Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production
Abstract
:1. Introduction
2. Microalgae Biodiesel Production
3. Effect of Nanoparticles on Microalgae Biodiesel Production
3.1. Nanoparticles in Microalgae Cultivation and Lipid Production
3.2. Nanoparticles in Harvesting of Microalgae
3.3. Nanoparticles in Oil Extraction
3.4. Nanoparticles in Transesterification Process
4. Enzyme Immobilization and Nanotechnology-Driven Microalgae Biodiesel Production
5. Effect of Nanoparticle-Immobilized Lipase Enzyme on Biodiesel Production
5.1. Lipase-Fe3O4-SiO2 Hybrid Nanoparticle
5.2. Lipase–Magnetic (Fe3O4) Nanoparticle
5.3. Lipase–Magnetic Biosilica Nanoparticle
5.4. Lipase–Superparamagnetic Graphene Oxide (GO) Nanoparticle
5.5. Lipase–Graphene Oxide–Nickel Ferrite Nanoparticles
6. Reuse and Recovery of Lipase Nanoparticles
7. Challenges in Large-Scale Commercialization and the Proposed Strategies to Overcome
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghabeigi, F.; Nikkhah, H.; Zilouei, H.; Bazarganipour, M. Immobilization of lipase on the graphene oxides magnetized with NiFe2O4 nanoparticles for biodiesel production from microalgae lipids. Process Biochem. 2023, 126, 171–185. [Google Scholar] [CrossRef]
- Mintz-Habib, N. Biofuels, Food Security, and Developing Economies; Routledge: London, UK, 2016. [Google Scholar]
- Liu, L.; Wu, Y.; Wang, Y.; Wu, J.; Fu, S. Exploration of environmentally friendly marine power technology-ammonia/diesel stratified injection. J. Clean. Prod. 2022, 380, 135014. [Google Scholar] [CrossRef]
- Collotta, M.; Champagne, P.; Mabee, W.; Tomasoni, G. Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res. 2018, 29, 12–21. [Google Scholar] [CrossRef]
- Gumba, R.E.; Saallah, S.; Misson, M.; Ongkudon, C.M.; Anton, A. Green biodiesel production: A review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res. J. 2016, 3, 431–447. [Google Scholar] [CrossRef]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C. Second generation biofuels: High-efficiency microalgae forbiodiesel production. Bioenergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Yadav, G.; Dubey, B.K.; Sen, R. A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J. Clean. Prod. 2020, 258, 120703. [Google Scholar] [CrossRef]
- Liu, L.; Tang, Y.; Liu, D. Investigation of future low-carbon and zero-carbon fuels for marine engines from the view of thermal efficiency. Energy Rep. 2022, 8, 6150–6160. [Google Scholar] [CrossRef]
- Meher, L.C.; Sagar, D.V.; Naik, S.N. Technical aspects of biodiesel production by transesterification—A review. Renew. Sust. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Baadhe, R.R.; Potumarthi, R.; Gupta, V.K. Lipase-Catalyzed Biodiesel Production: Technical Challenges. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 119–129. [Google Scholar] [CrossRef]
- Cavalcante, F.T.; Neto, F.S.; de Aguiar Falcão, I.R.; da Silva Souza, J.E.; de Moura Junior, L.S.; da Silva Sousa, P.; Rocha, T.G.; de Sousa, I.G.; de Lima Gomes, P.H.; de Souza, M.C.; et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021, 288, 119577. [Google Scholar] [CrossRef]
- Aybastıer, O.; Demir, C. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene–divinylbenzene copolymer using response surface methodology. J. Mol. Catal. B Enzym. 2010, 63, 170–178. [Google Scholar] [CrossRef]
- Borrelli, G.; Trono, D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 2015, 16, 20774–20840. [Google Scholar] [CrossRef] [PubMed]
- Cipolatti, E.P.; Manoel, E.A.; Fernandez-Lafuente, R.; Freire, D.M.G. Support engineering: Relation between development of new supports for immobilization of lipases and their applications. Biotechnol. Res. Innov. 2017, 1, 26–34. [Google Scholar] [CrossRef]
- Da Fonseca, A.M.; Colares, R.P.; de Oliveira, M.M.; de Souza, M.C.; de Castro Monteiro, R.R.; dos Santos Araújo, R.; Amorim, A.V.; dos Santos, J.C.; Alcócer, J.C.; de Oliveira Pinto, O.R. Enzymatic biocatalyst using enzymes from Pineapple (Ananas comosus) peel immobilized in hydrogel beads. Rev. Eletrônica Gest. Edu Tecnol. Ambient. 2019, 23, 32. [Google Scholar] [CrossRef]
- Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 11 November 2023).
