Sustainable Recovery of Antioxidant Compounds from Rossa Di Tropea Onion Waste and Application as Ingredient for White Bread Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Onion Solid Waste Extract Preparation
2.2. Formulation of White Bread Enriched (WBE) with ‘Rossa di Tropea’ Onion Solid Waste Extract (OSWE)
2.3. Characterization of Physicochemical Properties of OSWE
2.3.1. Physicochemical Properties of WB
2.3.2. Antioxidant Characterization of White Bread Samples
2.4. Characterization of Physicochemical and Microbiological Properties of WB
2.4.1. Physicochemical Properties of WB
2.4.2. Microbiological Analysis
2.4.3. Antioxidant Characterization of White Bread Samples (WB and WBE)
2.4.4. Evaluation of Sensorial Parameters
2.5. Statistical Analysis
3. Results and Discussions
3.1. Characterisation of ‘Rossa di Tropea’ Onion Solid Waste Extract
3.2. Physicochemical Analysis of White Bread Samples (WB and WBE)
3.3. Microbiological Analysis
3.4. Total Phenolic Content (TPC) and Antioxidant Activity of Bread Samples
3.5. Sensorial Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mármol, I.; Quero, J.; Ibarz, R.; Ferreira-Santos, P.; Teixeira, J.A.; Rocha, C.M.R.; Pérez-Fernández, M.; García-Juiz, S.; Osada, J.; Martín-Belloso, O.; et al. Valorization of agro-food by-products and their potential therapeutic applications. Food Bioprod. Process 2021, 128, 247–258. [Google Scholar] [CrossRef]
- Mateo Anson, N.; Havenaar, R.; Bast, A.; Haenen, G.R.M.M. Antioxidant and anti-inflammatory capacity of bioaccessible compounds from wheat fractions after gastrointestinal digestion. J. Cereal Sci. 2010, 51, 110–114. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyż, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Singh, K.; Khedkar, R. Phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues. In Functional and Preservative Properties of Phytochemicals; Academic Press: Cambridge, MA, USA, 2020; pp. 341–361. [Google Scholar]
- Nile, S.H.; Nile, A.S.; Keum, Y.S.; Sharma, K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem. 2017, 235, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Taglienti, A.; Araniti, F.; Piscopo, A.; Tiberini, A. Characterization of Volatile Organic Compounds in ‘Rossa di Tropea’ Onion by Means of Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry (HS/SPME GC–MS) and Sensory Analysis. Agronomy 2021, 11, 874. [Google Scholar]
- Messina, G.; Praticò, S.; Badagliacca, G.; Di Fazio, S.; Monti, M.; Modica, G. Monitoring Onion Crop “Cipolla Rossa di Tropea Calabria IGP” Growth and Yield Response to Varying Nitrogen Fertilizer Application Rates Using UAV Imagery. Drones 2021, 5, 61. [Google Scholar] [CrossRef]
- Imeneo, V.; De Bruno, A.; Piscopo, A.; Romeo, R.; Poiana, M. Valorization of ‘Rossa di Tropea’ OnionWaste through Green Recovery Techniques of Antioxidant Compounds. Sustainability 2022, 14, 4387. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011; 66, 48–57. [Google Scholar]
- Wiczkowski, W.; Romaszko, J.; Bucinski, A.; Szawara-Nowak, D.; Honke, J.; Zielinski, H.; Piskula, M.K. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. J. Nutr. 2008, 138, 885–888. [Google Scholar]
- Almeida, A.F.; Borge, G.I.A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C.N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714–731. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Balestra, F.; Cocci, E.; Pinnavaia, G.G.; Romani, S. Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder. LWT Food Sci. Technol. 2011, 44, 700–705. [Google Scholar] [CrossRef]
