Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS and Climatic Data Processing Workflow
2.3. MODIS Snow Cover MOD10A1 Product Processing
2.4. Historical Climate Data
2.5. Processing Daily Climate Data of Precipitation and Temperature
3. Results
3.1. MODIS Snow Cover MOD10A1 Product Variation
3.2. MODIS Snow Cover MOD10A1 Product and Landat Snow Cover Validation
3.3. Statistical Analysis of Climatic Data
3.4. Monthly Climate Data Variation Analysis
3.5. Standardized Correlation Analysis between Precipitation, Temperature, and SCA
3.6. Trend Analysis of the Snow Cover Variation
4. Discussion
4.1. Snow Cover Dynamics in the Alto Santa River Sub-Basin
4.2. Impact of Climate Data on Snow Cover Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, D.; Ding, Y. Cryospheric Changes and Their Impacts: Present, Trends and Key Issues. Available online: https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjMwMTEyEhFxaGJoeWpqejIwMDkwNDAwMRoIYzk4cmRxN2Y%253D (accessed on 5 February 2023).
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal Variation of Snowline Altitude at the End of Melting Season across High Mountain Asia, Using MODIS Snow Cover Product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Qin, D.; Yao, T.; Ding, Y.; Ren, J. Establishment and Significance of the Scientific System of Cryospheric Science. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16418/j.issn.1000-3045.20200331001 (accessed on 5 February 2023).
- Kaser, G.; Osmaston, H. Tropical Glaciers; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Cayo, E.Y.T.; Borja, M.O.; Espinoza-Villar, R.; Moreno, N.; Camargo, R.; Almeida, C.; Hopfgartner, K.; Yarleque, C.; Souza, C.M. Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine. Remote Sens. 2022, 14, 1974. [Google Scholar] [CrossRef]
- Calizaya, E.; Mejía, A.; Barboza, E.; Calizaya, F.; Corroto, F.; Salas, R.; Vásquez, H.; Turpo, E. Modelling Snowmelt Runoff from Tropical Andean Glaciers under Climate Change Scenarios in the Santa River Sub-Basin (Peru). Water 2021, 13, 3535. [Google Scholar] [CrossRef]
- Veettil, B.K.; Kamp, U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences 2019, 9, 196. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global Glacier Mass Changes and Their Contributions to Sea-Level Rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Emmer, A.; Allen, S.K.; Carey, M.; Frey, H.; Huggel, C.; Korup, O.; Mergili, M.; Sattar, A.; Veh, G.; Chen, T.Y.; et al. Progress and Challenges in Glacial Lake Outburst Flood Research (2017–2021): A Research Community Perspective. Nat. Hazards Earth Syst. Sci. 2022, 22, 3041–3061. [Google Scholar] [CrossRef]
- Escanilla-Minchel, R.; Alcayaga, H.; Soto-Alvarez, M.; Kinnard, C.; Urrutia, R. Evaluation of the Impact of Climate Change on Runoff Generation in an Andean Glacier Watershed. Water 2020, 12, 3547. [Google Scholar] [CrossRef]
- Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to Water Supplies in the Tropical Andes. Science 2006, 312, 1755–1756. [Google Scholar] [CrossRef]
- Veettil, B.K.; Wang, S.; Florêncio de Souza, S.; Bremer, U.F.; Simões, J.C. Glacier Monitoring and Glacier-Climate Interactions in the Tropical Andes: A Review. J. S. Am. Earth Sci. 2017, 77, 218–246. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, C.; Ai, S.; Liang, Q.; Zheng, L.; Liu, R.; Lei, H. Dynamics of Dalk Glacier in East Antarctica Derived from Multisource Satellite Observations since 2000. Remote Sens. 2020, 12, 1809. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Digirolamo, N.E.; Bayr, K.J. MODIS Snow-Cover Products. Remote Sens. Environment. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ahmad, B. Snow Cover Dynamics and Hydrological Regime of the Hunza River Basin, Karakoram Range, Northern Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2275–2290. [Google Scholar] [CrossRef]