- Voegele, E. IEA Expects Global Biofuels Production to Rebound in 2021. Available online: http://biodieselmagazine.com/articles/2517259/iea-expects-global-biofuelsproduction-to-rebound-in-2021 (accessed on 7 October 2023).
- Yang, X.; Liu, K.; Han, X.; Xu, J.; Bian, M.; Zheng, D.; Xie, H.; Zhang, Y.; Yang, X. Transformation of waste battery cathode material LiMn2O4 into efficient ultra-low temperature NH3-SCR catalyst: Proton exchange synergistic vanadium modification. J. Hazard. Mater. 2023, 459, 132209. [Google Scholar] [CrossRef] [PubMed]
- Chandel, H.; Kumar, P.; Chandel, A.; Verma, M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefin. 2022, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bin Rashid, A. Utilization of nanotechnology and nanomaterials in biodiesel production and property enhancement. J. Nanomater. 2023, 2023, 1–4. [Google Scholar] [CrossRef]
- Nwokoagbara, E.; Olaleye, A.K.; Wang, M. Biodiesel from microalgae: The use of multi-criteria decision analysis for strain selection. Fuel 2015, 159, 241–249. [Google Scholar] [CrossRef]
- Velasquez-Orta, S.; Lee, J.; Harvey, A. Alkaline in situ transesterification of Chlorella vulgaris. Fuel 2012, 94, 544–550. [Google Scholar] [CrossRef]
- Maceiras, R.; Rodrı, M.; Cancela, A.; Urrejola, S.; Sanchez, A. Macroalgae: Raw material for biodiesel production. Appl. Energy 2011, 88, 3318–3323. [Google Scholar] [CrossRef]
- Tran, D.T.; Yeh, K.L.; Chen, C.L.; Chang, J.S. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour. Technol. 2012, 108, 119–127. [Google Scholar] [CrossRef]
- Johnson, M.B.; Wen, Z. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 2010, 85, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Sultana, R.; Tahir, S.; Watson, I.A.; Saleem, M. Prospects of microalgal biodiesel production in Pakistan—A review. Renew. Sust. Energy Rev. 2017, 80, 1588–1596. [Google Scholar] [CrossRef]
- Kokkinos, K.; Karayannis, V.; Moustakas, K. Optimizing microalgal biomass feedstock selection for nanocatalytic conversion into biofuel clean energy, using fuzzy multi-criteria decision-making processes. Front. Energy Res. 2021, 8, 622210. [Google Scholar] [CrossRef]
- Barua, P.; Chowdhury, T.; Chowdhury, H.; Islam, R.; Hossain, N. Potential of power generation from chicken waste-based biodiesel, economic and environmental analysis: Bangladesh’s perspective. SN Appl. Sci. 2020, 2, 330. [Google Scholar] [CrossRef]
- Hossain, N.; Zaini, J.; Mahlia, T.M.I. Experimental investigation of energy properties for Stigonematales sp. microalgae as potential biofuel feedstock. Int. J. Sustain. Eng. 2019, 12, 123–130. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Narala, R.; Garg, S.; Sharma, K.K.; Thomas-Hall, S.R.; Deme, M.; Li, Y.; Peer, M.S. Comparison of microalgae cultivation in Photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 2016, 4, 29. [Google Scholar] [CrossRef]
- Yu, V.; Xu, V.; Xiao, R. Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Prog. Lipid Res. 2016, 64, 57–68. [Google Scholar] [CrossRef]
- Baldev, E.; Davoodbasha, A.; Arivalagan, P.; Nooruddin, T. Wastewater as an economical and ecofriendly green medium for microalgal biofuel production. Fuel 2021, 294, 120484. [Google Scholar] [CrossRef]
- Das, P.; Chandramohan, V.P.; Thangavel, M.; Arivalagan, P. A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. Sci. Total Environ. 2020, 766, 144213. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.; Banerjee, S.; Das, D. Aspergillus sp. assisted bioflocculation of Chlorella MJ 11/11 for the production of biofuel from the algal-fungal co-pellet. Sep. Purif. Technol. 2021, 272, 118320. [Google Scholar] [CrossRef]
- Derakhshandeh, M.; Atici, T.; Umran, T.U. Evaluation of wild type microalgae species biomass as carbon dioxide sink and renewable energy source. Waste Biomass Valori 2021, 12, 105–121. [Google Scholar] [CrossRef]
- Grima, E.; Belarbi, E.; Fernandez, F.A.; Medina, A.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef] [PubMed]