- Imeneo, V.; Romeo, R.; Gattuso, A.; De Bruno, A.; Piscopo, A. Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace. Foods 2021, 10, 2460. [Google Scholar] [CrossRef] [PubMed]
- Conte, P.; Pulina, S.; Del Caro, A.; Fadda, C.; Urgeghe, P.P.; De Bruno, A.; Difonzo, G.; Caponio, F.; Romeo, R.; Piga, A. Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods 2021, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Prokopov, T.; Chonova, V.; Slavov, A.; Dessev, T.; Dimitrov, N.; Petkova, N. Effects on the quality and health-enhancing properties of industrial onion waste powder on bread. J. Food Sci. Technol. 2018, 55, 5091–5097. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Świeca, M.; Sugier, D.; Cichocka, J. Comparison of in vitro lipoxygenase, xanthine oxidase inhibitory and antioxidant activity of Arnica montana and Arnica chamissonis tinctures. Effect of the Method of Planting and Rootstock on Growth and Yielding of Selected Apple Cultivars. Acta Sci. Pol. Hortorum Cultus 2011, 10, 15–26. [Google Scholar]
- Association of Official Analytical Chemists. Method 14.022. In Hydrogen-Ion Activity (ph) Method, 13th ed.; Horwitz, W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1980; p. 213. [Google Scholar]
- Zieliński, H.; Michalska, A.; Ceglińska, A.; Lamparski, G. Antioxidant properties and sensory quality of traditional rye bread as affected by the incorporation of flour with different extraction rates in the formulation. Eur. Food Res. Technol. 2008, 226, 671–680. [Google Scholar] [CrossRef]
- Ibrahim, U.K.; Mohd Salleh, R.; Maqsood-Ul-Hague, S.N.S.; Abd Hashib, S.; Abd Karim, S.F. Optimization of Bread Enriched with Garcinia mangostana Pericarp Powder. IOP Conf. Ser. Mater. Sci. Eng. 2018, 358, 012041. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Vojvodić, A.; Komesa, D.; Jurić, S.; Nutrizio, M.; Belščak-Cvitanović, A.; Bušić, A. The potential of agro-industrial waste as a source of dietary functional components. In Proceedings of the 8th International Congress of Food Technologists, Biotechnologists and Nutritionists, Opatija, Croatia, 21–25 October 2014. [Google Scholar]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidative phenolic constituents of skins of onion varieties and their activities. J. Funct. Foods 2013, 5, 1191–1203. [Google Scholar] [CrossRef]
- Le-Bail, A.; Boumali, K.; Jury, V.; Ben-Aissa, F.; Zuniga, R. Impact of the baking kinetics on staling rate and mechanical properties of bread crumb and degassed bread crumb. J. Cereal Sci. 2009, 50, 235–240. [Google Scholar] [CrossRef]
- Bedrníček, J.; Jirotková, D.; Kadlec, J.; Laknerová, I.; Vrchotová, N.; Tříska, J.; Samková, E.; Smetana, P. Thermal stability and bioavailability of bioactive compounds after baking of bread enriched with different onion by-products. Food Chem. 2020, 319, 126562. [Google Scholar] [CrossRef] [PubMed]
- Altamirano-Fortoul, R.; Le-Bail, A.; Chevallier, S.; Rosell, C.M. Effect of the amount of steam during baking on bread crust features and water diffusion. J. Food Eng. 2012, 108, 128–134. [Google Scholar] [CrossRef]
- Han, H.M.; Koh, B.K. Antioxidant activity of hard wheat flour, dough and bread prepared using various processes with the addition of different phenolic acids. J. Sci. Food Agric. 2011, 91, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Czyz, J. The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chem. 2013, 141, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Res. Int. 2013, 50, 574–585. [Google Scholar] [CrossRef]
