Fiber-Reinforced Coal Gangue-Based Alumina Aerogel Composites with Highly Thermal Stability by Ambient Pressure Drying
Abstract
1. Introduction
2. Experimental Procedures
2.1. Materials and Methods
2.2. Preparation of AlCl3 Precursor
2.3. Preparation of Aluminum Silicate Fiber/Al2O3 Aerogel
2.4. Properties and Characterizations
3. Results and Discussion
3.1. Microstructure and Properties of Coal Gangue
3.2. Effects of Various Parameters on Alumina-Dissolution Rate of Coal Gangue
3.2.1. Effect of Temperature on Alumina-Dissolution Rate of Coal Gangue
3.2.2. Effect of Holding Time on Alumina-Dissolution Rate of Coal Gangue
3.3. Microstructure and Properties of Aluminum Silicate Fiber/Al2O3 Aerogel
3.4. Thermal Stability Property
4. Conclusions
- (1)
- The calcination temperature is 800 °C, the holding time is 0.5 h, and the mass ratio of acid waste is 0.96:1. Under this condition, most of the Al2O3 in CG can be extracted, and the extraction rate reaches 81.02%.
- (2)
- The final prepared ASF/AA has similar low density (0.26 g/cm3) and low thermal conductivity (0.047 W/(m·K)) at room temperature compared to the supercritical dried fiber/aerogel material.
- (3)
- ASF/AA has good high-temperature resistance. After two hours of heat treatment at 1200 °C, the thermal conductivity stayed low (0.071 W/(m·K)). The composite’s high-temperature thermal stability is enhanced by the mullite phase that forms after heat treatment above 1000 °C. The infrared imaging pictures show that the composite material has a strong ability to insulate against heat.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Liang, Y.C.; Liang, H.D.; Zhu, S.Q. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China. Fuel 2016, 182, 525–530. [Google Scholar] [CrossRef]
- Li, Q.; Lv, L.; Zhao, X.; Wang, Y.; Wang, Y. Cost-effective microwave-assisted hydrothermal rapid synthesis of analcime-activated carbon composite from coal gangue used for Pb2+ adsorption. Environ. Sci. Pollut. Res. 2022, 29, 77788–77799. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.; Zhou, Q.; Qi, T.; Liu, G.; Peng, Z. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting-alkaline leaching process. Waste Manag. 2019, 87, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, Y.; Zhao, X.; Yang, N.; Wang, Z.; Guo, Z.; Tong, J.; Zhang, Y.; Liu, Z. Temperature Distribution Regularity and Dynamic Evolution of Spontaneous Combustion Coal Gangue Dump: Case Study of Yinying Coal Mine in Shanxi, China. Sustainability 2023, 15, 6362. [Google Scholar] [CrossRef]
- Li, L.; Long, G.; Bai, C.; Ma, K.; Wang, M.; Zhang, S. Utilization of Coal Gangue Aggregate for Railway Roadbed Construction in Practice. Sustainability 2020, 12, 4583. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Liu, X.; Sun, H.; Ni, W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel 2013, 109, 527–533. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, Z.; Gao, Y.; Liu, J.; Wang, D.; Liu, H.; Zhang, Y.; Li, L. Synthesis and CO2 adsorption performance of high Si/Al ratio DDR zeolites prepared from silica fume. J. Environ. Chem. Eng. 2023, 11, 110837. [Google Scholar] [CrossRef]
- Xiong, J.; Zang, L.; Zha, J.; Mahmood, Q.; He, Z. Phosphate Removal from Secondary Effluents Using Coal Gangue Loaded with Zirconium Oxide. Sustainability 2019, 11, 2453. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, Y.; Chen, Q.; Zhang, S.; Li, L.; Feng, J.; Feng, J. Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations. J. Eur. Ceram. Soc. 2020, 40, 127–135. [Google Scholar] [CrossRef]
