Growing ‘Genovese’ and ‘Valentino’ Basil in Pots Using Peat Substrate Combined with Phytoremediated Sediment: Effects on Yield and Nutraceutical Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Greenhouse Experimental Design
2.2. Plant Material and Greenhouse Experimental Design
2.3. Germination
2.4. Biomass Production
2.5. SPAD-Readings
2.6. Determination of Photosynthetic Pigments and Malondialdehyde MDA
2.7. Leaf Nutrients, Heavy Metal, and Organic Contaminant Contents
2.8. Nutraceutical Analysis
2.8.1. Quantification of Soluble Sugar
2.8.2. Quantification of Organic Acid
2.8.3. Determination of Total Phenolic Content
2.8.4. Determination of Antioxidant Power
2.9. Statistical Analysis
3. Results
3.1. Physicochemical Properties of the Substrate Mixes
3.2. Plant Development and Growth
3.2.1. Germination
3.2.2. Biomass Production
3.3. SPAD Readings, Photosynthetic Pigments, and MDA Content
3.4. Leaf Nutrients and Heavy Metal and Organic Contaminant Contents
3.5. Nutraceutical Analysis
3.6. Principal Component Analysis (PCA)
4. Discussion
4.1. Effect of Substrate Composition
4.2. Effect of Water Amount Given with Irrigation
4.3. Effect of Plant Genotype (‘Genovese’ vs. ‘Valentino’)
4.4. Irrigation Set Points Based on Substrate Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency European Environment Agency. 2021. Available online: https://www.eea.europa.eu/highlights/water-stress-is-a-major/ (accessed on 15 March 2023).
- Bączek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Węglarz, Z. Sweet Basil (Ocimum basilicum L.) Productivity and Raw Material Quality from Organic Cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef]
- Jakovljević, D.; Stanković, M.; Warchoł, M.; Skrzypek, E. Basil (Ocimum L.) Cell and Organ Culture for the Secondary Metabolites Production: A Review. Plant Cell Tissue Organ Cult. (PCTOC) 2022, 149, 61–79. [Google Scholar] [CrossRef]
- Saha, S.; Monroe, A.; Day, M.R. Growth, Yield, Plant Quality and Nutrition of Basil (Ocimum basilicum L.) under Soilless Agricultural Systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- Tebow, J. Evaluating Silicon Foliar Sprays as a Strategy to Improve Postproduction Performance of Potted Basil (Ocimum basilicum L.). Bachelor’s Thesis, Bachelor of Science in Agricultural, Food and Life Sciences, AR, USA, May 2021. Available online: https://scholarworks.uark.edu/hortuht/9/ (accessed on 15 March 2023).
- Khater, E.-S.; Bahnasawy, A.; Abass, W.; Morsy, O.; El-Ghobashy, H.; Shaban, Y.; Egela, M. Production of Basil (Ocimum basilicum L.) under Different Soilless Cultures. Sci. Rep. 2021, 11, 12754. [Google Scholar] [CrossRef] [PubMed]
- Radácsi, P.; Inotai, K.; Sárosi, S.; Czövek, P.; Bernáth, J.; Németh, É. Effect of Water Supply on the Physiological Characteristic and Production of Basil (Ocimum basilicum L.). Eur. J. Hortic. Sci. 2010, 75, 193. [Google Scholar]
- dos Santos, J.F.; Coelho, M.A.; Cruz, J.L.; Soares, T.M.; Cruz, A.M.L. Growth, Water Consumption and Basil Production in the Hydroponic System under Salinity. Rev. Ceres 2019, 66, 45–53. [Google Scholar] [CrossRef]
- Kalamartzis, I.; Menexes, G.; Georgiou, P.; Dordas, C. Effect of Water Stress on the Physiological Characteristics of Five Basil (Ocimum Basilicum L.) Cultivars. Agronomy 2020, 10, 1029. [Google Scholar] [CrossRef]
- Sanbugaro, A. L’utilizzazione Alimentare del Basilico. Bachelor’s Thesis, Università degli Studi di Padova, Padova, Italy, 2008. [Google Scholar]
- Macci, C.; Peruzzi, E.; Doni, S.; Vannucchi, F.; Masciandaro, G. Landfarming as a Sustainable Management Strategy for Fresh and Phytoremediated Sediment. Environ. Sci. Pollut. Res. 2021, 28, 39692–39707. [Google Scholar] [CrossRef]
- Tozzi, F.; Pecchioli, S.; Renella, G.; Melgarejo, P.; Legua, P.; Macci, C.; Doni, S.; Masciandaro, G.; Giordani, E.; Lenzi, A. Remediated Marine Sediment as Growing Medium for Lettuce Production: Assessment of Agronomic Performance and Food Safety in a Pilot Experiment. J. Sci. Food Agric. 2019, 99, 5624–5630. [Google Scholar] [CrossRef]
- Tozzi, F.; Renella, G.; Macci, C.; Masciandaro, G.; Gonnelli, C.; Colzi, I.; Giagnoni, L.; Pecchioli, S.; Nin, S.; Giordani, E. Agronomic Performance and Food Safety of Strawberry Cultivated on a Remediated Sediment. Sci. Total Environ. 2021, 796, 148803. [Google Scholar] [CrossRef]
- Martínez-Nicolás, J.J.; Legua, P.; Hernández, F.; Martínez-Font, R.; Giordani, E.; Melgarejo, P. Effect of Phytoremediated Port Sediment as an Agricultural Medium for Pomegranate Cultivation: Mobility of Contaminants in the Plant. Sustainability 2021, 13, 9661. [Google Scholar] [CrossRef]
- Chand, S.; Singh, S.; Singh, V.K.; Patra, D.D. Utilization of Heavy Metal-Rich Tannery Sludge for Sweet Basil (Ocimum basilicum L.) Cultivation. Environ. Sci. Pollut. Res. 2015, 22, 7470–7475. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Romanowska-Duda, Z.; Lisowska, K.; Wolf, W.M. Heavy Metal Uptake by Herbs. V. Metal Accumulation and Physiological Effects Induced by Thiuram in Ocimum basilicum L. Water Air Soil Pollut. 2017, 228, 334. [Google Scholar] [CrossRef] [PubMed]
- Dinu, C.; Vasile, G.-G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.-M. Translocation and Accumulation of Heavy Metals in Ocimum basilicum L. Plants Grown in a Mining-Contaminated Soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- UNI EN 13037 Soil Improvers and Growing Media—Determination of PH 2012. Available online: https://store.uni.com/en/uni-en-13037-2012 (accessed on 27 December 2022).
- UNI EN 13038 Soil Improvers and Growing Media—Determination of Electrical Conductivity 2012. Available online: https://store.uni.com/en/uni-en-13038-2012 (accessed on 27 December 2022).
- ISO 11464 Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis 2006. Available online: https://www.iso.org/standard/37718.html (accessed on 22 March 2023).