- Chanquia, S.N.; Vernet, G.; Kara, S. Photobioreactors for cultivation and synthesis: Specifications, challenges, and perspectives. Eng. Life Sci. 2022, 22, 712–724. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2008, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Khalekuzzaman, M.; Alamgir, M.; Islam, M.B.; Hasan, M. A simplistic approach of algal biofuels production from wastewater using a Hybrid Anaerobic Baffled Reactor and Photobioreactor (HABR-PBR) System. PLoS ONE 2019, 14, e0225458. [Google Scholar] [CrossRef] [PubMed]
- Benemann, J.R.; Oswald, W.J. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. STIN 1994, 95, 19554. [Google Scholar]
- Mathimani, T.; Mallick, N. A comprehensive review on harvesting of microalgae for biodiesel–Key challenges and future directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar] [CrossRef]
- Ljubic, A.; Safafar, H.; Jacobsen, C. Recovery of microalgal biomass and metabolites from homogenized, swirl flash-dried microalgae. J. Appl. Phycol. 2019, 31, 2355–2363. [Google Scholar] [CrossRef]
- Kumar, D.; Korstad, J.; Singh, B. Life cycle assessment of algal biofuels. In Algae and Environmental Sustainability; Springer: New Delhi, India, 2015; pp. 165–181. [Google Scholar] [CrossRef]
- Deborah, L.; Vidia, P.; Michael, J.; Michael, C.; Tal, M.; Charles, H.; Jefferson, W. Quantitative Uncertainty Analysis of Life Cycle Assessment for Algal Biofuel Production. Environ. Sci. Technol. 2013, 47, 687–694. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Yasin, N.M.; Derek, C.J.C.; Lim, J.K. Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock. Environ. Technol. 2014, 35, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Şirin, S.; Trobajo, R.; Ibanez, C.; Salvadó, J. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J. Appl. Phycol. 2012, 24, 1067–1080. [Google Scholar] [CrossRef]
- Fuad, N.; Omar, R.; Kamarudin, S.; Harun, R.; Idris, A.; Azlina, W.W. Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis. J. Environ. Chem. Eng. 2018, 6, 4318–4328. [Google Scholar] [CrossRef]
- Newkirk, G.M.; de Allende, P.; Jinkerson, R.E.; Giraldo, J.P. Nanotechnology approaches for chloroplast biotechnology advancements. Front. Plant Sci. 2021, 12, 691295. [Google Scholar] [CrossRef] [PubMed]
- Shurair, M.; Almomani, F.; Bhosale, R.; Khraisheh, M.; Qiblawey, H. Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based–flocculants: Effect on harvesting efficiency, water recovery and algal cell morphology. Bioresour. Technol. 2019, 281, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Milledge, J.J.; Abubakar, A.; Swamy, R.; Bailey, D.; Harvey, P. Effects of centrifugal stress on cell disruption and glycerol leakage from Dunaliella salina. Microalgae Biotechnol. 2015, 1, 20–27. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Kazamia, E.; Dennis, J.S.; Howe, C.J.; Smith, S.A.; Scott, A.G. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: A comparison of raceways and air-lift tubular bioreactors. Energy Fuels 2010, 24, 4062–4077. [Google Scholar] [CrossRef]
- Pattarkine, M.V.; Pattarkine, V.M. Nanotechnology for algal biofuels. In The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology; Gordon, R., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 25. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Hu, H.; Zhang, X.; Yu, Y.; Chen, Y. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl. Energy 2011, 88, 3295–3299. [Google Scholar] [CrossRef]
- Chen, L.; Liu, T.; Zhang, W.; Chen, X.; Wang, J. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol. 2012, 111, 208–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: Process design and technological assessment. Bioresour. Technol. 2003, 89, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mota, G.F.; de Sousa, I.G.; de Oliveira, A.L.; Cavalcante, A.L.; da Silva Moreira, K.; Cavalcante, F.T.; da Silva Souza, J.E.; de Aguiar Falcão, Í.R.; Rocha, T.G.; Valério, R.B.; et al. Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Res. 2022, 62, 102616. [Google Scholar] [CrossRef]
- Chintagunta, A.D.; Ray, S.; Banerjee, R. An integrated bioprocess for bioethanol and biomanureproduction from pineapple leaf waste. J. Clean. Prod. 2017, 165, 1508–1516. [Google Scholar] [CrossRef]
