Derivation of Landslide Rainfall Thresholds by Geostatistical Methods in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Process
2.2. Study Area and Data Collection
2.3. Rainfall Parameters of Landslides
2.4. Prediction and Validation Process
- (1)
- Data splitting: According to the rainfall conditions, we categorized all landslides as either short-term rainfall-induced or long-term rainfall-induced. For each landslide, the short-term rainfall parameters (H1, H12, H24, and H72) and long-term rainfall parameter (D7) were calculated. Subsequently, we determined the ratios of each short-term parameter to the long-term parameter, denoted as R1 = H1/D7, R12 = H12/D7, R24 = H24/D7, and R72 = H72/D7. If the ratios for a landslide (R1, R12, R24, and R72) exceeded a specific splitting coefficient, we identified the landslide as being induced by short-term rainfall. Otherwise, it was regarded as being induced by long-term rainfall. The splitting coefficient was not a predetermined constant value but was changed in the range from 0.1 to 0.9 in the model calculations. As a result, we classified all landslides into short-term rainfall-triggered and long-term rainfall-triggered in four ways: H1–D7, H12–D7, H24–D7, and H72–D7.
- (2)
- Kriging interpolation: On a large scale, the short-term rainfall and long-term rainfall of each group were interpolated across the study area via Kriging using spherical variograms, which is a geostatistical technique that can be used to estimate the values of a variable at unsampled locations based on the values at sampled locations. Based on the short-term rainfall and long-term rainfall Kriging maps, we extracted the short-term rainfall values and long-term rainfall values at the exact locations of the 2021 landslide data points (Figure 4). These values served as the rainfall thresholds for 2021 landslides.
- (3)
- Validation: Both the long-term and short-term rainfall thresholds of 2021 landslides obtained through Kriging interpolation were compared with the actual rainfall conditions prior to landslide occurrence. A threshold larger than the actual rainfall means that our method failed to predict a landslide occurrence. Conversely, thresholds much smaller than the actual value may cause numerous false warnings. Therefore, we aimed to predict rainfall thresholds that are slightly smaller than the actual rainfall data. Hence, a successful landslide occurrence prediction was defined as the actual rainfall being within 1.0–1.5 of the calculated threshold in either the short-term condition or the long-term condition. The successful prediction rates were calculated by validating all the 2021 landslides in Dazhou using different rainfall splitting methods (Figure 4).
3. Results
3.1. Landslide-Triggering Rainfall
3.2. Prediction Rates and Splitting Coefficient
3.3. Rainfall Threshold Distribution
4. Discussion
5. Conclusions
- (1)
- The rainfall threshold computed by means of Kriging interpolation showed good performance in predicting the landslide occurrence in 2021. Among the four methods, the H72–D7 threshold model yielded the best prediction rate of 67%. H1–D7, H12–D7, and H24–D7 showed correct prediction rates of 48%, 57%, and 59%, respectively. This is contrary to weather forecasting, in which the rainfall predictions of the near future demonstrated better performance. Therefore, the application of geostatistical methods may need to consider the accuracy of weather forecasts.
- (2)
- Through the best prediction rate, we quantitatively determined the best splitting coefficients to divide the landslides into short-term rainfall-triggered and long-term rainfall-triggered events. The best splitting coefficients for H1/D7, H12/D7, H24/D7, and H72/D7 were 0.19, 0.50–0.53, 0.54–0.56, and 0.77–0.82, respectively. These coefficients can be used in future landslide analyses to improve the landslide warning system.