- EPA Method 1684 Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids 2001. Available online: https://settek.com/epa-method-1684/ (accessed on 22 March 2023).
- UNI EN 13041 Soil Improvers and Growing Media—Determination of Physical Properties—Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space 2012. Available online: https://store.uni.com/en/uni-en-13041-2012-106028.html (accessed on 27 December 2022).
- ISO 13878 Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (“elemental Analysis”) 1998. Available online: https://www.iso.org/standard/23117.html (accessed on 22 March 2023).
- ISO 10694 Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis) 1995. Available online: https://www.iso.org/standard/18782.html (accessed on 22 March 2023).
- EPA Method 3050B Acid Digestion of Sediments, Sludges, and Soils 1996. Available online: https://settek.com/epa-method-3050b/ (accessed on 22 March 2023).
- EPA Method 6010C Inductively Coupled Plasma-Atomic Emission Spectrometry 2000. Available online: https://settek.com/epa-method-6010c/ (accessed on 22 March 2023).
- Marx, M.-C.; Wood, M.; Jarvis, S.C. A Microplate Fluorimetric Assay for the Study of Enzyme Diversity in Soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Kukkonen, S.; Vestberg, M.; Sirviö, H.; Niemi, R.M. Application of Soil Enzyme Activity Test Kit in a Field Experiment. Soil Biol. Biochem. 2001, 33, 1665–1672. [Google Scholar] [CrossRef]
- Ellis, R.H.; Roberts, E.H. Improved Equations for the Prediction of Seed Longevity. Ann. Bot. 1980, 45, 13–30. [Google Scholar] [CrossRef]
- Massa, D.; Malorgio, F.; Lazzereschi, S.; Carmassi, G.; Prisa, D.; Burchi, G. Evaluation of Two Green Composts for Peat Substitution in Geranium (Pelargonium zonale L.) Cultivation: Effect on Plant Growth, Quality, Nutrition, and Photosynthesis. Sci. Hortic. 2018, 228, 213–221. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-3. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- UNI EN 13804 Foodstuffs-Determination of Elements and Their Chemical Species-General Considerations and Specific Requirements 2013. Available online: https://store.uni.com/en/uni-en-13804-2013 (accessed on 15 March 2023).
- UNI EN 13805 Foodstuffs-Determination of Trace Elements-Pressure Digestion 2014. Available online: https://store.uni.com/en/uni-en-13805-2014 (accessed on 15 March 2023).
- UNI EN ISO 17294-2 Water Quality-Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)-Part 2: Determination of Selected Elements Including Uranium Isotopes 2016. Available online: https://store.uni.com/en/en-iso-17294-2-2016 (accessed on 15 March 2023).
- UNI CEN/TS 15407 Solid Recovered Fuels-Method for the Determination of Carbon (C), Hydrogen (H) and Nitrogen (N) Content 2006. Available online: https://store.uni.com/cen-ts-15407-2006 (accessed on 15 March 2023).
- UNI EN 14039 Waste Characterization-Determination of Hydrocarbon Content in the Range C10 to C40 by Gas Chromatography 2005. Available online: https://store.uni.com/uni-en-14039-2005 (accessed on 15 March 2023).
- PPA 338 Rev 1. 2021. Available online: https://urly.it/3rh23 (accessed on 15 March 2023).
- Cataldi, T.R.I.; Campa, C.; Casella, I.G.; Bufo, S.A. Determination of Maltitol, Isomaltitol, and Lactitol by High-PH Anion-Exchange Chromatography with Pulsed Amperometric Detection. J. Agric. Food Chem. 1999, 47, 157–163. [Google Scholar] [CrossRef]
- Maurício Duarte-Almeida, J.; Novoa, A.V.; Linares, A.F.; Lajolo, F.M.; Inés Genovese, M. Antioxidant Activity of Phenolics Compounds from Sugar Cane (Saccharum officinarum L.) Juice. Plant Foods Hum. Nutr. 2006, 61, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-H.; Lin, H.-Y.; Chang, C.-Y.; Liu, Y.-C. Comparisons on the Antioxidant Properties of Fresh, Freeze-Dried and Hot-Air-Dried Tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.R. Package “Corrplot”: (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 22 May 2022).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’. Extr. Vis. Results Multivar. Data Anal. 2017, 76, 1–74. [Google Scholar]
- Tozzi, F.; Antonetti, M.; Prisa, D.; Burchi, G.; Turchi, A.; Macci, C.; Peruzzi, E.; Nin, S. Developing Patterns in Prunus laurocerasus Grown on Sediment Enriched Substrates. J. Soils Sediments 2022, 22, 2117–2127. [Google Scholar] [CrossRef]
- Nin, S.; Bonetti, D.; Antonetti, M.; Peruzzi, E.; Manzi, D.; Macci, C. Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs. Agronomy 2022, 13, 92. [Google Scholar] [CrossRef]
- Bitterlich, M.; Franken, P.; Graefe, J. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range under Root Growth Exclusion. Front. Plant Sci. 2018, 9, 301. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Akinci, S.; Bueyuekkeskin, T.; Eroğlu, A.; Erdoğan, B.E. The Effect of Humic Acid on Nutrient Composition in Broad Bean (Vicia faba L.) Roots. Not. Sci. Biol. 2009, 1, 81–87. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Miyabara, Y.; Kunito, T. Microbial Biomass and Ecoenzymatic Stoichiometries Vary in Response to Nutrient Availability in an Arable Soil. Eur. J. Soil Biol. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Giannini, V.; Peruzzi, E.; Masciandaro, G.; Doni, S.; Macci, C.; Bonari, E.; Silvestri, N. Comparison among Different Rewetting Strategies of Degraded Agricultural Peaty Soils: Short-Term Effects on Chemical Properties and Ecoenzymatic Activities. Agronomy 2020, 10, 1084. [Google Scholar] [CrossRef]