- Siebert, K.J.; Troukhanova, N.V.; Lynn, P.Y. Nature of Polyphenol—Protein Interactions. J. Agric. Food Chem. 1996, 44, 80–85. [Google Scholar] [CrossRef]
- Arts, M.J.T.J.; Haenen, G.R.M.M.; Wilms, L.C.; Beetstra, S.A.J.N.; Heijnen, C.G.M.; Voss, H.P.; Bast, A. Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. J. Agric. Food Chem. 2002, 50, 1184–1187. [Google Scholar] [CrossRef]
- Arts, M.J.T.J.; Haenen, G.R.M.M.; Voss, H.P.; Bast, A. Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem. Toxicol. 2001, 39, 787–791. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cheng, K.W.; Jiang, Y.; Chen, F.; Wang, M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 2010, 119, 49–53. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.Y.; Perera, C.O. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. J. Food Sci. 2010, 75, R163–R174. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Bævre, A.B.; Rødbotten, M.; Berg, H.; Knutsen, S.H. Antioxidant properties and sensory profiles of breads containing barley flour. Food Chem. 2002, 110, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, F.; Lyan, B.; Rock, E.; Boussard, A.; Potus, J.; Chanliaud, E.; Remesy, C. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J. Agric. Food Chem. 2006, 54, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT Food Sci. Technol. 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, S.; Yu, L.; Ma, L. Evaluation of antioxidant property and quality of breads containing Auricularia auricula polysaccharide flour. Food Chem. 2006, 101, 1158–1163. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT Food Sci. Technol. 2009, 42, 137–143. [Google Scholar] [CrossRef]
- Glei, M.; Kirmse, A.; Habermann, N.; Persin, C.; Pool-Zobel, B.L. Bread enriched with green coffee extract has chemoprotective and antigenotoxic activities in human cells. Nutr. Cancer 2006, 56, 182–192. [Google Scholar] [CrossRef]
- Lim, H.S.; Park, S.H.; Ghafoor, K.; Hwang, S.Y.; Park, J. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chem. 2011, 124, 1577–1582. [Google Scholar] [CrossRef]
- Charissou, A.; Ait-Ameur, L.; Birlouez-Aragon, I. Kinetics of formation of three indicators of the Maillard reaction in model cookies: Influence of baking temperature and type of sugar. J. Agric. Food Chem. 2007, 55, 4532–4539. [Google Scholar] [CrossRef]
- Poinot, P.; Arvisenet, G.; Grua-Priol, J.; Colas, D.; Fillonneau, C.; Le Bail, A.; Prost, C. Influence of formulation and process on the aromatic profile and physical characteristics of bread. J. Cereal Sci. 2008, 48, 686–697. [Google Scholar] [CrossRef]
- Sullivan, W.R.; Hughes, J.G.; Cockman, R.W.; Small, D.M. The effects of temperature on the crystalline properties and resistant starch during storage of white bread. Food Chem. 2017, 228, 57–61. [Google Scholar] [CrossRef]
Ingredients | WB | WBE |
---|---|---|
Wheat flour (g) | 250 | 250 |
Manitoba flour (g) | 250 | 250 |
Sunflower oil (g) | 50 | 50 |
White sugar (g) | 5 | 5 |
Skimmed milk (g) | 50 | 50 |
Yeast (g) | 8 | 8 |
Salt (g) | 12.5 | 12.5 |
Water (mL) | 200 | 100 |
OSWE (mL) | 0 | 100 |
pH | 4.20 ± 0.02 |
Colour: | L*: 33.23 ± 0.12 |
a*: 16.1 ± 0.23 | |
b*: 0.14 ± 0.02 | |
TPC (mg 1 GAE g−1 d.w.) | 6.2297 ± 0.13 |
TFC (mg 2 QE g−1 d.w.) | 5.62 ± 0.15 |
DPPH (µmol TE g−1 d.w.) | 1.34 ± 0.38 |
ABTS (µmol TE g−1 d.w.) | 19.03 ± 2.78 |
aw | MC (%) | |||||
---|---|---|---|---|---|---|
Time (Days) | WB | WBE | Sign. | WB | WBE | Sign. |
0 | 0.91 ± 0.00 | 0.90 ± 0.00 | * | 31.20 ± 0.45 ab | 32.20 ± 0.82 ab | ns |