- (3)
- Multiple factors may impact the accuracy of a rainfall threshold model, such as the landslide distribution, weather forecasts, and anthropogenically influenced recordings. A more comprehensive empirical model represents a promising avenue for future research.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Yao, W.M.; Li, C.D.; Zhan, H.B.; Zeng, J.B. Time-dependent slope stability during intense rainfall with stratified soil water content. Bull. Eng. Geol. Environ. 2019, 78, 4805–4819. [Google Scholar] [CrossRef]
- Yu, P.; Liu, H.; Yu, H.; Xie, Y.; Yu, Y.; Zhu, C.; Dong, J.; Guang, Y. Study on fluid–solid coupling numerical simulation and early warning of weathered granite landslides induced by extreme rainfall. Sustainability 2023, 15, 11738. [Google Scholar] [CrossRef]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- Offenthaler, I.; Felderer, A.; Formayer, H.; Glas, N.; Leidinger, D.; Leopold, P.; Schmidt, A.; Lexer, M.J. Threshold or limit? precipitation dependency of Austrian landslides, an ongoing challenge for hazard mapping under climate change. Sustainability 2020, 12, 6182. [Google Scholar] [CrossRef]
- Segoni, S.; Lagomarsino, D.; Fanti, R.; Moretti, S.; Casagli, N. Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 2015, 12, 773–785. [Google Scholar] [CrossRef]
- Maurizio, L.; Maria, D. A multiple temporal kernel density estimation approach for new triggered landslides forecasting and susceptibility assessment. Disaster Adv. 2012, 5, 100–108. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Marin, R.J. Physically based and distributed rainfall intensity and duration thresholds for shallow landslides. Landslides 2020, 17, 2907–2917. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, Y.; Xi, G.; Li, Z. Threshold assessment of rainfall-induced landslides in Sangzhi County: Statistical analysis and physical model. Bull. Eng. Geol. Environ. 2022, 81, 388. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M.; Capolongo, D. Landslide triggering and local rainfall thresholds in Bradanic Foredeep, Basilicata region (Southern Italy). In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Rome, Italy, 2013; Volume 2, pp. 671–677. [Google Scholar]
- Rosi, A.; Peternel, T.; Jemec-Auflič, M.; Komac, M.; Segoni, S.; Casagli, N. Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 2016, 13, 1571–1577. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, C.; Wei, F.; Hu, K.; Xu, H.; Zhao, L.; Zhang, G. A physics-based model to derive rainfall intensity-duration threshold for debris flow. Geomorphology 2020, 351, 106930. [Google Scholar] [CrossRef]
- Guo, X.; Cui, P.; Li, Y. Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China. J. Mt. Sci. Engl. 2013, 10, 305–314. [Google Scholar] [CrossRef]
- Yang, H.; Wei, F.; Ma, Z.; Guo, H.; Su, P.; Zhang, S. Rainfall threshold for landslide activity in Dazhou, southwest China. Landslides 2020, 17, 61–77. [Google Scholar] [CrossRef]
- Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 2017, 290, 39–57. [Google Scholar] [CrossRef]
- Hong, Y.; Hiura, H.; Shino, K.; Suemine, A.; Fukuoka, H.; Wang, G. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Janpan. Landslides 2005, 2, 97–105. [Google Scholar] [CrossRef]
- Liu, S.; Wei, L.; Hu, K. Topographical and geological variation of effective rainfall for debris-flow occurrence from a large-scale perspective. Geomorphology 2020, 358, 107134. [Google Scholar] [CrossRef]
- Martelloni, G.; Segoni, S.; Fanti, R.; Catani, F. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 2012, 9, 485–495. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early warning systems. Earth Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P. Rainfall thresholds for triggering soil slips and debris flow. In Proceedings of the 2nd EGS Plinius Conference, Siena, Italy, 1–3 October 2001. [Google Scholar]
- Cannon, S.H.; Gartner, J.E. Wildfire-related debris flow from a hazards perspective. In Debris Flow Hazards and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 363–385. [Google Scholar]
- Miller, S.; Brewer, T.; Harris, N. Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: Application to landslide management in St Thomas, Jamaica. Bull. Eng. Geol. Environ. 2009, 68, 539–550. [Google Scholar] [CrossRef]