- Turner, B.L.; Condron, L.M.; France, C.A.M.; Lehmann, J.; Solomon, D.; Peltzer, D.A.; Richardson, S.J. Sulfur Dynamics during Long-Term Ecosystem Development. Biogeochemistry 2016, 128, 281–305. [Google Scholar] [CrossRef]
- Mininni, C.; Grassi, F.; Traversa, A.; Cocozza, C.; Parente, A.; Miano, T.; Santamaria, P. Posidonia oceanica (L.) Based Compost as Substrate for Potted Basil Production. J. Sci. Food Agric. 2015, 95, 2041–2046. [Google Scholar] [CrossRef]
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Burdina, I.; Priss, O. Effect of the Substrate Composition on Yield and Quality of Basil (Ocimum basilicum L.). J. Hortic. Res. 2016, 24, 109–118. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M.; Yu, P.; Zhou, C.; Liu, X. Biochar and Vermicompost Amendments Affect Substrate Properties and Plant Growth of Basil and Tomato. Agronomy 2020, 10, 224. [Google Scholar] [CrossRef]
- Woznicki, T.; Kusnierek, K.; Thomsen, M.; Sø nsteby, A. Basil (Ocimum basilicum L.) Growth Response to Wood Fiber Based Growing Media in Ebb-and-Flow System as a Function of the Electrical Conductivity of Nutrient Solution and Pot Size. In Proceedings of the II International Symposium on Growing Media, Soilless Cultivation, and Compost Utilization in Horticulture 1317, Ghent, Belgium, 22–27 August 2021; pp. 133–140. [Google Scholar]
- Gillespie, D.P.; Kubota, C.; Miller, S.A. Effects of Low PH of Hydroponic Nutrient Solution on Plant Growth, Nutrient Uptake, and Root Rot Disease Incidence of Basil (Ocimum basilicum L.). HortScience 2020, 55, 1251–1258. [Google Scholar] [CrossRef]
- Koç, E.; Karayiğit, B. Assessment of Biofortification Approaches Used to Improve Micronutrient-Dense Plants That Are a Sustainable Solution to Combat Hidden Hunger. J. Soil Sci. Plant Nutr. 2022, 22, 475–500. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Nabipour, M.; Azizi, M.; Gheisary, H.; Jalali, M.; Amini, Z. Effect of Kinds of Salt and Its Different Levels on Seed Germination and Growth of Basil Plant. World Appl. Sci. J. 2011, 15, 1039–1045. [Google Scholar]
- da Silva, T.I.; Nóbrega, J.S.; Figueiredo, F.R.A.; de Sousa, L.V.; da Silva Ribeiro, J.E.; Bruno, R.d.L.A.; Dias, T.J.; de Albuquerque, M.B. Ocimum basilicum L. Seeds Quality as Submitted to Saline Stress and Salicylic Acid. J. Agric. Sci. 2018, 10, 159–166. [Google Scholar] [CrossRef]
- Vasile, G.G.; Popa, D.E.; Buleandră, M.; David, I.G. An Experimental Design for the Optimization of the Extraction Methods of Metallic Mobile Fractions from Environmental Solid Samples. Environ. Monit. Assess. 2018, 190, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bugbee, G.J. Growth of Rhododendron, Rudbeckia and Thujia and the Leaching of Nitrates as Affected by the PH of Potting Media Amended with Biosolids Compost. Compost. Sci. Util. 1996, 4, 53–59. [Google Scholar] [CrossRef]
- Noguera, P.; Abad, M.; Puchades, R.; Maquieira, A.; Noguera, V. Influence of Particle Size on Physical and Chemical Properties of Coconut Coir Dust as Container Medium. Commun. Soil Sci. Plant Anal. 2003, 34, 593–605. [Google Scholar] [CrossRef]
- Tozzi, F.; Del Bubba, M.; Petrucci, W.A.; Pecchioli, S.; Macci, C.; García, F.H.; Nicolás, J.J.M.; Giordani, E. Use of a Remediated Dredged Marine Sediment as a Substrate for Food Crop Cultivation: Sediment Characterization and Assessment of Fruit Safety and Quality Using Strawberry (Fragaria x ananassa Duch.) as Model Species of Contamination Transfer. Chemosphere 2020, 238, 124651. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Burés, S. National Inventory of Organic Wastes for Use as Growing Media for Ornamental Potted Plant Production: Case Study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Agulló, E.; Pérez-Murcia, M.D.; Abad, M. Composts from Distillery Wastes as Peat Substitutes for Transplant Production. Resour. Conserv. Recycl. 2008, 52, 792–799. [Google Scholar] [CrossRef]
- Castillo, J.E.; Herrera, F.; López-Bellido, R.J.; López-Bellido, F.J.; López-Bellido, L.; Fernández, E.J. Municipal Solid Waste (MSW) Compost as a Tomato Transplant Medium. Compost. Sci. Util. 2004, 12, 86–92. [Google Scholar] [CrossRef]
- Moore, K.K. Uses of Compost in Potting Mixes. HortTechnology 2005, 15, 58–60. [Google Scholar] [CrossRef]
- Ribeiro, H.M.; Romero, A.M.; Pereira, H.; Borges, P.; Cabral, F.; Vasconcelos, E. Evaluation of a Compost Obtained from Forestry Wastes and Solid Phase of Pig Slurry as a Substrate for Seedlings Production. Bioresour. Technol. 2007, 98, 3294–3297. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Vicente, A.; Ros, M.; Tittarelli, F.; Intrigliolo, F.; Pascual, J.A. Citrus Compost and Its Water Extract for Cultivation of Melon Plants in Greenhouse Nurseries. Evaluation of Nutriactive and Biocontrol Effects. Bioresour. Technol. 2008, 99, 8722–8728. [Google Scholar] [CrossRef] [PubMed]
- Government of Italy. Legislative Decree n. 75 of 29 April 2010: Reorganization and Review of the Fertilizer Regulations (Riordino e Revisione Della Disciplina in Materia Di Fertilizzanti). Gazzetta Ufficiale Della Repubblica Italiana. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2010;75 (accessed on 15 March 2023).