- Koebel, M.; Rigacci, A.; Achard, P. Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 2012, 63, 315–339. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Pontinha, A.D.R.; Alves, P.; Santos, P.; Durães, L. Progress in silica aerogel-containing materials for buildings’ thermal insulation. Constr. Build. Mater. 2021, 286, 122815. [Google Scholar] [CrossRef]
- Xie, F.; Dai, X.; Zhuo, L.; Dai, Q.; He, C.; Lu, Z. Robust BNNS/ANF aerogel skeleton-based PEG composite phase change materials with high latent heat for efficient thermal management. Compos. Struct. 2023, 323, 117479. [Google Scholar] [CrossRef]
- Kotov, E.V.; Nemova, D.; Sergeev, V.; Dontsova, A.; Koriakovtseva, T.; Andreeva, D. Thermal Performance Assessment of Aerogel Application in Additive Construction of Energy-Efficient Buildings. Sustainability 2024, 16, 2398. [Google Scholar] [CrossRef]
- Baumann, T.F.; Kucheyev, S.O.; Gash, A.E.; Satcher, J.H. Facile synthesis of a cryHstalline, high-surface-area SnO2 aerogel. Adv. Mater. 2005, 17, 1546–1548. [Google Scholar] [CrossRef]
- Tokudome, Y.; Nakanishi, K.; Kanamori, K.; Fujita, K.; Akamatsu, H.; Hanada, T. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. J. Colloid. Interf. Sci. 2009, 338, 506–513. [Google Scholar] [CrossRef]
- Bao, B.Y.; Wang, I.; Haines, T.; Ren, L.; Tian, H.; Hu, J. Methane decomposition for the production of COx-free hydrogen and carbon nanotubes over transition metal aerogel catalysts. Abstr. Pap. Am. Chem. Soc. 2018, 256. [Google Scholar]
- Gao, B.; Yuan, G.; Ren, L. Polydiacetylene-functionalized alumina aerogels as visually observable sensing materials for detecting VOCs concentration. J. Mater. Sci. 2018, 53, 6698–6706. [Google Scholar] [CrossRef]
- Hurwitz, F.I.; Gallagher, M.; Olin, T.C.; Shave, M.K.; Ittes, M.A.; Olafson, K.N.; Fields, M.G.; Rogers, R.B.; Guo, H.Q. Optimization of Alumina and Aluminosilicate Aerogel Structure for High-Temperature Performance. Int. J. Appl. Glass Sci. 2014, 5, 276–286. [Google Scholar] [CrossRef]
- Hayase, G.; Nonomura, K.; Hasegawa, G.; Kanamori, K.; Nakanishi, K. Ultralow-Density, Transparent, Superamphiphobic Boehmite Nanofiber Aerogels and Their Alumina Derivatives. Chem. Mater. 2015, 27, 3–5. [Google Scholar] [CrossRef]
- Zhang, Z.; Scherer, G.W. Supercritical drying of cementitious materials. Cem. Concr. Res. 2017, 99, 137–154. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, Y.; Peng, F.; Feng, J.; Li, L.; Feng, J. Fiber-reinforced alumina-carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800 °C. Chem. Eng. J. 2023, 461, 141721. [Google Scholar] [CrossRef]
- Wang, H.; Quan, X.; Yin, L.; Jin, X.; Pan, Y.; Wu, C.; Huang, H.; Hong, C.; Zhang, X. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection. Compos. Part. A Appl. Sci. Manuf. 2022, 159, 107022. [Google Scholar] [CrossRef]
- Yang, X.; Wei, J.; Shi, D.; Sun, Y.; Lv, S.; Feng, J.; Jiang, Y. Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Mater. Sci. Eng. A 2014, 609, 125–130. [Google Scholar] [CrossRef]
- Kim, C.-Y.; Lee, J.-K.; Kim, B.-I. Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method. Colloid. Surf. A 2008, 313, 179–182. [Google Scholar] [CrossRef]
- Zhang, R.; Hou, X.; Ye, C.; Wang, B. Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite-zirconia composites produced using sol-gel impregnation. J. Alloys Compd. 2017, 699, 511–516. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, F.; Yao, H.; Dong, J.; Long, D. High-temperature Insulation Property of Opacifier-doped Al2O3-SiO2 Aerogel/Mullite Fiber Composites. J. Inorg. Mater. 2018, 33, 969–975. [Google Scholar]