- di Marco, N.; Avesani, D.; Righetti, M.; Zaramella, M.; Majone, B.; Borga, M. Reducing Hydrological Modelling Uncertainty by Using MODIS Snow Cover Data and a Topography-Based Distribution Function Snowmelt Model. J. Hydrol. 2021, 599, 126020. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rosales, A.G.; Junquas, C.; da Rocha, R.P.; Condom, T.; Espinoza, J.C. Valley–Mountain Circulation Associated with the Diurnal Cycle of Precipitation in the Tropical Andes (Santa River Basin, Peru). Atmosphere 2022, 13, 344. [Google Scholar] [CrossRef]
- Zapata, M.; Arnaud, Y.; Gallaire, R. Inventario de Glaciares de La Cordillera Blanca. In Proceedings of the 13th IWRA World Water Congress, Montpellier, France, 1–4 September 2008. [Google Scholar]
- Chevallier, P.; Pouyaud, B.; Suarez, W.; Condom, T. Climate Change Threats to Environment in the Tropical Andes: Glaciers and Water Resources. Reg. Environ. Change 2011, 11, 179–187. [Google Scholar] [CrossRef]
- Condom, T.; Escobar, M.; Purkey, D.; Pouget, J.C.; Suarez, W.; Ramos, C.; Apaestegui, J.; Tacsi, A.; Gomez, J. Simulating the Implications of Glaciers’ Retreat for Water Management: A Case Study in the Rio Santa Basin, Peru. Water Int. 2012, 37, 442–459. [Google Scholar] [CrossRef]
- Lynch, B.D. Vulnerabilities, Competition and Rights in a Context of Climate Change toward Equitable Water Governance in Peru’s Rio Santa Valley. Glob. Environ. Change 2012, 22, 364–373. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D.; Vuyovich, C.; DiGirolamo, N. Development of Snow Cover Frequency Maps from MODIS Snow Cover Products. Remote Sens. 2022, 14, 5661. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Llanos, H.L. RClimTool Manual de Usuario. Clima y Sector Agropecuario Colombiano. 2015. Volume 1. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/63482/RClimTool_Manual_V01_FINAL.pdf?sequence=3&isAllowed=y (accessed on 4 February 2023).
- Cordano, E.; Eccel, E. RMAWGEN: Multi-Site Auto-Regressive Weather GENerator; Free Software Foundation: Boston, MA, USA, 2017. [Google Scholar]
- Runge, J.; Nowack, P.; Kretschmer, M.; Flaxman, S.; Sejdinovic, D. Detecting and Quantifying Causal Associations in Large Nonlinear Time Series Datasets. Sci. Adv. 2019, 5, eaau4996. [Google Scholar] [CrossRef] [PubMed]
- Zebende, G.F. DCCA Cross-Correlation Coefficient: Quantifying Level of Cross-Correlation. Phys. A Stat. Mech. Its Appl. 2011, 390, 614–618. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation Trends over Time Using Mann-Kendall and Spearman’s Rho Tests in Swat River Basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
- Dong, C.; Menzel, L. Producing Cloud-Free MODIS Snow Cover Products with Conditional Probability Interpolation and Meteorological Data. Remote Sens. Environ. 2016, 186, 439–451. [Google Scholar] [CrossRef]
- Baraer, M.; Mark, B.G.; Mckenzie, J.M.; Condom, T.; Bury, J.; Huh, K.I.; Portocarrero, C.; Gómez, J.; Rathay, S. Glacier Recession and Water Resources in Peru’s Cordillera Blanca. J. Glaciol. 2012, 58, 134–150. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Yu, B.; Wu, J.; Kang, E.L.; Xu, M.; Wang, S.; Klein, A.; Chen, Y. Improving MODIS Snow Products with a HMRF-Based Spatio-Temporal Modeling Technique in the Upper Rio Grande Basin. Remote Sens. Environ. 2018, 204, 568–582. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling Snowmelt-Runoff under Climate Scenarios in the Hunza River Basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Şorman, A.A.; Şensoy, A.; Şorman, A.Ü. Using MODIS Snow Cover Maps in Modeling Snowmelt Runoff Process in the Eastern Part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Fugazza, D.; Manara, V.; Senese, A.; Diolaiuti, G.; Maugeri, M. Snow Cover Variability in the Greater Alpine Region in the Modis Era (2000–2019). Remote Sens. 2021, 13, 2945. [Google Scholar] [CrossRef]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; le Page, M.; Hagolle, O.; Berjamy, B. Assessment of Daily MODIS Snow Cover Products to Monitor Snow Cover Dynamics over the Moroccan Atlas Mountain Range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