- Shen, Z.J.; Xu, D.C.; Chen, Y.S.; Zhang, Z. Heavy Metals Translocation and Accumulation from the Rhizosphere Soils to the Edible Parts of the Medicinal Plant Fengdan (Paeonia ostii) Grown on a Metal Mining Area, China. Ecotoxicol. Environ. Saf. 2017, 143, 19–27. [Google Scholar] [CrossRef]
- Stancheva, I.; Geneva, M.; Markovska, Y.; Tzvetkova, N.; Mitova, I.; Todorova, M.; Petrovl, P. A Comparative Study on Plant Morphology, Gas Exchange Parameters, and Antioxidant Response of Ocimum basilicum L. And Origanum vulgare L. Grown on Industrially Polluted Soil. Turk. J. Biol. 2014, 38, 89–102. [Google Scholar] [CrossRef]
- Dinu, C.; Mihaela Ungureanu, E.; Geanina Vasile, G.; Kim, L.; Ionescu, I.; Ene, C.; Simion, M. Soil and vegetation pollution from an abandoned mining area situated in Hunedoara County, Romania. Rev. Chim. 2018, 69, 14–20. [Google Scholar] [CrossRef]
- Abbasifar, A.; Shahrabadi, F.; ValizadehKaji, B. Effects of Green Synthesized Zinc and Copper Nano-Fertilizers on the Morphological and Biochemical Attributes of Basil Plant. J. Plant Nutr. 2020, 43, 1104–1118. [Google Scholar] [CrossRef]
- El-Kereti, M.; El-feky, S.; Khater, M.; Osman, Y.; El-sherbini, E. ZnO Nanofertilizer and He Ne Laser Irradiation for Promoting Growth and Yield of Sweet Basil Plant. Recent. Pat. Food Nutr. Agric. 2014, 5, 169–181. [Google Scholar] [CrossRef]
- Prokop’ev, I.A.; Filippova, G.V.; Shein, A.A.; Gabyshev, D. V Impact of Urban Anthropogenic Pollution on Seed Production, Morphological and Biochemical Characteristics of Chamomile, Matricaria chamomila L. Russ. J. Ecol. 2014, 45, 18–23. [Google Scholar] [CrossRef]
- Prasad, A.; Kumar, S.; Khaliq, A.; Pandey, A. Heavy Metals and Arbuscular Mycorrhizal (AM) Fungi Can Alter the Yield and Chemical Composition of Volatile Oil of Sweet Basil (Ocimum basilicum L.). Biol. Fertil. Soils 2011, 47, 853–861. [Google Scholar] [CrossRef]
- Lajayer, H.A.; Savaghebi, G.; Hadian, J.; Hatami, M.; Pezhmanmehr, M. Comparison of Copper and Zinc Effects on Growth, Micro- and Macronutrients Status and Essential Oil Constituents in Pennyroyal (Mentha pulegium L.). Braz. J. Bot. 2017, 40, 379–388. [Google Scholar] [CrossRef]
- Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Pavlović, P. Ecological Potential of Plants for Phytoremediation and Ecorestoration of Fly Ash Deposits and Mine Wastes. Front. Environ. Sci. 2018, 6, 124. [Google Scholar] [CrossRef]
- Zayed, A.M.; Terry, N. Chromium in the Environment: Factors Affecting Biological Remediation. Plant Soil 2003, 249, 139–156. [Google Scholar] [CrossRef]
- Angelova, V.; Ivanova, R.; Todorov, G.; Ivanov, K. Heavy Metal Uptake by Rape. Commun. Soil Sci. Plant Anal. 2008, 39, 344–357. [Google Scholar] [CrossRef]
- Ada, N.-L.; Farkash, L.; Hamburger, D.; Ovadia, R.; Forrer, I.; Kagan, S.; Michal, O.-S. Light-Scattering Shade Net Increases Branching and Flowering in Ornamental Pot Plants. J. Hortic. Sci. Biotechnol. 2008, 83, 9–14. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Rożek, E.; Dzida, K.; Borowski, B. Growth Response to Nitrogen and Potassium Fertilization of Common Basil (Ocimum basilicum L.) Plants. Acta Sci. Pol. Hortorum Cultus 2012, 11, 275–288. [Google Scholar]
- Kwee, E.M.; Niemeyer, E.D. Variations in Phenolic Composition and Antioxidant Properties among 15 Basil (Ocimum basilicum L.) Cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Barickman, T.C.; Olorunwa, O.J.; Sehgal, A.; Walne, C.H.; Reddy, K.R.; Gao, W. Yield, Physiological Performance, and Phytochemistry of Basil (Ocimum basilicum L.) under Temperature Stress and Elevated CO2 Concentrations. Plants 2021, 10, 1072. [Google Scholar] [CrossRef]
- Stagnari, F.; Di Mattia, C.; Galieni, A.; Santarelli, V.; D’Egidio, S.; Pagnani, G.; Pisante, M. Light Quantity and Quality Supplies Sharply Affect Growth, Morphological, Physiological and Quality Traits of Basil. Ind. Crops Prod. 2018, 122, 277–289. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ashkani, S.; Baghdadi, A.; Pazoki, A.; Jaafar, H.Z.E.; Rahmat, A. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules 2016, 21, 1203. [Google Scholar] [CrossRef]
- Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Bie, Z.; Ito, T.; Shinohara, Y. Effects of Sodium Sulfate and Sodium Bicarbonate on the Growth, Gas Exchange and Mineral Composition of Lettuce. Sci. Hortic. 2004, 99, 215–224. [Google Scholar] [CrossRef]
- Kalisz, A.; Jezdinský, A.; Pokluda, R.; Sękara, A.; Grabowska, A.; Gil, J. Impacts of Chilling on Photosynthesis and Chlorophyll Pigment Content in Juvenile Basil Cultivars. Hortic. Environ. Biotechnol. 2016, 57, 330–339. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Growth and Development of Basil Species in Response to Temperature. HortScience 2019, 54, 1915–1920. [Google Scholar] [CrossRef]
- Hadas, A. Germination and Seedling Establishment. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 130–137. [Google Scholar] [CrossRef]
- Fotovat, R.; Valizadeh, M.; Toorchi, M. Association between Water-Use Efficiency Components and Total Chlorophyll Content (SPAD) in Wheat (Triticum aestivum L.) under Well-Watered and Drought Stress Conditions. J. Food Agric. Environ. 2007, 5, 225. [Google Scholar]