3 | 0.92 ± 0.01 | 0.91 ± 0.01 | ns | 32.29 ± 0.38 a | 32.57 ± 0.17 a | ns |
7 | 0.92 ± 0.00 | 0.90 ± 0.01 | * | 30.50 ± 0.99 b | 31.29 ± 0.63 b | ns |
Sign | ns | ns | * | * |
CRUMB | |||||||||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | |||||||
Time (Days) | WB | WBE | Sign. | WB | WBE | Sign. | WB | WBE | Sign. |
0 | 75.66 ± 2.01 | 68.82 ± 2.22 | ** | 0.60 ± 0.30 | 2.06 ± 0.33 ab | ** | 18.73 ± 1.42 | 20.67 ± 0.72 | ** |
3 | 76.11 ± 2.59 | 69.84 ± 1.11 | ** | 0.56 ± 0.20 | 1.91 ± 0.22 b | ** | 18.57 ± 1.44 | 20.87 ± 0.85 | ** |
7 | 74.96 ± 1.00 | 68.48 ± 1.99 | ** | 0.53 ± 0.11 | 2.29 ± 0.26 a | ** | 18.20 ± 0,67 | 21.42 ± 0.54 | ** |
Sign. | ns | ns | ns | * | ns | ns | |||
CRUST | |||||||||
L* | a* | b* | |||||||
Time (days) | WB | WBE | Sign. | WB | WBE | Sign. | WB | WBE | Sign. |
0 | 56.63 ± 10.20 | 55.06 ± 11.48 | ns | 15.45 ± 3.37 | 15.98 ± 2.98 | ns | 30.73 ± 2.92 | 27.41 ± 3.77 | ns |
3 | 63.17 ± 8.77 | 57.71 ± 9.90 | ns | 13.21 ± 2.96 | 15.32 ± 2.27 | ns | 32.27 ± 3.24 | 28.66 ± 3.53 | * |
7 | 61.81 ± 9.74 | 61.48 ± 9.73 | ns | 13.49 ± 2.73 | 15.30 ± 1.97 | ns | 31.44 ± 3.85 | 26.14 ± 4.69 | * |
Sign. | ns | ns | ns | ns | ns | ns |
TBC (Log10 UFC g−1) | M and Y (Log10 UFC g−1) | LB (Log10 UFC g−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (Days) | WB | WBE | Sign | WB | WBE | Sign | WB | WBE | Sign |
0 | 0.00 ± 0.00 b | 0.00 ± 0.00 c | ns | 0.00 ± 0.00 b | 0.00 ± 0.00 b | ns | 1.46 ± 0.04 c | 0.47 ± 0.05 c | ** |
3 | 1.46 ± 0.03 a | 1.22 ± 0.05 b | ** | 0.00 ± 0.00 b | 0.00 ± 0.00 b | ns | 1.95 ± 0.01 b | 0.95 ± 0.08 b | ** |
7 | 2.46 ± 0.70 a | 2.23 ± 0.53 a | ns | 0.46 ± 0.03 a | 0.19 ± 0.03 a | ** | 2.04 ± 0.02 a | 1.80 ± 0.02 a | ** |
Sign. | ** | ** | ** | ** | ** |
TPC (mg GAE kg−1 d.w.) | ABTS (µM TE kg−1 d.w.) | DPPH (µM TE kg−1 d.w.) | |||||||
---|---|---|---|---|---|---|---|---|---|
Days | WB | WBE | Sign. | WB | WBE | Sign. | WB | WBE | Sign. |
0 | 333.9 ± 12.7 b | 435.2 ± 18.7 a | ** | 1227.7 ± 187.2 b | 2298.3 ± 182.2 | ** | 942.8 ± 44.7 a | 1043.8 ± 16.4 a | * |
3 | 379.4 ± 2.8 a | 404.5 ± 7.3 ab | ** | 1829.7 ± 184.8 a | 2054.7 ± 175.8 | ns | 367.7 ± 28.2 c | 484.9 ± 7.4 c | ** |
7 | 277.8 ± 10.7 c | 363.9 ± 24.6 b | ** | 1664.8 ± 52.8 a | 1960.6 ± 363.8 | ns | 656.6 ± 1.5 b | 671.6 ± 54.6 b | ns |
Sign. | ** | ** | ** | ns | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imeneo, V.; Piscopo, A.; Santacaterina, S.; De Bruno, A.; Poiana, M. Sustainable Recovery of Antioxidant Compounds from Rossa Di Tropea Onion Waste and Application as Ingredient for White Bread Production. Sustainability 2024, 16, 149. https://doi.org/10.3390/su16010149
Imeneo V, Piscopo A, Santacaterina S, De Bruno A, Poiana M. Sustainable Recovery of Antioxidant Compounds from Rossa Di Tropea Onion Waste and Application as Ingredient for White Bread Production. Sustainability. 2024; 16(1):149. https://doi.org/10.3390/su16010149
Chicago/Turabian StyleImeneo, Valeria, Amalia Piscopo, Simone Santacaterina, Alessandra De Bruno, and Marco Poiana. 2024. "Sustainable Recovery of Antioxidant Compounds from Rossa Di Tropea Onion Waste and Application as Ingredient for White Bread Production" Sustainability 16, no. 1: 149. https://doi.org/10.3390/su16010149
APA StyleImeneo, V., Piscopo, A., Santacaterina, S., De Bruno, A., & Poiana, M. (2024). Sustainable Recovery of Antioxidant Compounds from Rossa Di Tropea Onion Waste and Application as Ingredient for White Bread Production. Sustainability, 16(1), 149. https://doi.org/10.3390/su16010149