- Ernesto, M.; Huayaney, A.; Felipe Meléndez De La Cruz, J. Aplicación de La Teledetección Para El Análisis Multitemporal de La Regresión Glaciar En La Cordillera Blanca Application of Teledetection to the Multitemporary Analysis of the Glacier Regression in La Cordillera Blanca. Investig. Soc. 2009, 13, 71–83. [Google Scholar]
- Zhang, J.; Jia, L.; Menenti, M.; Zhou, J.; Ren, S. Glacier Area and Snow Cover Changes in the Range System Surrounding Tarim from 2000 to 2020 Using Google Earth Engine. Remote Sens. 2021, 13, 5117. [Google Scholar] [CrossRef]
- Kavan, J.; Tallentire, G.D.; Demidionov, M.; Dudek, J.; Strzelecki, M.C. Fifty Years of Tidewater Glacier Surface Elevation and Retreat Dynamics along the South-East Coast of Spitsbergen (Svalbard Archipelago). Remote Sens. 2022, 14, 354. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, B.; Gao, X.; Liu, W.; Li, Y.; Li, R. Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai-Tibetan Plateau. Remote Sens. 2022, 14, 5642. [Google Scholar] [CrossRef]
- Simpson, N.P. Technical Summary: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Res. Gate 2022. [Google Scholar] [CrossRef]
- Wendleder, A.; Friedl, P.; Mayer, C. Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017. Remote Sens. 2018, 10, 1681. [Google Scholar] [CrossRef]
- Chand, M.B.; Chandra Bhattarai, B.; Pradhananga, N.S.; Baral, P. Trend Analysis of Temperature Data for the Narayani River Basin, Nepal. Sci 2021, 3, 1. [Google Scholar] [CrossRef]
- Sood, V.; Tiwari, R.K.; Singh, S.; Kaur, R.; Parida, B.R. Glacier Boundary Mapping Using Deep Learning Classification over Bara Shigri Glacier in Western Himalayas. Sustainability 2022, 14, 3485. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, R.; Zhu, T. Simulating the Impact of the Sustained Melting Arctic on the Global Container Sea–Rail Intermodal Shipping. Sustainability 2022, 14, 2214. [Google Scholar] [CrossRef]
- Zha, X.; Niu, B.; Li, M.; Duan, C. Increasing Impact of Precipitation on Alpine-Grassland Productivity over Last Two Decades on the Tibetan Plateau. Remote Sens. 2022, 14, 3430. [Google Scholar] [CrossRef]
- Chen, Y.; Sharma, S.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Spatial Performance of Multiple Reanalysis Precipitation Datasets on the Southern Slope of Central Himalaya. Atmos. Res. 2021, 250, 105365. [Google Scholar] [CrossRef]
- Kronenberg, M.; Schauwecker, S.; Huggel, C.; Salzmann, N.; Drenkhan, F.; Frey, H.; Giraáldez, C.; Gurgiser, W.; Kaser, G.; Juen, I.; et al. The Projected Precipitation Reduction over the Central Andes May Severely Affect Peruvian Glaciers and Hydropower Production. Energy Procedia 2016, 97, 270–277. [Google Scholar] [CrossRef]
- Neukom, R.; Rohrer, M.; Calanca, P.; Salzmann, N.; Huggel, C.; Acuña, D.; Christie, D.A.; Morales, M.S. Facing Unprecedented Drying of the Central Andes? Precipitation Variability over the Period AD 1000-2100. Environ. Res. Lett. 2015, 10, 084017. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ashraf, M.; Bhatti, M.T. Snow Cover Trend and Hydrological Characteristics of the Astore River Basin (Western Himalayas) and Its Comparison to the Hunza Basin (Karakoram Region). Sci. Total Environ. 2015, 505, 748–761. [Google Scholar] [CrossRef]
- Zhang, Q.; Körnich, H.; Holmgren, K. How Well Do Reanalyses Represent the Southern African Precipitation? Clim. Dyn. 2013, 40, 951–962. [Google Scholar] [CrossRef]
- Kaser, G. A Review of the Modern Fluctuations of Tropical Glaciers. Glob. Planet. Change 1999, 22, 93–103. [Google Scholar] [CrossRef]
- Bazilova, V.; Kääb, A. Mapping Area Changes of Glacial Lakes Using Stacks of Optical Satellite Images. Remote Sens. 2022, 14, 5973. [Google Scholar] [CrossRef]
- Ponce, V.M. Efecto Del Cambio Climático Sobre La Cordillera Blanca Del Perú. 2015. Available online: https://ponce.sdsu.edu/cordillera_blanca_peru.html (accessed on 4 February 2023).