- Dordas, C.A.; Papathanasiou, F.; Lithourgidis, A.; Petrevska, J.K.; Papadopoulos, I.; Pankou, C.; Gekas, F.; Ninou, E.; Mylonas, I.; Sistanis, I. Evaluation of Physiological Characteristics as Selection Criteria for Drought Tolerance in Maize Inbred Lines and Their Hybrids. Maydica 2018, 63, 14. [Google Scholar]
- Kashani, A.; Pirdashti, H.; Kashani, K. Effects of Four Year Sewage Sludge Application on Some Morphological Traits and Chlorophyll Content in Basil (Ocimum basilicum L.). J. Agric. Technol. 2013, 9, 451–460. [Google Scholar]
- Ontiveros-Capurata, R.E.; Juárez-López, P.; Mendoza-Tafolla, R.O.; Alia-Tejacal, I.; Villegas-Torres, O.G.; Guillén-Sánchez, D.; Cartmill, A.D. Relationship between Chlorophyll and Nitrogen Concentration, and Fresh Matter Production in Basil ‘Nufar’ (Ocimum basilicum) with Three Handheld Chlorophyll Meter Readings: SPAD, AtLEAF and MC-100. Rev. Chapingo Ser. Hortic. 2022, 28, 189–202. [Google Scholar] [CrossRef]
- Azia, F.; Stewart, K.A. Relationships between Extractable Chlorophyll and SPAD Values in Muskmelon Leaves. J. Plant Nutr. 2001, 24, 961–966. [Google Scholar] [CrossRef]
- Ruiz-Espinoza, F.H.; Murillo-Amador, B.; Garcia-Hernandez, J.L.; Fenech-Larios, L.; Rueda-Puente, E.O.; Troyo-Dieguez, E.; Kaya, C.; Beltran-Morales, A. Field Evaluation of the Relationship between Chlorophyll Content in Basil Leaves and a Portable Chlorophyll Meter (SPAD-502) Readings. J. Plant Nutr. 2010, 33, 423–438. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Borghesi, E.; González-Miret, M.L.; Escudero-Gilete, M.L.; Malorgio, F.; Heredia, F.J.; Meléndez-Martínez, A.J. Effects of Salinity Stress on Carotenoids, Anthocyanins, and Color of Diverse Tomato Genotypes. J. Agric. Food Chem. 2011, 59, 11676–11682. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K. Photosynthetic Response of Plants under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Esfandiari, E.; Shakiba, M.R.; Mahboob, S.A.; Alyari, H.; Shahabivand, S. The Effect of Water Stress on the Antioxidant Content, Protective Enzyme Activities, Proline Content and Lipid Peroxidation in Wheat Seedling. Pak. J. Biol. Sci. 2008, 11, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Attia, H.; Ouhibi, C.; Ellili, A.; Msilini, N.; Bouzaïen, G.; Karray, N.; Lachaâl, M. Analysis of Salinity Effects on Basil Leaf Surface Area, Photosynthetic Activity, and Growth. Acta Physiol. Plant 2011, 33, 823–833. [Google Scholar] [CrossRef]
- Chaves, M.M.; Oliveira, M.M. Mechanisms Underlying Plant Resilience to Water Deficits: Prospects for Water-Saving Agriculture. J. Exp. Bot. 2004, 55, 2365–2384. [Google Scholar] [CrossRef]
- Khaleghi, E.; Arzani, K.; Moallemi, N.; Barzegar, M. Evaluation of Chlorophyll Content and Chlorophyll Fluorescence Parameters and Relationships between Chlorophyll a, b and Chlorophyll Content Index under Water Stress in Olea europaea cv. Dezful. Int. J. Agric. Biosyst. Eng. 2012, 6, 636–639. [Google Scholar]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Rezaei-Chiyaneh, E.; Seyyedi, S.M.; Ebrahimian, E.; Moghaddam, S.S.; Damalas, C.A. Exogenous Application of Gamma-Aminobutyric Acid (GABA) Alleviates the Effect of Water Deficit Stress in Black Cumin (Nigella sativa L.). Ind. Crops Prod. 2018, 112, 741–748. [Google Scholar] [CrossRef]
- Mahdavikia, H.; Rezaei-Chiyaneh, E.; Rahimi, A.; Mohammadkhani, N. Effects of Fertilizer Treatments on Antioxidant Activities and Physiological Traits of Basil (Ocimum basilicum L.) under Water Limitation Conditions. J. Med. Plants By-Prod. 2019, 8, 143–151. [Google Scholar]
- Yusuf, N.; Hamed, N.F.I. Effects of Water Deficit on the Growth and Chlorophyll Content of Capsicum frutescens. J. Sustain. Sci. Manag. 2021, 16, 148–158. [Google Scholar] [CrossRef]
- Olszewska, M.; Kobylinski, A.; Kurzeja, M. Effects of Different Proportions of Medicago Media Pers. in Mixtures with Dactylis glomerata L. on the Yield of Aboveground Biomass, Protein Yield and Relative Chlorophyll Content in Orchard Grass Leaves. Acta Sci. Polonorum Agric. 2016, 15, 15–24. [Google Scholar]
- Di Mascio, P.; Murphy, M.E.; Sies, H. Antioxidant Defense Systems: The Role of Carotenoids, Tocopherols, and Thiols. Am. J. Clin. Nutr. 1991, 53, 194S–200S. [Google Scholar] [CrossRef]
- Snodderly, D.M. Evidence for Protection against Age-Related Macular Degeneration by Carotenoids and Antioxidant Vitamins. Am. J. Clin. Nutr. 1995, 62, 1448S–1461S. [Google Scholar] [CrossRef] [PubMed]
- Mibei, E.K.; Ambuko, J.; Giovannoni, J.J.; Onyango, A.N.; Owino, W.O. Carotenoid Profiling of the Leaves of Selected African Eggplant Accessions Subjected to Drought Stress. Food Sci. Nutr. 2017, 5, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, J.; Pour-Aboughadareh, A.; Ourang, S.F.; Mehrabi, A.A.; Siddique, K.H.M. Wild Relatives of Wheat: Aegilops–Triticum Accessions Disclose Differential Antioxidative and Physiological Responses to Water Stress. Acta Physiol. Plant 2018, 40, 90. [Google Scholar] [CrossRef]