- Monsiers, E.; Dewitte, O.; Demoulin, A. A susceptibility-based rainfall threshold approach for landslide occurrence. Nat. Hazards Earth Syst. Sci. 2019, 19, 775–789. [Google Scholar] [CrossRef]
- Marin, R.J.; García, E.F.; Aristizábal, E. Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides. Eng. Geol. 2020, 278, 105855. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Rosi, A.; Pradhan, B.; Segoni, S. The selection of rain gauges and rainfall parameters in estimating intensity-duration thresholds for landslide occurrence: Case study from wayanad (India). Water 2020, 12, 1000. [Google Scholar] [CrossRef]
- Al-Thuwaynee, O.F.; Melillo, M.; Gariano, S.L.; Park, H.J.; Kim, S.; Lombardo, L.; Hafer, P.; Mohajane, M.; Quevedo, R.P.; Catani, F.; et al. DEWS: A QGIS tool pack for the automatic selection of reference rain gauges for landslide-triggering rainfall thresholds. Environ. Modell. Softw. 2023, 162, 105657. [Google Scholar] [CrossRef]
- Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T. How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering? Nat. Hazards 2020, 100, 655–670. [Google Scholar] [CrossRef]
- Leonarduzzi, E.; Molnar, P. Deriving rainfall thresholds for landsliding at the regional scale: Daily and hourly resolutions, normalisation, and antecedent rainfall. Nat. Hazards Earth Syst. Sci. 2020, 20, 2905–2929. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Han, D.; Zhang, J.; Zhuo, L.; Berti, M. Application of hydrological model simulations in landslide predictions. Landslides 2020, 17, 877–891. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.; Wang, G.; Iqbal, J.; Wang, Y.; Li, W.; Xu, Q.; Zhu, X. Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan’an, China, using the TRIGRS model. Earth Surf. Proc. Land. 2016, 42, 915–927. [Google Scholar] [CrossRef]
- Gariano, S.L.; Brunetti, M.T.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665. [Google Scholar] [CrossRef]
- Vessia, G.; Curzio, D.D.; Chiaudani, A.; Rusi, S. Regional rainfall threshold maps drawn through multivariate geostatistical techniques for shallow landslide hazard zonation. Sci. Total. Environ. 2020, 705, 135815. [Google Scholar] [CrossRef]
- Xu, Q.; Zeng, Y.; Qian, J.; Wang, C.; He, C. Study on an improved tangential angle and the corresponding landslide pre-warning criteria. Geol. B. Chin. 2009, 28, 501–505. [Google Scholar]
- Steger, S.; Moreno, M.; Crespi, A.; Zellner, P.J.; Gariano, S.L.; Brunetti, M.T.; Melillo, M.; Peruccacci, S.; Marra, F.; Kohrs, R.; et al. Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models. Nat. Hazards Earth Syst. Sci. 2023, 23, 1483–1506. [Google Scholar] [CrossRef]
- Peres, D.J.; Cancelliere, A. Comparing methods for determining landslide early warning thresholds: Potential use of non-triggering rainfall for locations with scarce landslide data availability. Landslides 2021, 18, 3135–3147. [Google Scholar] [CrossRef]
- Gonzalex, F.C.G.; Cavacanti, M.C.R.; Ribeiro, W.N.; de Mendonça, M.B.; Haddad, A.N. A systematic review on rainfall thresholds for landslides occurrence. Heliyon 2024, 10, e23247. [Google Scholar] [CrossRef]
- Montrasio, L.; Valentino, R.; Losi, G.L. Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Nat. Hazards Earth Syst. Sci. 2011, 11, 1927. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J. Controlling factors of loess landslides in western China. Environ. Earth Sci. 2009, 59, 1671–1680. [Google Scholar] [CrossRef]
- Bonnard, C.H.; Noverraz, F. Influence of climate change on large landslides: Assessment of long-term movements and trends. In Proceedings of the International Conference on Landslides: Causes Impact and Countermeasures, Davos, Switzerland, 17–21 June 2001. [Google Scholar]
- Crosta, G.B. Regionalization of rainfall thresholds: An aid to landslide hazard evaluation. Environ. Geol. 1998, 35, 131–145. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, L.; Ao, T.; Liu, X.; Shu, X. Flood hazard analysis based on rainfall fusion: A case study in Dazhou City, China. Remote Sens. 2022, 14, 4843. [Google Scholar] [CrossRef]
- Carpenter, C. Sichuan Basin Evergreen Broadleaf Forests. Available online: https://www.oneearth.org/ecoregions/sichuan-basin-evergreen-broadleaf-forests/ (accessed on 7 February 2024).