- Kim, J.; Jia, H.; Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 2006, 24, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-D.; Hiltunen, E.; Li, Z. Using magnetic materials to harvest microalgal biomass: Evaluation of harvesting and detachment efficiency. Environ. Technol. 2019, 40, 1006–1012. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Lao, Y.; Wan, P.; Mao, X.; Chen, F. Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem. Eng. J. 2021, 408, 127252. [Google Scholar] [CrossRef]
- Almomani, F. Algal cells harvesting using cost-effective magnetic nanoparticles. Sci. Total Environ. 2020, 720, 137621. [Google Scholar] [CrossRef]
- Bharte, S.; Desai, K. Harvesting Chlorella species using magnetic iron oxide nanoparticles. Phycol. Res. 2019, 67, 128–133. [Google Scholar] [CrossRef]
- Hossain, N.; Mahlia, T.M.I.; Saidur, R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol. Biofuels 2019, 12, 125. [Google Scholar] [CrossRef]
- Lee, Y.C.; Lee, K.; Oh, Y.K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review. Bioresour. Technol. 2015, 184, 63–72. [Google Scholar] [CrossRef]
- Torkamani, S.; Wani, S.N.; Tang, Y.J.; Sureshkumar, R. Plasmon-enhanced microalgal growth in mini photobioreactors. Appl. Phy Lett. 2010, 97, 043703. [Google Scholar] [CrossRef]
- Kishi, M.; Tanaka, K.; Akizuki, S.; Toda, T. Development of a gas-permeable bag photobioreactor for energy-efficient oxygen removal from algal culture. Algal Res. 2021, 60, 102543. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Arulraj, A.; Khalid, M.; Reddy, M.V.; Jose, R. Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide. Renew. Sustain. Energy Rev. 2021, 141, 110798. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, Z.; Zhang, M.; Qin, Z.; Cao, S.; Zhong, F.; Li, S.; Duan, H.M.; Zhang, J. Improved gas-sensitive properties by a heterojunction of hollow porous carbon microtubes derived from sycamore fibers. ACS Sustain. Chem. Eng. 2021, 9, 14345–14352. [Google Scholar] [CrossRef]
- Asikainen, M.; Munter, T.; Linnekoski, J. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts–A model compound study. Bioresour. Technol. 2015, 191, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.K.; Moon, J.Y.; Bui VK, H.; Oh, Y.K.; Lee, Y.C. Recent advanced applications of nanomaterials in microalgae biorefinery. Algal Res. 2019, 41, 101522. [Google Scholar] [CrossRef]
- He, M.; Yan, Y.; Pei, F.; Wu, M.; Gebreluel, T.; Zou, S.; Wang, C. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci. Rep. 2017, 7, 15526. [Google Scholar] [CrossRef]
- San, N.O.; Kurşungöz, C.; Tümtaş, Y.; Yaşa, Ö.; Ortac, B.; Tekinay, T. Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 2014, 17, 29–35. [Google Scholar] [CrossRef]
- Liu, P.; Wang, T.; Yang, Z.; Hong, Y.; Xie, X.; Hou, Y. Effects of Fe3O4 nanoparticle fabrication and surface modification on Chlorella sp. harvesting efficiency. Sci. Total Environ. 2020, 704, 135286. [Google Scholar] [CrossRef]
- Savvidou, M.G.; Dardavila, M.M.; Georgiopoulou, I.; Louli, V.; Stamatis, H.; Kekos, D.; Voutsas, E. Optimization of microalga Chlorella vulgaris magnetic harvesting. Nanomaterials 2021, 11, 1614. [Google Scholar] [CrossRef]
- Vashist, V.; Chauhan, D.; Bhattacharya, A.; Rai, M.P. Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from Chlorella pyrenoidosa. Nat. Prod. Res. 2020, 34, 2852–2856. [Google Scholar] [CrossRef] [PubMed]
- Khanra, A.; Vasistha, S.; Prakash Rai, M. ZrO2 nanoparticles mediated flocculation and increased lipid extraction in chlorococcum sp. for biodiesel production: A cost effective approach. Mater. Today Proc. 2020, 28, 1847–1852. [Google Scholar] [CrossRef]
- Fraga-García, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S. Bare iron oxide nanoparticles for magnetic harvesting of microalgae: From interaction behavior to process realization. Nanomaterials 2018, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Markeb, A.A.; Llimós-Turet, J.; Ferrer, I.; Blánquez, P.; Alonso, A.; Sánchez, A.; Moral-Vico, J.; Font, X. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 2019, 159, 490–500. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, F.; Li, H.; Cui, L.; Qian, G.; Zhang, D.; Xu, Y. Application and mechanisms of microalgae harvesting by magnetic nanoparticles (MNPs). Sep. Purif. Technol. 2021, 265, 118519. [Google Scholar] [CrossRef]