- Al-Huqail, A.; El-Dakak, R.M.; Sanad, M.N.; Badr, R.H.; Ibrahim, M.M.; Soliman, D.; Khan, F. Effects of Climate Temperature and Water Stress on Plant Growth and Accumulation of Antioxidant Compounds in Sweet Basil (Ocimum basilicum L.) Leafy Vegetable. Scientifica 2020, 2020, 3808909. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, R.; Ashraf, M.A.; Parveen, S.; Iqbal, M.; Hussain, I. Effect of Salt Stress on Different Growth and Biochemical Attributes in Two Canola (Brassica napus L.) Cultivars. Commun. Soil Sci. Plant Anal. 2014, 45, 669–679. [Google Scholar] [CrossRef]
- Büchi, R.; Bachmann, M.; Keller, F. Carbohydrate Metabolism in Source Leaves of Sweet Basil (Ocimum basilicum L.), a Starch-Storing and Stachyose-Translocating Labiate. J. Plant Physiol. 1998, 153, 308–315. [Google Scholar] [CrossRef]
- Farhoudi, R. Effect of Salt Stress on Physiological and Morphological Parameters of Rapeseed Cultivars. Adv. Environ. Biol. 2011, 5, 2501–2509. [Google Scholar]
- Prado, F.; Boero, C.; Gallardo, M.; Gonzalez, J. Effect of NaCl On Germination, Growth And Soluble Sugar Content In Chenopodium quinoa Wild Seeds. Bot. Bull. Acad. Sin. 2000, 41, 27–34. [Google Scholar]
- Ashraf, M.A.; Iqbal, M.; Rasheed, R.; Hussain, I.; Riaz, M.; Arif, M.S. Environmental Stress and Secondary Metabolites in Plants: An Overview. Plant Metab. Regul. Environ. Stress 2018, 153–167. [Google Scholar] [CrossRef]
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 419–441. [Google Scholar]
- Ahanger, M.A.; Morad-Talab, N.; Abd-Allah, E.F.; Ahmad, P.; Hajiboland, R. Plant Growth under Drought Stress: Significance of Mineral Nutrients. Water Stress Crop Plants A Sustain. Approach 2016, 2, 649–668. [Google Scholar]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Ruan, H. Response of Plants to Water Stress: A Meta-Analysis. Front. Plant Sci. 2020, 11, 978. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A Review on Drought Stress in Plants: Implications, Mitigation and the Role of Plant Growth Promoting Rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- Trivellini, A.; Gordillo, B.; Rodriguez-Pulido, F.J.; Borghesi, E.; Ferrante, A.; Vernieri, P.; Quijada-Morin, N.; Gonzalez-Miret, M.L.; Heredia, F.J. Effect of Salt Stress in the Regulation of Anthocyanins and Color of Hibiscus Flowers by Digital Image Analysis. J. Agric. Food Chem. 2014, 62, 6966–6974. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium Rate Alters the Antioxidant Capacity and Phenolic Concentration of Basil (Ocimum basilicum L.) Leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Bekhradi, F.; Delshad, M.; Marín, A.; Luna, M.C.; Garrido, Y.; Kashi, A.; Babalar, M.; Gil, M.I. Effects of Salt Stress on Physiological and Postharvest Quality Characteristics of Different Iranian Genotypes of Basil. Hortic. Environ. Biotechnol. 2015, 56, 777–785. [Google Scholar] [CrossRef]
- Mancarella, S.; Orsini, F.; Van Oosten, M.J.; Sanoubar, R.; Stanghellini, C.; Kondo, S.; Gianquinto, G.; Maggio, A. Leaf Sodium Accumulation Facilitates Salt Stress Adaptation and Preserves Photosystem Functionality in Salt Stressed Ocimum basilicum. Environ. Exp. Bot. 2016, 130, 162–173. [Google Scholar] [CrossRef]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; Kyriacou, M.C.; Rouphael, Y. Successive Harvests Modulate the Productive and Physiological Behavior of Three Genovese Pesto Basil Cultivars. Agronomy 2021, 11, 560. [Google Scholar] [CrossRef]
- Teliban, G.-C.; Burducea, M.; Mihalache, G.; Zheljazkov, V.D.; Dincheva, I.; Badjakov, I.; Popa, L.-D.; Bodale, I.; Vlăduț, N.-V.; Cojocaru, A. Morphological, Physiological and Quality Performances of Basil Cultivars under Different Fertilization Types. Agronomy 2022, 12, 3219. [Google Scholar] [CrossRef]
- Caliskan, O.; Kurt, D.; Temizel, K.E.; Odabas, M.S. Effect of Salt Stress and Irrigation Water on Growth and Development of Sweet Basil (Ocimum basilicum L.). Open Agric. 2017, 2, 589–594. [Google Scholar] [CrossRef]
- Doty, S.W.E. Hydroponic and Soilless Culture Systems and Transplant Practices Influence Production of Basil (Omicum basilicum L.). Master’s Thesis, Science in Horticulture, AR, USA, May 2020. Available online: https://www.proquest.com/openview/873c25e8b81539b43025246e38fc9627/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 15 March 2023).
- Hussain, M.; Farooq, S.; Hasan, W.; Ul-Allah, S.; Tanveer, M.; Farooq, M.; Nawaz, A. Drought Stress in Sunflower: Physiological Effects and Its Management through Breeding and Agronomic Alternatives. Agric. Water Manag. 2018, 201, 152–166. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef] [PubMed]
- Evert, R.F.; Eichhorn, S.E. Raven Biology of Plants, 8th ed.; W.H. Freeman Press: New York, NY, USA, 2013; p. 864. [Google Scholar] [CrossRef]
- Acharya, T.P.; Reiter, M.S.; Welbaum, G.; Arancibia, R.A. Nitrogen Uptake and Use Efficiency in Sweet Basil Production under Low Tunnels. HortScience 2020, 55, 429–435. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B.; Barker, A.V. Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis, Interpretation and Use of Results of Agronomic and Horticultural Crop Plant Tissue; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014; p. 571. [Google Scholar]
- Bullock, D.G.; Anderson, D.S. Evaluation of the Minolta SPAD-502 Chlorophyll Meter for Nitrogen Management in Corn. J. Plant Nutr. 1998, 21, 741–755. [Google Scholar] [CrossRef]