- Du, D.; Sun, L.; Sun, C.; Liu, Z.; Guo, X.; Zhang, Y. Synthesis of alumina aerogel enriched carboxymethyl cellulose with polymodal pore size distribution by ambient pressure drying. Cellulose 2023, 30, 11369–11385. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.; Huang, S.; Zhang, H.; Liang, Z.; Guan, X.; Wu, S. Convenient and rapid preparation of aerogels dried at ambient pressure. J. Non-Cryst. Solids 2023, 622, 122665. [Google Scholar] [CrossRef]
- Shewale, P.M.; Rao, A.V.; Rao, A.P. Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl. Surf. Sci. 2008, 254, 6902–6907. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, W.-Z.; Wang, X.; Li, Y.-M.; Tao, W.-Q. Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat. Mass. Tran. 2017, 115, 21–31. [Google Scholar] [CrossRef]
- Karlina, A.I.; Karlina, Y.I.; Gladkikh, V.A. Analysis of Experience in the Use of Micro- and Nanoadditives from Silicon Production Waste in Concrete Technologies. Minerals 2023, 13, 1525. [Google Scholar] [CrossRef]
- Liu, F.; Xie, M.; Yu, G.; Ke, C.; Zhao, H. Study on Calcination Catalysis and the Desilication Mechanism for Coal Gangue. ACS Sustain. Chem. Eng. 2021, 9, 10318–10325. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Liu, C.; Shen, L. Comprehensive Extraction of Silica and Alumina from High-Alumina Coal Gangue (HACG): Hematite Involved Roasting—Alkaline Leaching—Bayer Digestion Process. J. Sustain. Metall. 2021, 7, 1686–1698. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, H.; Zhang, H.; Zhang, P.; Bei, R. Aluminum extraction from activated coal gangue with carbide slag. J. Anal. Appl. Pyrolysis 2022, 163, 105504. [Google Scholar] [CrossRef]
- Xiao, J.; Li, F.; Zhong, Q.; Bao, H.; Wang, B.; Huang, J.; Zhang, Y. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC. Hydrometallurgy 2015, 155, 118–124. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, Y.; Feng, J.; Cai, H.; Feng, J.; Li, L. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 °C. Chem. Eng. J. 2021, 411, 128402. [Google Scholar] [CrossRef]
- Mizushima, Y.; Hori, M. Preparation of heat-resistant alumina aerogels. J. Mater. Res. 1993, 8, 2993–2999. [Google Scholar] [CrossRef]
- Zou, W.; Wang, X.; Wu, Y.; Zu, G.; Zou, L.; Zhang, R.; Yao, X.; Shen, J. Highly thermally stable alumina-based aerogels modified by partially hydrolyzed aluminum tri-sec-butoxide. J. Sol-Gel Sci. Technol. 2017, 84, 507–514. [Google Scholar] [CrossRef]
- Wu, X.; Shao, G.; Cui, S.; Wang, L.; Shen, X. Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram. Int. 2016, 42, 874–882. [Google Scholar] [CrossRef]
- Peng, F.; Jiang, Y.; Feng, J.; Feng, J.; Li, L. Foreign element doping and thermal stability of alumina aerogels. J. Am. Ceram. Soc. 2022, 105, 2288–2299. [Google Scholar] [CrossRef]
- Wu, Z.-G.; Zhao, Y.-X.; Liu, D.-S. The synthesis and characterization of mesoporous silica–zirconia aerogels. Microporous Mesoporous Mater. 2004, 68, 127–132. [Google Scholar] [CrossRef]
- Li, D.-Y.; Lin, Y.-S.; Li, Y.-C.; Shieh, D.-L.; Lin, J.-L. Synthesis of mesoporous pseudoboehmite and alumina templated with 1-hexadecyl-2,3-dimethyl-imidazolium chloride. Microporous Mesoporous Mater. 2008, 108, 276–282. [Google Scholar] [CrossRef]
- Ren, T.-Z.; Yuan, Z.-Y.; Su, B.-L. Microwave-Assisted Preparation of Hierarchical Mesoporous−Macroporous Boehmite AlOOH and γ-Al2O3. Langmuir 2004, 20, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Aravind, P.R.; Mukundan, P.; Krishna Pillai, P.; Warrier, K.G.K. Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous Mesoporous Mater. 2006, 96, 14–20. [Google Scholar] [CrossRef]