- Egesa, D.; Chuck, C.J.; Plucinski, P. Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustain. Chem. Eng. 2018, 6, 991–999. [Google Scholar] [CrossRef]
- Duman, F.; Sahin, U.; Atabani, A.E. Harvesting of blooming microalgae using green synthetized magnetic maghemite (γ-Fe2O3) nanoparticles for biofuel production. Fuel 2019, 256, 115935. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, J.; Wang, P.; Wang, C.; Miao, L.; Ao, Y.; Xu, Y.; Wang, X.; Lv, B.; You, G.; et al. Interpretation of the disparity in harvesting efficiency of different types of Microcystis aeruginosa using polyethylenimine (PEI)-coated magnetic nanoparticles. Algal Res. 2018, 29, 257–265. [Google Scholar] [CrossRef]
- Ge, S.; Agbakpe, M.; Zhang, W.; Kuang, L. Heteroaggregation between PEI-coated magnetic nanoparticles and algae: Effect of particle size on algal harvesting efficiency. ACS Appl. Mater. Interfaces 2015, 7, 6102–6108. [Google Scholar] [CrossRef]
- Hu, Y.R.; Wang, F.; Wang, S.K.; Liu, C.Z.; Guo, C. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour. Technol. 2013, 138, 387–390. [Google Scholar] [CrossRef]
- Wang, S.K.; Wang, F.; Hu, Y.R.; Stiles, A.R.; Guo, C.; Liu, C.Z. Magnetic flocculant for high-efficiency harvesting of microalgal cells. ACS Appl. Mater. Interfaces 2014, 6, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew. Sustain. Energy Rev. 2013, 26, 216–223. [Google Scholar] [CrossRef]
- Seo, J.Y.; Praveenkumar, R.; Kim, B.; Seo, J.-C.; Park, J.-Y.; Na, J.-G.; Jeon, S.G.; Park, S.B.; Lee, K.; Oh, Y.-K. Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green. Chem. 2016, 18, 3981–3989. [Google Scholar] [CrossRef]
- Vasistha, S.; Khanra, A.; Clifford, M.; Rai, M.P. Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renew. Sustain. Energy Rev. 2021, 137, 110498. [Google Scholar] [CrossRef]
- Ingle, A.P.; Chandel, A.K.; Philippini, R.; Martiniano, S.E.; da Silva, S.S. Advances in nanocatalysts mediated biodiesel production: A critical appraisal. Symmetry 2020, 12, 256. [Google Scholar] [CrossRef]
- Teo, S.H.; Islam, A.; Taufiq-Yap, Y.H. Algae derived biodiesel using nanocatalytic transesterification process. Chem. Eng. Res. Des. 2016, 111, 362–370. [Google Scholar] [CrossRef]
- Verma, M.L.; Naebe, M.; Barrow, C.J.; Puri, M. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: Structural and biocatalytic characterisation. PLoS ONE 2013, 8, e73642. [Google Scholar] [CrossRef]
- Shamsudin, M.I.; Tan, L.S.; Tsuji, T. Enzyme immobilization technology in biofuel production: A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012056. [Google Scholar] [CrossRef]
- Santos, S.; Puna, J.; Gomes, J. A review on bio-based catalysts (immobilized enzymes) used for biodiesel production. Energies 2020, 13, 3013. [Google Scholar] [CrossRef]
- Verma, M.L.; Puri, M.; Barrow, C.J. Recent trends in nanomaterials immobilized enzymes for biofuel production. Crit. Rev. Biotechnol. 2016, 36, 108–119. [Google Scholar] [CrossRef]
- Hwang, E.T.; Gu, M.B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13, 49–61. [Google Scholar] [CrossRef]
- Verma, M.L.; Azmi, W.; Kanwar, S.S. Microbial lipases: At the interface of aqueous and non-aqueous media. Acta Microbiol. Immunol. Hung. 2008, 55, 265–293. [Google Scholar] [CrossRef] [PubMed]
- Chandel, H.; Wang, B.; Verma, M.L. Microbial lipases and their applications in the food industry. In Value-Addition in Food Products and Processing Through Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2022; ISSN 978-0-323-89929-1. [Google Scholar] [CrossRef]
- Bartha-Vari, J.-H.; Moisa, M.E.; Bencze, L.C.; Irimie, F.-D.; Paizs, C.; Toșa, M.I. Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens. Molecules 2020, 25, 651. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.L. Biotechnological applications of lipases in flavour and fragrance ester production. In Microbial Technology for the Welfare of Society. Microorganisms for Sustainability; Arora, P., Ed.; Springer: Singapore, 2019; ISBN 978-981-13-8843-9. [Google Scholar] [CrossRef]