- Kos, A.; Amann, F.; Strozzi, T.; Osten, J.; Wellmann, F.; Jalali, M.; Dufresne, A. The Surface Velocity Response of a Tropical Glacier to Intra and Inter Annual Forcing, Cordillera Blanca, Peru. Remote Sens. 2021, 13, 2694. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.; Qin, Y.; Wang, W.; Zhang, M.; Zhang, K. Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model. Sustainability 2022, 14, 4067. [Google Scholar] [CrossRef]
Name of Station. | Lat. | Long. | Alt. (m.a.s.l.) | Time (Years) | Code | Dep. | Prov. | Dist. |
---|---|---|---|---|---|---|---|---|
Recuay | 9°43′45.1′′ | 77°27′13.15′′ | 3431 | 18 | 109017 | Ancash | Recuay | Recuay |
Yungay | 9°8′30.79′′ | 77°44′59.91′′ | 2466 | 18 | 109018 | Ancash | Yungay | Yungay |
Artesonraju AP2 | 8°58′0.86′′ | 77°38′12.69′′ | 4824 | 16 | UHG | Ancash | Huaylas | Caraz |
Querococha | 9°43′21.32′′ | 77°19′57.18′′ | 4013 | 14 | UHG | Ancash | Recuay | Catac |
Yanamarey | 9°39′22.3′′ | 77°16′41.32′′ | 4606 | 15 | UHG | Ancash | Recuay | Catac |
Huaraspaca | 9°52′20.82′′ | 77°11′1.24′′ | 5021 | 12 | UHG | Ancash | Recuay | Catac |
Date of Images | Snow Coverage (%) | |
---|---|---|
MODIS (500 m) | Landsat (30 m) | |
18 October 2003 | 6.1 | 6.5 |
13 May 2004 | 6.8 | 6.2 |
9 June 2008 | 6.3 | 6.5 |
15 August 2009 | 6.9 | 6.4 |
18 August 2010 | 5.4 | 5.7 |
17 September 2015 | 5.7 | 5.1 |
23 January 2016 | 4.8 | 5.6 |
22 November 2016 | 4.6 | 5.2 |
Climate Stations | Snow Cover Area (SCA) | ||
---|---|---|---|
Correlation Methods | |||
Monthly Precipitation | DCCA | Kendall | Spearman |
Recuay | −0.51 | −0.28 | −0.38 |
Yungay | −0.49 | −0.29 | −0.38 |
Querococha | 0.80 | −0.20 | −0.28 |
Yanamarey | −0.62 | −0.24 | −0.34 |
Artesonraju AP2 | −0.84 | −0.28 | −0.40 |
Huarapasca | 0.76 | −0.12 | −0.17 |
Monthly Temperature | |||
Recuay | −0.32 | −0.20 | −0.30 |
Yungay | 0.74 | −0.03 | −0.05 |
Querococha | −0.45 | −0.06 | −0.08 |
Yanamarey | 0.64 | 0.08 | 0.12 |
Artesonraju AP2 | −0.72 | −0.08 | −0.12 |
Huarapasca | 0.15 | −0.04 | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calizaya, E.; Laqui, W.; Sardón, S.; Calizaya, F.; Cuentas, O.; Cahuana, J.; Mindani, C.; Huacani, W. Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru). Sustainability 2023, 15, 7610. https://doi.org/10.3390/su15097610
Calizaya E, Laqui W, Sardón S, Calizaya F, Cuentas O, Cahuana J, Mindani C, Huacani W. Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru). Sustainability. 2023; 15(9):7610. https://doi.org/10.3390/su15097610
Chicago/Turabian StyleCalizaya, Elmer, Wilber Laqui, Saul Sardón, Fredy Calizaya, Osmar Cuentas, José Cahuana, Carmen Mindani, and Walquer Huacani. 2023. "Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru)" Sustainability 15, no. 9: 7610. https://doi.org/10.3390/su15097610
APA StyleCalizaya, E., Laqui, W., Sardón, S., Calizaya, F., Cuentas, O., Cahuana, J., Mindani, C., & Huacani, W. (2023). Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru). Sustainability, 15(9), 7610. https://doi.org/10.3390/su15097610