Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams
Abstract
1. Introduction
2. Numerical Approach
2.1. Hydrokinetic Turbine Configuration
2.2. Computational Modeling
3. Remaining Energy Downstream of Dams
4. Results and Discussion
4.1. Numerical Validation
4.2. Performance of the Diffuser-Augmented Hydro Turbine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandeira, Y.A.; Rodrigues, L.D.; Vaz, J.R.P.; Lins, E.F. Cavitation and structural analysis on a flanged diffuser applied to hydrokinetic turbines. Matéria (Rio de Janeiro) 2023, 27. [Google Scholar] [CrossRef]
- Limacher, E.J.; Rezek, T.J.; Camacho, R.G.R.; Vaz, J.R. On rotor hub design for shrouded hydrokinetic turbines. Ocean Eng. 2021, 240, 109940. [Google Scholar] [CrossRef]
- Silva, P.A.; Vaz, D.A.R.; Britto, V.; de Oliveira, T.F.; Vaz, J.R.; Junior, A.C.B. A new approach for the design of diffuser-augmented hydro turbines using the blade element momentum. Energy Convers. Manag. 2018, 165, 801–814. [Google Scholar] [CrossRef]
- Vaz, J.R.; Okulov, V.L.; Wood, D.H. Finite blade functions and blade element optimization for diffuser-augmented wind turbines. Renew. Energy 2021, 165, 812–822. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D.H. Aerodynamic optimization of the blades of diffuser-augmented wind turbines. Energy Convers. Manag. 2016, 123, 35–45. [Google Scholar] [CrossRef]
- do Rio Vaz, D.A.T.D.; Mesquita, A.L.A.; Vaz, J.R.P.; Blanco, C.J.C.; Pinho, J.T. An extension of the Blade Element Momentum method applied to Diffuser Augmented Wind Turbines. Energy Convers. Manag. 2014, 87, 1116–1123. [Google Scholar] [CrossRef]
- Shives, M.; Crawford, C. Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proc. Inst. Mech. Eng. Part A J. Power Energy 2012, 226, 112–125. [Google Scholar] [CrossRef][Green Version]
- Gaden, D.L.; Bibeau, E.L. A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renew. Energy 2010, 35, 1152–1158. [Google Scholar] [CrossRef]
- Holanda, P.d.S.; Blanco, C.J.C.; Mesquita, A.L.A.; Brasil Junior, A.C.P.; de Figueiredo, N.M.; Macêdo, E.N.; Secretan, Y. Assessment of hydrokinetic energy resources downstream of hydropower plants. Renew. Energy 2017, 101, 1203–1214. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D.H. Effect of the diffuser efficiency on wind turbine performance. Renew. Energy 2018, 126, 969–977. [Google Scholar] [CrossRef]
- Silva, P.A.S.F.; Shinomiya, L.D.; de Oliveira, T.F.; Vaz, J.R.P.; Mesquita, A.L.A.; Brasil Junior, A.C.P. Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM. Appl. Energy 2017, 185, 1281–1291. [Google Scholar] [CrossRef]
- Picanço, H.P.; Kleber Ferreira de Lima, A.; Dias do Rio Vaz, D.A.T.; Lins, E.F.; Pinheiro Vaz, J.R. Cavitation inception on hydrokinetic turbine blades shrouded by diffuser. Sustainability 2022, 14, 7067. [Google Scholar] [CrossRef]
- do Rio Vaz, D.A.T.D.; Vaz, J.R.P.; Mesquita, A.L.A.; Pinho, J.T.; Brasil Junior, A.C.P. Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake. Renew. Energy 2013, 55, 296–304. [Google Scholar] [CrossRef]
- Gemaque, M.L.; Vaz, J.R.; Saavedra, O.R. Optimization of hydrokinetic swept blades. Sustainability 2022, 14, 13968. [Google Scholar] [CrossRef]
- Abe, K.; Ohya, Y. An investigation of flow fields around flanged diffusers using CFD. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 315–330. [Google Scholar] [CrossRef]
- Abe, K.; Nishida, M.; Sakurai, A.; Ohya, Y.; Kihara, H.; Wada, E.; Sato, K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 951–970. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge Univ. Press: Cambridge, UK, 2011. [Google Scholar]
- Davidson, P.A. Turbulence: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD; D C W Industries: Maharashtra, India, 2006. [Google Scholar]