- Huang, J.; Xia, J.; Jiang, W.; Li, Y.; Li, J. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 2015, 180, 47–53. [Google Scholar] [CrossRef] [PubMed]
- López, B.C.; Cerdán, L.E.; Medina, A.R.; López, E.N.; Valverde, L.M.; Peña, E.H.; Moreno, P.A.G.; Grima, E.M. Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification. J. Biosci. Bioeng. 2015, 119, 706–711. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Kim, D.S.; Yoo, H.Y.; Park, C.; Kim, S.W. Biodiesel production by lipases co-immobilized on the functionalized activated carbon. Bioresour. Technol. Rep. 2019, 7, 100248. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, B.; Rawat, I.; Permaul, K.; Bux, F. Biocatalytic conversion of lipids from microalgae Scenedesmus obliquus to biodiesel using Pseudomonas fluorescens lipase. Fuel 2015, 147, 117–124. [Google Scholar] [CrossRef]
- He, Y.; Wu, T.; Wang, X.; Chen, B.; Chen, F. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. Bioresour. Technol. 2018, 268, 583–591. [Google Scholar] [CrossRef]
- Singh, N.; Dhanya, B.S.; Verma, M.L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy sector. Mater. Sci. Energy Technol. 2020, 3, 808–824. [Google Scholar] [CrossRef]
- Verma, M.L.; Rao, N.M.; Barrow, C.J.; Puri, M. Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts 2019, 9, 420. [Google Scholar] [CrossRef]
- Ngo, T.P.; Li, A.; Tiew, K.W.; Li, Z. Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour. Technol. 2013, 145, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Liu, Y.; Yamaguchi, T.; Watanabe, R.; Kawabe, M.; Kawakami, K. Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour. Technol. 2010, 101, 7344–7349. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Huang, Z.; Liu, T.; Li, H. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment. Bioresour. Technol. 2023, 369, 128390. [Google Scholar] [CrossRef] [PubMed]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.H. State of the art and prospective of Lipase- catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Netto, C.G.; Toma, H.E.; Andrade, L.H. Superparamagnetic nanoparticles as versatile carriersand supporting materials for enzymes. J. Mol. Catal. B Enzym. 2013, 85, 71–92. [Google Scholar] [CrossRef]
- Xie, W.; Zang, X. Covalent immobilization of Lipase onto aminopropyl-functionalizedhydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles: A magnetic biocatalyst for interesterification of soybean oil. Food Chem. 2017, 227, 397–403. [Google Scholar] [CrossRef]
- Knothe, G. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 2006, 83, 823–833. [Google Scholar] [CrossRef]
- Shaw, S.Y.; Chen, Y.J.; Ou, J.J.; Ho, L. Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzym. Microb. Technol. 2006, 39, 1089–1095. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013, 8, 290–312. [Google Scholar] [CrossRef]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M.; Yousefi, P.; Mohammadi, J.; Brask, J. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: Effect of water, t-butanol and blue silica gel contents. Renew. Energy 2016, 91, 196–206. [Google Scholar] [CrossRef]
- Jun, S.H.; Lee, J.; Kim, B.C.; Lee, J.E.; Joo, J.; Park, H.; Lee, J.H.; Lee, S.M.; Lee, D.; Kim, S. Highly efficient enzyme immobilization and stabilization within meso-structured onion-like silica for biodiesel production. Chem. Mater. 2012, 24, 924–929. [Google Scholar] [CrossRef]
- Arumugam, A.; Thulasidharan, D.; Jegadeesan, G.B. Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel. Renew. Energy 2018, 116, 755–761. [Google Scholar] [CrossRef]
- Bilal, M.; Adeel, M.; Rasheed, T.; Iqbal, H.M. Multifunctional metal–organic frameworks-based biocatalytic platforms: Recent developments and future prospects. J. Mater. Res. Technol. 2019, 8, 2359–2371. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765. [Google Scholar] [CrossRef]
- Goyanes, S.; Rubiolo, G.; Salazar, A.; Jimeno, A.; Corcuera, M.; Mondragon, I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam. Relat. Mater. 2007, 16, 412–417. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, X.; Yang, J.; Han, H.; Li, Q.; Tang, J. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. J. Colloid. Interface Sci. 2018, 514, 102–107. [Google Scholar] [CrossRef]