- Choi, S.-T.; Park, D.-S.; Kang, S.-M.; Park, S.-J. Use of a Chlorophyll Meter to Diagnose Nitrogen Status of ‘Fuyu’Persimmon Leaves. HortScience 2011, 46, 821–824. [Google Scholar] [CrossRef]
- Gianquinto, G.; Sambo, P.; Bona, S. The Use of SPAD-502 Chlorophyll Meter for Dynamically Optimizing the Nitrogen Supply in Potato Crop: A Methodological Approach. In Proceedings of the IX International Symposium on Timing of Field Production in Vegetable Crops 607, Piracicaba, Brazil, 20–24 May 2001; pp. 197–204. [Google Scholar]
- Walters, K.J.; Currey, C.J. Effects of Nutrient Solution Concentration and Daily Light Integral on Growth and Nutrient Concentration of Several Basil Species in Hydroponic Production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and Antagonistic Interactions between Potassium and Magnesium in Higher Plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef]
Parameters | TS0 | TS12.5 | TS25 | Ref. |
---|---|---|---|---|
pH | 5.33 c | 5.51 b | 5.81 a | [18] |
EC (dS m−1) | 0.58 c | 0.75 b | 0.98 a | [19] |
N-NH4+ (mg kg−1) | 185.19 a | 74.41 b | 68.5 c | |
N-NO3− (mg kg−1) | 439.19 a | 313.81 b | 230.82 c | |
Humidity (%) | 15.39 a | 8.22 b | 6.86 c | [20] |
Volatile solid (%) | 88.79 a | 41.19 b | 31.10 c | [21] |
Porosity (%) | 89.59 a | 83.34 b | 78.60 c | [22] |
Bulk density (g cm−3) | 0.17 c | 0.34 b | 0.47 a | |
TN (%) | 0.92 a | 0.70 b | 0.38 c | [23] |
TOC (%) | 28.51 a | 18.74 b | 11.94 c | [24] |
TP (g kg−1) | 977.50 c | 1129.97 b | 1186.77 a | |
Metals | ||||
Ca (g kg−1) | 8.29 b | 13.53 a | 13.39 a | [25,26] |
Mg (g kg−1) | 0.82 c | 2.95 b | 3.37 a | |
Na (g kg−1) | 0.23 c | 0.63 b | 0.77 a | |
K (g kg−1) | 0.85 c | 3.98 b | 4.65 a | |
Fe (g kg−1) | 0.69 c | 10.51 b | 11.48 a | |
Cu (mg kg−1) | 7.00 c | 35.00 b | 40.17 a | |
Zn (mg kg−1) | 0.00 c | 102.59 b | 137.69 a | |
Mn (mg kg−1) | 0.00 c | 1106.29 b | 1537.99 a | |
Ni (mg kg−1) | 4.50 c | 25.65 b | 35.77 a | |
Cr (mg kg−1) | 0.81 c | 40.54 b | 54.49 a | |
Pb (mg kg−1) | 0.00 c | 25.65 b | 35.77 a | |
Cd (mg kg−1) | - | - | - | |
Enzymatic activity | ||||
β-Glu (μmol g−1 h−1) | 1216.74 ns | 1116.34 ns | 1016.84 ns | [27,28] |
Acid-P (μmol g−1 h−1) | 1684.39 a | 1665.03 a | 1320.89 b | |
Aryl-S (μmol g−1 h−1) | 33.52 b | 67.08 a | 61.56 a | |
Buty-E (μmol g−1 h−1) | 1837.82 ns | 1795.86 ns | 1689.07 ns |
Treatment | Germination | Biomass Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SM | Gmax (%) | MGT (d) | Plant FW (g) | Pot Unit | WC (%) | ||||||
LFW (g) | SFW (g) | TFW (g) | LA (cm2) | LDW (g) | SDW (g) | TDW (g) | |||||
TS0 | 34.5 c | 17.0 a | 4.1 ns | 22.4 c | 6.7 c | 29.1 c | 535.7 c | 2.4 b | 0.6 b | 2.9 b | 88.9 b |
TS12.5 | 46.4 b | 11.9 b | 3.4 ns | 26.1 b | 10.2 b | 36.2 b | 659.1 b | 2.3 b | 0.6 b | 2.8 b | 91.3 a |
TS25 | 53.0 a | 12.0 b | 4.0 ns | 34.2 a | 12.8 a | 46.9 a | 847.0 a | 2.8 a | 0.9 a | 3.7 a | 92.0 a |
IR | |||||||||||
IR1 | 55.8 a | 10.9 b | 5.0 a | 42.2 a | 16.8 a | 59.0 a | 1024.1 a | 3.4 a | 1.1 a | 4.5 a | 92.2 a |
IR2 | 44.8 b | 12.3 b | 3.9 b | 21.4 b | 7.0 b | 28.4 b | 548.9 b | 2.2 b | 0.6 b | 2.8 b | 89.4 b |
IR3 | 33.3 c | 17.7 a | 2.6 c | 19.1 b | 5.8 b | 24.9 b | 468.9 b | 1.8 c | 0.4 c | 2.2 c | 90.5 b |
CV | |||||||||||
Genovese | 42.9 ns | 13.9 ns | 3.6 ns | 23.8 b | 10.6 ns | 34.4 b | 633.0 b | 2.3 b | 0.8 a | 3.1 ns | 90.2 b |
Valentino | 46.4 ns | 13.4 ns | 4.1 ns | 31.3 a | 9.2 ns | 40.4 a | 728.1 a | 2.7 a | 0.6 b | 3.2 ns | 91.3 a |
SM × IR | |||||||||||
TS0 IR1 | 48.8 bc | 15.8 a | 5.7 a | 42.6 a | 13.2 b | 55.6 a | 1012.9 a | 4.1 a | 1.0 ns | 5.0 a | 90.9 a |
TS0 IR2 | 32.6 de | 16.5 a | 3.9 bc | 13.4 c | 4.1 c | 17.4 cd | 345.4 cd | 1.6 d | 0.4 ns | 2.0 e | 88.6 b |
TS0 IR3 | 22.5 e | 18.8 a | 2.7 c | 11.4 c | 3.0 c | 14.4 d | 248.7 d | 1.6 d | 0.3 ns | 1.9 e | 87.0 b |
TS12.5 IR1 | 55.9 ab | 8.4 b | 5.3 ab | 42.9 a | 20.0 a | 62.9 a | 1063.7 a | 3.1 b | 1.1 ns | 4.2 bc | 93.2 a |
TS12.5 IR2 | 43.2 cd | 10.1 b | 2.8 c | 19.4 c | 6.1 c | 25.4 c | 502.8 c | 2.4 c | 0.5 ns | 2.9 d | 88.1 b |
TS12.5 IR3 | 40.3 cd | 17.2 a | 2.1 d | 15.9 c | 4.4 c | 20.3 cd | 410.8 cd | 1.4 d | 0.3 ns | 1.4 e | 92.7 a |
TS25 IR1 | 62.8 a | 8.5 b | 4.1 b | 41.2 a | 17.4 a | 58.6 a | 995.5 a | 3.2 b | 1.1 ns | 4.3 b | 92.5 a |
TS25 IR2 | 58.7 a | 10.5 b | 5.1 ab | 31.5 b | 10.9 b | 42.4 b | 798.3 b | 2.7 bc | 0.8 ns | 3.5 cd | 91.6 a |
TS25 IR3 | 37.6 d | 17.5 a | 2.9 c | 29.8 b | 10.0 b | 39.8 b | 747.1 b | 2.5 c | 0.7 ns | 3.2 d | 91.9 a |
Significance | |||||||||||
SM | ** | ** | ns | ** | ** | ** | ** | ** | ** | ** | ** |
IR | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
CV | ns | ns | ns | ** | ns | ** | * | ** | ** | ns | * |
SM × IR | ** | ** | ** | ** | ** | ** | ** | ** | ns | ** | ** |
SM × CV | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
IR × CV | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SM × IR × CV | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SM | Chlorophyll (µg mg−1 FW) | Carotenoids (µg mg−1 FW) | Phenols (abs320 g−1 FW) | SPAD | MDA (mM g−1 FW) | ||
---|---|---|---|---|---|---|---|
a | b | Tot | |||||
TS0 | 0.60 ns | 0.19 ns | 0.79 ns | 18.68 ns | 8.59 a | 32.42 ns | 0.84 ns |