- Durbin, P.A. Some Recent Developments in Turbulence Closure Modeling. Annu. Rev. Fluid Mech. 2018, 50, 77–103. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Markatos, N. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef][Green Version]
- Silva, P.A.S.F.; Oliveira, T.F.; Brasil Junior, A.C.P.; Vaz, J.R.P. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic turbine. Anais da Academia Brasileira de Ciências 2016, 88, 2441–2456. [Google Scholar] [CrossRef][Green Version]
- ANSYS Inc. ANSYS CFX-Solver Theory Guide, Release 14.0; Ansys Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Mavriplis, D.J. Mesh generation and adaptivity for complex geometries and flows (Chapter 7). In Handbook of Computational Fluid Mechanics; Peyret, R., Ed.; Academic Press: London, UK, 1996; pp. 417–459. [Google Scholar] [CrossRef]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S.; Larwood, S.M. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; Technical Report; National Renewable Energy Lab.: Golden, CO, USA, 2001. [Google Scholar] [CrossRef][Green Version]
- Laws, N.D.; Epps, B.P. Hydrokinetic energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev. 2016, 57, 1245–1259. [Google Scholar] [CrossRef][Green Version]
- do Rio Vaz, D.A.T.D.; Vaz, J.R.P.; Silva, P.A.S.F. An approach for the optimization of diffuser-augmented hydrokinetic blades free of cavitation. Energy Sustain. Dev. 2018, 45, 142–149. [Google Scholar] [CrossRef]
- John, I.H.; Vaz, J.R.; Wood, D. Aerodynamic performance and blockage investigation of a cambered multi-bladed windmill. J. Physics Conf. Ser. 2020, 1618, 042003. [Google Scholar] [CrossRef]
- John, I.H.; Wood, D.H.; Vaz, J.R. Helical vortex theory and blade element analysis of multi-bladed windmills. Wind Energy 2023, 26, 228–246. [Google Scholar] [CrossRef]
- Posa, A.; Broglia, R. Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation. Comput. Fluids 2021, 216, 104815. [Google Scholar] [CrossRef]
- Bontempo, R.; Manna, M. Effects of the duct thrust on the performance of ducted wind turbines. Energy 2016, 99, 274–287. [Google Scholar] [CrossRef]
- Vaz, J.R.; Wood, D. Blade element analysis and design of horizontal-axis turbines. Small Wind. Hydrokinetic Turbines 2021, 169, 157. [Google Scholar]
Parameters | Values |
---|---|
Turbine diameter | 10 m |
Hub diameter | 1.2 m |
Number of blades | 3 |
Water velocity | 0.9–3 m/s |
Water density | 997.0 kg/m |
Rotational speed | 8–33.92 RPM |
Airfoil profile | NACA -618 |
Mesh | Number of Nodes | Power [] | ||
---|---|---|---|---|
Mesh 1 | 2.47 | 5.45 | 3.43 | 2.81 |
Mesh 2 | 3.78 | 1.36 | 0.85 | 2.76 |
Mesh 3 | 5.62 | 0.42 | 0.26 | 4.96 |
Mesh 4 | 6.35 | 0.45 | 0.09 | 5.66 |
Mesh 5 | 7.63 | 0.48 | 0.08 | 5.83 |
Mesh 6 | 8.30 | 0.48 | 0.08 | 5.94 |
Period | Turbine Only [MWh] | Turbine plus Diffuser [MWh] |
---|---|---|
2008 to 2013 | 216.34 | 337.23 |
for a typical year | 38.75 | 60.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz, J.R.P.; de Lima, A.K.F.; Lins, E.F. Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams. Sustainability 2023, 15, 7671. https://doi.org/10.3390/su15097671
Vaz JRP, de Lima AKF, Lins EF. Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams. Sustainability. 2023; 15(9):7671. https://doi.org/10.3390/su15097671
Chicago/Turabian StyleVaz, Jerson R. P., Adry K. F. de Lima, and Erb F. Lins. 2023. "Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams" Sustainability 15, no. 9: 7671. https://doi.org/10.3390/su15097671
APA StyleVaz, J. R. P., de Lima, A. K. F., & Lins, E. F. (2023). Assessment of a Diffuser-Augmented Hydrokinetic Turbine Designed for Harnessing the Flow Energy Downstream of Dams. Sustainability, 15(9), 7671. https://doi.org/10.3390/su15097671