- Verma, M.L.; Barrow, C.J.; Puri, M. Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production. Appl. Microbiol. Biotechnol. 2013, 97, 23–39. [Google Scholar] [CrossRef]
- Acıkgoz-Erkaya, I.; Bayramoglu, G.; Akbulut, A.; Arica, M.Y. Immobilization of Candida rugosa lipase on magnetic biosilica particles: Hydrolysis and transesterification studies. Biotechnol. Bioproc E 2021, 26, 827–840. [Google Scholar] [CrossRef]
- Shalini, P.; Deepanraj, B.; Vijayalakshmi, S.; Ranjitha, J. Synthesis and characterization of Lipase immobilized magnetic nanoparticles and its role as a catalyst in biodiesel production. Mater. Today Proc. 2021, 80, 2725–2730. [Google Scholar] [CrossRef]
- Nematian, T.; Shakeri, A.; Salehi, Z. Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil. Biotechnol. Biofuels 2020, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Nematian, T.; Salehi, Z.; Shakeri, A. Conversion of bio-oil extracted from Chlorella vulgaris micro algae to biodiesel via modified superparamagnetic nano-biocatalyst. Renew. Energy 2020, 146, 1796–1804. Available online: https://ideas.repec.org/a/eee/renene/v146y2020icp1796-1804.html (accessed on 11 November 2023). [CrossRef]
- Pico, E.A.; Lopez, C.; Cruz-Izquierdo, Á.; Munarriz, M.; Iruretagoyena, F.J.; Serra, J.L.; Llama, M.J. Easy reuse of magnetic crosslinked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids. J. Biosci. Bioeng. 2018, 126, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Duraiarasan, S.; Razack, S.A.; Manickam, A.; Munusamy, A.; Syed, M.B.; Ali, M.Y.; Ahmed, G.M.; Mohiuddin, M.S. Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilized enzymes using magnetic nanoparticle. J. Environ. Chem. E 2016, 4, 1393–1398. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Noraini, M.Y.; Mofijur, M.; Silitonga, A.S.; Badruddin, I.A.; Khan, T.M.Y.; Ong, H.C.; Mahlia, T.M.I. Lipid Extraction Maximization and Enzymatic Synthesis of Biodiesel from Microalgae. Appl. Sci. 2020, 10, 6103. [Google Scholar] [CrossRef]
- Mehde, A.A.; Mehdi, W.A.; Severgun, O.; Cakar, S.; Ozacar, M. Lipase-based on starch material as a development matrix with magnetite crosslinked enzyme aggregates and its application. Int. J. Biol. Macromol. 2018, 120, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Feng, Y.; Ren, H.; Zhang, Y.; Gu, N.; Lin, X. The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J. Soils Sediments 2011, 11, 1408–1417. [Google Scholar] [CrossRef]
- Toh, P.Y.; Yeap, S.P.; Kong, L.P.; Ng, B.W.; Chan, D.J.C.; Ahmad, A.L.; Lim, J. Magnetophoretic removal of microalgae from fishpond water: Feasibility of high gradient and low gradient magnetic separation. Chem. Eng. J. 2012, 211–212, 22–30. [Google Scholar] [CrossRef]
- Yan, X.H.; Xue, P. Tailoring magnetic mesoporous silica spheres-immobilized lipase for kinetic resolution of methyl 2-bromopropionate in a co-solvent system. Res. Chem. Intermed. 2018, 44, 4295–4306. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Akbulut, A.; Ozalp, V.C.; Arica, M.Y. Immobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chem. Eng. Res. Des. 2015, 95, 12–21. [Google Scholar] [CrossRef]
- Olabi, A.G.; Alami, A.H.; Alasad, S.; Aljaghoub, H.; Sayed, E.T.; Shehata, N.; Rezk, H.; Abdelkareem, M.A. Emerging technologies for enhancing microalgae biofuel production: Recent progress, barriers, and limitations. Fermentation 2022, 8, 649. [Google Scholar] [CrossRef]
- Xu, H.; Lee, U.; Coleman, A.M.; Wigmosta, M.S.; Wang, M. Assessment of algal biofuel resource potential in the United States with consideration of regional water stress. Algal Res. 2019, 37, 30–39. [Google Scholar] [CrossRef]
- Mirzajanzadeh, M.; Tabatabaei, M.; Ardjmand, M.; Rashidi, A.; Ghobadian, B.; Barkhi, M.; Pazouki, M. A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel 2015, 139, 374–382. [Google Scholar] [CrossRef]
- Kamilli, K.; Ofner, J.; Zetzsch, C.; Held, A. Formation of halogen-induced secondary organic aerosol (XOA). In Proceedings of the EGU General Assembly 2013 (EGU2013-11969), Vienna, Austria, 7–12 April 2013; Available online: https://ui.adsabs.harvard.edu/abs/2013EGUGA..1511969K/abstract (accessed on 11 November 2023).
