Simple and Smart: Investigating Two Heuristics That Guide the Intention to Engage in Different Climate-Change-Mitigation Behaviors
Abstract
:1. Introduction
1.1. Heuristics as the Cognitive Link between Values and Pro-Environmental Behavior
1.2. Possible Origin and Implications of the Current Restriction Heuristic
1.3. Present Study
2. Materials and Methods
2.1. Data Collection and Participants
2.2. Measures
2.2.1. Climate-Change-Mitigation Heuristics
2.2.2. Biospheric Value Orientation and Personal Norm for Climate-Change Mitigation
2.2.3. Intention to Engage in Different Climate-Change-Mitigation Behaviors
2.2.4. Political Orientation and Sociodemographic Variables
2.3. Factor Structure of the Two Climate-Change-Mitigation Heuristics
2.4. Further Measures
3. Results
3.1. Descriptive Statistics
3.2. Relations between the Two Heuristics and Sociodemographic Variables
3.3. Relations between the Two Heuristics, Biospheric Values, and Personal Norm
3.4. Relations between the Two Heuristics and Climate-Change-Mitigation Intentions
3.4.1. Bivariate Analyses
3.4.2. Regression Analyses
3.5. Intraindividual Dominance of the Restriction Heuristic and Climate-Change-Mitigation Intentions
4. Discussion
4.1. Role of Dominance of the Restriction Heuristic
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Measures
No. | Item | Source |
---|---|---|
RH1 | We have put our planet through far too much in recent years, so now we have to pay the price and renounce. | New |
RH2 | The Western lifestyle is the cause of climate change, and it is only fair that we are now affected by severe restrictions. | |
RH3 | Restrictions for climate protection are the just punishment for our overconsumption. | |
RH4 | We cannot buy our way out of our culpability for the climate crisis. | |
RH5 | We in the Western industrialized nations are to blame for the climate crisis and must now bear the consequences. |
No. | Item | Source |
---|---|---|
OH1 | In order to quickly limit the climate crisis, each individual should primarily implement the measures that save a particularly large amount of CO2 in their area. | New |
OH2 | I am willing to invest money to limit the climate crisis. | |
OH3 | As citizens of an industrialized nation, we can contribute to solving the global climate crisis primarily through investments. | |
OH4 | Solving the climate crisis through economic strategies is often underestimated. | |
OH5 | Everyone should know their carbon footprint so that they can start where it makes the most difference. | |
OH6 | We as citizens of industrial nations have to lead the way in climate protection. | |
OH7 | I inform myself about ways in which I can reduce my carbon footprint to a particularly large extent. |
No. | Item | Source |
---|---|---|
BV1 | Protecting the environment, preserving nature | Stern, Dietz [39] |
BV2 | Unity with nature, fitting into nature | |
BV3 | Respecting the earth, harmony with other species |
Item | Source | |
---|---|---|
PN1 | I feel obligated to save CO2 in my everyday life. | Matthies and Merten [40] |
PN2 | Because of my values, it is important to me to support climate protection measures. | |
PN3 | No matter what other people think, it is important to me to get involved in climate protection. |
No. | Item | Source |
---|---|---|
CB1 | … reduce the temperature in your home by 1 degree Celsius in winter? | Matthies and Merten [40] |
CB2 | … eliminate private air travel altogether? | |
CB3 | …eat less meat (only 1–2 times a week or less than 50g/day)? | |
CB4 | … completely eliminate plastic packaging? | |
CB5 | … reduce your hot water consumption (e.g., by showering less)? | New |
No. | Item | Source |
---|---|---|