TS12.5 | 0.61 ns | 0.19 ns | 0.80 ns | 18.93 ns | 5.70 b | 33.12 ns | 0.94 ns |
TS25 | 0.63 ns | 0.21 ns | 0.83 ns | 17.14 ns | 5.68 b | 32.88 ns | 1.02 ns |
IR | |||||||
IR1 | 0.67 a | 0.22 a | 0.89 a | 16.65 b | 7.96 a | 33.62 ns | 0.78 b |
IR2 | 0.60 b | 0.19 b | 0.79 b | 18.54 a | 6.62 ab | 32.63 ns | 0.81 b |
IR3 | 0.56 b | 0.18 b | 0.74 b | 19.55 a | 5.40 b | 32.17 ns | 1.20 a |
CV | |||||||
Genovese | 0.71 a | 0.23 a | 0.93 a | 21.25 a | 6.04 b | 38.90 a | 0.90 ns |
Valentino | 0.52 b | 0.17 b | 0.68 b | 15.25 b | 7.27 a | 26.71 b | 0.96 ns |
Significance | |||||||
SM | ns | ns | ns | ns | ** | ns | ns |
IR | ** | ** | ** | ** | ** | ns | ** |
CV | ** | ** | ** | ** | * | ** | ns |
SM × IR | ns | ns | ns | ns | ns | ns | ns |
SM × CV | ns | ns | ns | ns | ns | ns | ns |
IR × CV | ns | ns | ns | ns | ns | ns | ns |
SM × IR × CV | ns | ns | ns | ns | ns | ns | ns |
SM | Ca (g kg−1 DW) | K (g kg−1 DW) | Mg (g kg−1 DW) | Fe (mg kg−1 DW) | Mn (mg kg−1 DW) | Na (mg kg−1 DW) | N tot (% DW) | C10–40 (g kg−1 DW) |
---|---|---|---|---|---|---|---|---|
TS0 | 11.67 ns | 45.67 ns | 2.55 ns | 68.78 ns | 288.17 a | 781.67 c | 4.23 ns | 1.45 ns |
TS12.5 | 11.41 ns | 45.72 ns | 2.77 ns | 70.92 ns | 253.33 b | 838.83 b | 4.05 ns | 1.56 ns |
TS25 | 12.44 ns | 45.45 ns | 3.01 ns | 66.53 ns | 208.83 c | 949.50 a | 4.11 ns | 1.42 ns |
IR | ||||||||
IR1 | 13.16 a | 45.25 ns | 2.98 ns | 69.52 ab | 201.00 c | 953.83 a | 4.39 a | 1.52 ns |
IR2 | 11.69 ab | 45.63 ns | 2.67 ns | 64.02 b | 319.17 a | 661.17 b | 3.85 b | 1.40 ns |
IR3 | 10.68 b | 45.95 ns | 2.68 ns | 72.70 a | 230.17 b | 955.00 a | 4.15 ab | 1.51 ns |
CV | ||||||||
Genovese | 10.20 b | 45.33 ns | 2.81 ns | 47.82 b | 266.33 a | 693.78 b | 4.17 ns | 1.07 b |
Valentino | 13.48 a | 45.89 ns | 2.74 ns | 89.67 a | 233.89 b | 1019.56 a | 4.09 ns | 1.88 a |
Significance | ||||||||
SM | ns | ns | ns | ns | ** | ** | ns | ns |
IR | ** | ns | ns | ** | ** | ** | * | ns |
CV | ** | ns | ns | ** | ** | ** | ns | * |
SM × IR | ns | ns | ns | ns | ns | ns | ns | ns |
SM × CV | ns | ns | ns | ns | ns | ns | ns | ns |
IR × CV | ns | ns | ns | ns | ns | ns | ns | ns |
SM × IR × CV | ns | ns | ns | ns | ns | ns | ns | ns |
SM | TSugars (mg g−1 FW) | Malic Ac. (mg 100 g−1 FW) | Citric Ac. (mg 100 g−1 FW) | Shikimic Ac. (mg 100 g−1 FW) | TPC (mg 100 g−1 FW) | DPPH (%) |
---|---|---|---|---|---|---|
TS0 | 1.43 c | 40.23 b | 4.51 a | 5.27 a | 349.83 a | 79.47 a |
TS12.5 | 2.17 b | 48.71 b | 3.51 b | 3.77 b | 297.50 b | 56.80 b |
TS25 | 3.45 a | 75.34 a | 2.41 c | 3.92 b | 312.67 ab | 59.79 b |
IR | ||||||
IR1 | 1.65 c | 50.50 ns | 3.05 c | 4.18 ns | 302.17 ns | 63.44 ns |
IR2 | 2.35 b | 55.63 ns | 3.47 b | 4.30 ns | 319.83 ns | 65.02 ns |
IR3 | 3.05 a | 58.15 ns | 3.91 a | 4.48 ns | 338.00 ns | 67.60 ns |
CV | ||||||
Genovese | 2.16 b | 48.79 b | 3.51 ns | 4.50 a | 417.56 a | 68.17 a |
Valentino | 2.54 a | 60.73 a | 3.44 ns | 4.14 b | 222.44 b | 62.53 b |
Significance | ||||||
SM | ** | ** | ** | ** | * | ** |
IR | ** | ns | ** | ns | ns | ns |
CV | ** | ** | ns | * | ** | ** |
SM × IR | ns | ns | ns | ns | ns | ns |
SM × CV | ns | ns | ns | ns | ns | ns |
IR × CV | ns | ns | ns | ns | ns | ns |
SM × IR × CV | ns | ns | ns | ns | ns | ns |
Traits | PC1 | PC2 |
---|---|---|
TFW | 0.288 * | 0.162 |
Plant FW | 0.202 * | 0.141 |
SFW | 0.242 * | 0.247 * |
SDW | 0.199 | 0.302 * |
TDW | 0.247 * | 0.184 |
WC | 0.198 | −0.098 |
Gmax | 0.277 * | 0.161 |
TMG | −0.227 * | −0.160 |
TChls | −0.034 | 0.378 * |
Carotenoids | −0.266 * | 0.180 |
Phenols | 0.063 | −0.008 |
SPAD | −0.157 | 0.328 * |
MDA | −0.048 | −0.204 |
DPPH | −0.207 * | 0.011 |
TPolyphenols | −0.228 * | 0.261 * |
TSugars | 0.051 | −0.128 |
Malic ac. | 0.173 | −0.110 |
Citric ac. | −0.246 * | −0.126 |
Ca | 0.276 * | −0.130 |
Fe | 0.150 | −0.299 * |
Mg | 0.198 * | 0.134 |
Mn | −0.209 * | 0.023 |
K | −0.019 | −0.091 |
Na | 0.198 * | −0.207 * |
TN | 0.080 | 0.091 |
C10–40 | 0.177 | −0.292 * |
Perc. of variance | 33.48% | 24.90% |
Cum. Perc. of variance | 33.48% | 58.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nin, S.; Bini, L.; Antonetti, M.; Manzi, D.; Bonetti, D. Growing ‘Genovese’ and ‘Valentino’ Basil in Pots Using Peat Substrate Combined with Phytoremediated Sediment: Effects on Yield and Nutraceutical Content. Sustainability 2023, 15, 7314. https://doi.org/10.3390/su15097314
Nin S, Bini L, Antonetti M, Manzi D, Bonetti D. Growing ‘Genovese’ and ‘Valentino’ Basil in Pots Using Peat Substrate Combined with Phytoremediated Sediment: Effects on Yield and Nutraceutical Content. Sustainability. 2023; 15(9):7314. https://doi.org/10.3390/su15097314
Chicago/Turabian StyleNin, Stefania, Lorenzo Bini, Maurizio Antonetti, Davide Manzi, and Daniele Bonetti. 2023. "Growing ‘Genovese’ and ‘Valentino’ Basil in Pots Using Peat Substrate Combined with Phytoremediated Sediment: Effects on Yield and Nutraceutical Content" Sustainability 15, no. 9: 7314. https://doi.org/10.3390/su15097314
APA StyleNin, S., Bini, L., Antonetti, M., Manzi, D., & Bonetti, D. (2023). Growing ‘Genovese’ and ‘Valentino’ Basil in Pots Using Peat Substrate Combined with Phytoremediated Sediment: Effects on Yield and Nutraceutical Content. Sustainability, 15(9), 7314. https://doi.org/10.3390/su15097314