- Yang, Y.; Wen, L.; Luo, B.; Song, J.; Chen, X.; Wang, X.; Hong, H.; Zhou, G.; He, Q.; Zhang, X.; et al. Sedimentary tectonic evolution and reservoir-forming conditions of the Dazhou–Kaijiang paleo-uplift, Sichuan Basin. Nat. Gas Ind. B 2016, 3, 515–525. [Google Scholar] [CrossRef]
- Marin, R.J.; Velásquez, M.F.; García, E.F.; Alvioli, M.; Aristizábal, E. Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains. Catena 2021, 206, 105563. [Google Scholar] [CrossRef]
- Bruce, J.P.; Clark, R.H. Introduction to Hydrometeorology; Pergamon: Oxford, UK, 1966. [Google Scholar]
- Ran, P.; Li, S.; Zhou, G.; Wang, X.; Meng, M.; Liu, L.; Chen, Y.; Huang, H.; Ye, Y.; Lei, X. Early identification and influencing factors analysis of active landslides in mountainous areas of Southwest China using SBAS−InSAR. Sustainability 2023, 15, 4366. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Zhuang, J.; Javed, I.; Peng, J.; Liu, T. Probability Prediction Model for Landslide Occurrences in Xi’an, Shaanxi Province, China. J. Mt. Sci. Engl. 2014, 11, 345–359. [Google Scholar] [CrossRef]
- Hsu, C.F. Rainfall-induced landslide susceptibility assessment and the establishment of early warning techniques at regional scale. Sustainability 2023, 15, 16764. [Google Scholar] [CrossRef]
- Pyrcz, M.J.; Deutsch, C.V. Geostatistical Reservoir Modeling, 2nd ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Liu, A.; Zheng, L.; Deng, J.; Huang, Y. Landslide susceptibility of the Xiangjiaba Reservoir area associated with the Yaziba Fault. Bull. Eng. Geol. Environ. 2017, 77, 1–11. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, B.X.; Xu, Z.; Wu, X. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in Woodville Karst Plain. J. Hydrol. 2019, 579, 124171. [Google Scholar] [CrossRef]
- Xu, Z.; Khan, M.R.; Ahmed, K.M.; Zahid, A.; Hariharan, J.; Passalacqua, P.; Steel, E.; Chadwick, A.; Paola, C.; Goofbred, S.L.; et al. Predicting subsurface architecture from surface channel networks in the Bengal Delta. J. Geophys. Res. Earth 2023, 128, e2022JF006775. [Google Scholar] [CrossRef]
- Peruccacci, S.; Gariano, S.L.; Melillo, M.; Solimano, M.; Guzzetti, F.; Brunetti, M.T. The ITAlian rainfall-induced Landslides CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy. Earth Syst. Sci. Data 2023, 15, 2863–2877. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Xiao, Z.; Zhao, X.; Ma, Z.; Zhang, Q.; Zeng, P.; Zhang, X. Derivation of Landslide Rainfall Thresholds by Geostatistical Methods in Southwest China. Sustainability 2024, 16, 4044. https://doi.org/10.3390/su16104044
Xu Z, Xiao Z, Zhao X, Ma Z, Zhang Q, Zeng P, Zhang X. Derivation of Landslide Rainfall Thresholds by Geostatistical Methods in Southwest China. Sustainability. 2024; 16(10):4044. https://doi.org/10.3390/su16104044
Chicago/Turabian StyleXu, Zhongyuan, Zhilin Xiao, Xiaoyan Zhao, Zhigang Ma, Qun Zhang, Pu Zeng, and Xiaoqiong Zhang. 2024. "Derivation of Landslide Rainfall Thresholds by Geostatistical Methods in Southwest China" Sustainability 16, no. 10: 4044. https://doi.org/10.3390/su16104044
APA StyleXu, Z., Xiao, Z., Zhao, X., Ma, Z., Zhang, Q., Zeng, P., & Zhang, X. (2024). Derivation of Landslide Rainfall Thresholds by Geostatistical Methods in Southwest China. Sustainability, 16(10), 4044. https://doi.org/10.3390/su16104044