- Xing, B.-L.; Guo, H.; Chen, L.-J.; Chen, Z.-F.; Zhang, C.-X.; Huang, G.-X.; Xie, W.; Yu, J.-L. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Process. Technol. 2015, 138, 734–742. [Google Scholar] [CrossRef]
- Wu, X.; Shao, G.; Shen, X.; Cui, S.; Wang, L. Novel Al2O3–SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol-gel method. RSC Adv. 2016, 6, 5611–5620. [Google Scholar] [CrossRef]
- Aripin, H.; Mitsudo, S.; Prima, E.S.; Sudiana, I.N.; Kikuchi, H.; Sano, S.; Sabchevski, S. Crystalline mullite formation from mixtures of alumina and a novel material—Silica xerogel converted from sago waste ash. Ceram. Int. 2015, 41, 6488–6497. [Google Scholar] [CrossRef]
- Li, J.-Y.; Tian, B.-H.; Li, X.-X.; Wang, Z.; Cui, L.-P.; Liang, D.-D.; Wang, S.-L.; Liu, Y.-H.; Ou, H.-A.; Liang, H.-X. Energy effective utilization of circulating fluidized bed fly ash to prepare silicon-aluminum composite aerogel and gypsum. Waste Manag. 2023, 172, 162–170. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, X.; Yan, L.; Huyan, X.; Zhang, T.; Liu, S.; Guo, A.; Liu, J.; Hou, F. Super-insulated, flexible, and high resilient mullite fiber reinforced silica aerogel composites by interfacial modification with nanoscale mullite whisker. Compos. Part. B Eng. 2022, 230, 109549. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Ding, Y.-D.; Wang, F.; Deng, Z.-P. Thermal insulation material based on SiO2 aerogel. Constr. Build. Mater. 2016, 122, 548–555. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Gao, M.; Liu, B.; Zhao, P.; Yi, X.; Shen, X.; Xu, Y. Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator. J. Sol-Gel Sci. Technol. 2019, 91, 514–522. [Google Scholar] [CrossRef]
- Hernandez, C.; Pierre, A.C. Evolution of the Texture and Structure of SiO2–Al2O3 Xerogels and Aerogels as a Function of the Si to Al Molar Ratio. J. Sol-Gel Sci. Technol. 2001, 20, 227–243. [Google Scholar] [CrossRef]
- Zhang, E.; Zhang, W.; Lv, T.; Li, J.; Dai, J.; Zhang, F.; Zhao, Y.; Yang, J.; Li, W.; Zhang, H. Insulating and Robust Ceramic Nanorod Aerogels with High-Temperature Resistance over 1400 °C. ACS Appl. Mater. Interfaces 2021, 13, 20548–20558. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | TiO2 | K2O | Na2O | F * |
---|---|---|---|---|---|---|---|---|
Precent (%) | 51.72 | 35.66 | 4.45 | 2.59 | 2.11 | 1.25 | 0.13 | 12.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, K.; Liu, H.; Zhang, Y.; Wang, Y. Fiber-Reinforced Coal Gangue-Based Alumina Aerogel Composites with Highly Thermal Stability by Ambient Pressure Drying. Sustainability 2024, 16, 4032. https://doi.org/10.3390/su16104032
Bo K, Liu H, Zhang Y, Wang Y. Fiber-Reinforced Coal Gangue-Based Alumina Aerogel Composites with Highly Thermal Stability by Ambient Pressure Drying. Sustainability. 2024; 16(10):4032. https://doi.org/10.3390/su16104032
Chicago/Turabian StyleBo, Kai, Hongwei Liu, Yanlan Zhang, and Yongzhen Wang. 2024. "Fiber-Reinforced Coal Gangue-Based Alumina Aerogel Composites with Highly Thermal Stability by Ambient Pressure Drying" Sustainability 16, no. 10: 4032. https://doi.org/10.3390/su16104032
APA StyleBo, K., Liu, H., Zhang, Y., & Wang, Y. (2024). Fiber-Reinforced Coal Gangue-Based Alumina Aerogel Composites with Highly Thermal Stability by Ambient Pressure Drying. Sustainability, 16(10), 4032. https://doi.org/10.3390/su16104032