Sr. No. | Name of Microalgae | Remarks | References |
---|---|---|---|
1. | Spirulina platensis | Good diesel index, high density | [29] |
2. | Chlorella protothecoides | High cetane number | [30] |
3. | Chlorella sp. | High viscosity | [30] |
4. | Botryococcus braunii | 80% lipid accumulation | [31] |
7. | Tetraselmis sp. M8 | Lipase catalyzed transesterification | [32] |
8. | Croto megalocarpus | Immobilized lipase for better production | [33] |
9. | Chlorella sorokiniana | 44.1–87.9% lipid accumulation | [33] |
10. | Scenedesmus sp. | Lipid accumulation in 20 days | [34] |
12. | Chlorella sorokiniana | Lipid accumulation | [35] |
13. | Chlorella vulgaris | 95% yield | [35] |
16. | Chlorella sp. MJ 11/11 | Improved quality of bio-oil | [36] |
17. | Scenedesmus quadricauda | High amount of oleic acid | [37] |
S. No. | Microalgae | Nanoparticle Used | Harvesting Efficiency | References |
---|---|---|---|---|
1. | Chlorella zofingiensis | Iron nanoparticles | 98% | [62] |
2. | Chlorella vulgaris | Magnetic nanoparticles (MNPs; Fe-MNP-I and Fe-MNP-II) | 95% | [63] |
3. | Chlorella sp. | Fe3O4 nanoparticle | 95% | [75] |
4. | Chlorella vulgaris | Naked magnetite (Fe3O4) | 99% | [76] |
5. | Chlorella pyrenoidosa and Chlorella minutissima | Iron oxide nanoparticles | 90% | [64] |
6. | Chlorella vulgaris | Yttrium iron oxide (Y3Fe5O12) | 90% | [61] |
7. | Chlorella pyrenoidosa | Magnetic (Fe3O4)–silica core–shell nanoparticles | Increased | [77] |
8. | Chlorococcum sp. | Zirchonium di-oxide (ZrO2-Np) | Increased | [78] |
9. | Scenedesmus ovalternus and Chlorella vulgaris | Bare iron oxide | 95% | [79] |
10. | Scenedesmus sp. | Magnetite-based nanoparticles (Fe3O4 NPs) | 95% | [80] |
11. | Nannochloropsis maritime | Naked magnetic nanoparticles | 99.0% | [81] |
12. | Scenedesmus obliquus | Zn- and Mg-doped ferrite magnetic nanoparticles | 99% | [82] |
13. | Microcystis aeruginosa | Magnetic maghemite (γ-Fe2O3) | 82.4% | [83] |
14. | Microcystis aeruginosa | Polyethylenimine-coated magnetic nanoparticles | NA | [84] |
Sources of Lipase | Time (h) | Conversion (%) | References |
---|---|---|---|
Rhizomucor miehei | 24 | 90% | [103] |
Candida antarctica | 4 | 92.6% | [104] |
Candida rugosa | 4 | 93% | [105] |
Pseudomonas fluorescens | 12 | 95% | [106] |
Thermomyces lanuginosus | 48 | 81.64% | [107] |
Lipase Nanoparticles | Microalga | Catalytic Cycles | Reference |
---|---|---|---|
Lipase–Magnetic Biosilica Nanoparticle | Kamptonema formosum | - | [127] |
Lipase–Magnetic (Fe3O4) Nanoparticle | Chlorella pyrenoidosa | 5 cycles | [128] |
Lipase–Superparamagnetic–Graphene Oxide Nanoparticle | Chlorella vulgaris | 5 cycles | [129] |
Lipase-Fe3O4 Superparamagnetic Nanoparticle | Chlorella vulgaris | 5 cycles | [130] |
Lipase-Aminated Magnetic Nanoparticle | Chlorella vulgaris var L3 | 10 cycles | [131] |
Lipase–Magnetic (Fe3O4) Nanoparticle | Chlorella salina | 10 cycles | [132] |
Lipase-Fe3O4-SiO2 Hybrid Nanoparticles | Chlorella vulgaris ESP-31 | 4 cycles | [133] |
Lipase–Graphene Oxide–Nickel Ferrite Nanoparticles | Scenedesmus obliquus | 6 cycles | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, M.L.; Dhanya, B.S.; Wang, B.; Thakur, M.; Rani, V.; Kushwaha, R. Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production. Sustainability 2024, 16, 295. https://doi.org/10.3390/su16010295
Verma ML, Dhanya BS, Wang B, Thakur M, Rani V, Kushwaha R. Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production. Sustainability. 2024; 16(1):295. https://doi.org/10.3390/su16010295
Chicago/Turabian StyleVerma, Madan L., B. S. Dhanya, Bo Wang, Meenu Thakur, Varsha Rani, and Rekha Kushwaha. 2024. "Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production" Sustainability 16, no. 1: 295. https://doi.org/10.3390/su16010295