.005) | 0.010 (0.004) c |
Institutional and infrastructural-related factors | ||||||||
Radio | 0.191 (0.229) | 0.216 (0.245) | 0.207 (0.212) | 0.487 (0.424) | 1.287 (0.464) c | 1.328 (0.571) b | −0.122 (0.252) | 0.266 (0.224) |
Distance from home to extension | 0.001 (0.003) | −0.004 (0.003) a | −0.004 (0.002) a | −0.002 (0.004) | 0.000 (0.004) | −0.004 (0.005) | 0.001 (0.003) | −0.003 (0.002) |
Distance from home to the nearest market | −0.002 (0.001) b | 0.000 (0.001) | −0.004 (0.002) a | 0.001 (0.001) | −0.001 (0.001) | −0.002 (0.003) | 0.001 (0.001) | −0.001 (0.001) b |
Extension contacts | 0.065 (0.083) | −0.065 (0.089) | 0.077 (0.079) | −0.095 (0.142) | −0.010 (0.105) | 0.124 (0.131) | 0.354 (0.096) c | −0.209 (0.082) c |
Climate-related information | 0.786 (0.178) c | −0.343 (0.209) a | 0.472 (0.173) c | −0.069 (0.302) | −0.340 (0.256) | −0.233 (0.294) | 0.044 (0.225) | −0.680 (0.181) c |
Constant | −2.060 (0.616) c | −2.150 (0.632) c | −0.369)0.621) | −2.815 (1.047) c | −6.147 (1.003) c | −7.556 (1.386) c | −2.309 (0.671) c | 0.729 (0.574) |
Wald chi2 (200) = 600.64; Prob > chi2 = 0.0000 |
Coef. | Std. Err. | Z | p > z | |
---|---|---|---|---|
Demographic and Social factors | ||||
Gender | 0.012 | 0.173 | 0.07 | 0.94 |
Age | 0.016 | 0.006 | 2.53 | 0.01 *** |
Education | 0.066 | 0.116 | 0.57 | 0.57 |
Family Size | −0.011 | 0.039 | −0.27 | 0.79 |
Social Membership | 0.017 | 0.183 | 0.09 | 0.93 |
Farm resources | ||||
TLU | −0.039 | 0.030 | −1.29 | 0.20 |
Farm size | 0.174 | 0.439 | 0.40 | 0.69 |
Irrigable land | 0.871 | 0.193 | 4.51 | 0.00 *** |
Credit | −0.261 | 0.128 | −2.04 | 0.04 ** |
Farm characteristics | ||||
Plot number | 0.170 | 0.060 | 2.86 | 0.00 *** |
Gentle slope | 0.304 | 0.444 | 0.68 | 0.49 |
Moderate slope | −0.089 | 0.444 | −0.20 | 0.84 |
Steep slope | 0.285 | 0.483 | 0.59 | 0.56 |
Cropland sharing | 0.386 | 0.122 | 3.17 | 0.00 *** |
Poor soil fertility | 0.234 | 0.184 | 1.27 | 0.20 |
Institutional and infrastructural-related factors | ||||
Radio | 0.312 | 0.161 | 1.93 | 0.05 ** |
Distance to extension service | −0.003 | 0.002 | −1.58 | 0.12 |
Distance from home to the nearest market | −0.001 | 0.000 | −1.32 | 0.19 |
Visits of extension agent | 0.042 | 0.060 | 0.70 | 0.49 |
Information on climate | 0.163 | 0.134 | 1.21 | 0.23 |
Age Dependency Ratio (ADR) | −0.054 | 0.045 | −1.19 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeleke, G.; Teshome, M.; Ayele, L. Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia. Sustainability 2024, 16, 4560. https://doi.org/10.3390/su16114560
Zeleke G, Teshome M, Ayele L. Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia. Sustainability. 2024; 16(11):4560. https://doi.org/10.3390/su16114560
Chicago/Turabian StyleZeleke, Getnet, Menberu Teshome, and Linger Ayele. 2024. "Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia" Sustainability 16, no. 11: 4560. https://doi.org/10.3390/su16114560
APA StyleZeleke, G., Teshome, M., & Ayele, L. (2024). Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia. Sustainability, 16(11), 4560. https://doi.org/10.3390/su16114560