EB1 | … replace your current car with an electric car or a particularly economical car (under 5 l per 100 km)? | Matthies and Merten [40] |
EB2 | … replace your heating system with a more modern, climate-friendly system? | |
EB3 | … as a co-owner/tenant, insist that your apartment be retrofitted with insulation? | |
EB4 | … energetically renovate your apartment/house (thermal insulation)? | |
EB5 | … try out new types of meat substitutes (e.g., laboratory-grown meat)? | New |
EB6 | … try out new, more sustainable meat products (e.g., worm burgers)? |
No. | Item | Source |
---|---|---|
NB1 | … repair broken things whenever possible instead of disposing of them and buying new ones? | New |
NB2 | …try out new forms of mobility (e.g., car sharing or taking the bus)? | |
NB3 | … take part in food sharing initiatives, i.e., give food to other people/institutions before it expires? |
No. | Item | Source |
---|---|---|
PB1 | … offset your carbon emissions by making compensation payments to climate offset projects (e.g., via Atmosfair, myClimate or Primaklima)? | Matthies and Merten [40] |
PB2 | … switch to a social-ecological bank (e.g., GLS-Bank or UmweltBank) with your financial investments? | |
PB3 | … donate to climate protection projects? | New |
PB4 | … purchase green electricity? | Matthies and Merten [40] |
No. | Item | Source |
---|---|---|
AB1 | … participate in environmental protests? | Ertz, Karakas [72] |
AB2 | … participate in environmental activities (e.g., tree-planting, picking up trash)? | |
AB3 | … share posts about the environment on social media? |
No. | Item | Source |
---|---|---|
SR1 | Ban on plastic packaging | New |
SR2 | Obligation of homeowners to build photovoltaic systems on their roofs | |
SR3 | Stricter requirements for insulation in new buildings | |
SR4 | Ban on the registration of passenger cars with internal combustion engines | |
SR5 | Ban on gas and oil heating in new buildings |
No. | Item | Source |
---|---|---|
ST1 | Stronger increase in carbon prices | New |
ST2 | Higher taxes on particularly climate-damaging products (e.g., meat). |
No. | Item | Source |
---|---|---|
SS1 | Continuation of the environmental bonus for electric cars | New |
SS2 | Greater funding for the expansion of local public transport | |
SS3 | Subsidies for organically grown vegetables | |
SS4 | Subsidies for inexpensive sustainable food in public facilities and canteens | |
SS5 | Subsidies for replacing oil and gas heaters. | |
SS6 | Subsidies for thermal insulation of buildings. |
Appendix B
n (%) | Min. | Max. | Mean | SD | |
---|---|---|---|---|---|
Age | 1427 | 16 | 74 | 47.18 | 15.94 |
Gender | |||||
Female | 716 (50.2) | ||||
Male | 709 (49.7) | ||||
Diverse | 2 (0.1) | ||||
Average monthly household net income | |||||
Under EUR 1000 | 159 (11) | ||||
EUR 1000 to under EUR 2000 | 343 (24) | ||||
EUR 2000 to under EUR 3000 | 317 (22) | ||||
EUR 3000 to under EUR 4000 | 245 (17) | ||||
EUR 4000 to under EUR 5000 | 155 (11) | ||||
EUR 5000 to under EUR 6000 | 55 (4) | ||||
EUR 6000 and more | 49 (3) | ||||
Highest level of education | |||||
(Noch) Kein allgemeiner Schulabschluss | 27 (2) | ||||
Maximal Haupt-(Volks-, Grund-)schulabschluss | 90 (6) | ||||
Haupt- (Volks-, Grund-)schulabschluss mit abgeschlossener Lehre/Berufsausbildung | 353 (25) | ||||
Weiterführende Schule ohne Abitur (Realschulabschluss/Mittlere Reife/Oberschule) | 448 (31) | ||||
Abitur, (Fach-)Hochschulreife ohne Studium | 243 (17) | ||||
Studium (Universität, Hochschule, Fachhochschule, Polytechnikum) | 266 (19) | ||||
Place of residency | |||||
Very urban | 356 (25) | ||||
Rather urban | 538 (38) | ||||
Rather rural | 408 (29) | ||||
Very rural | 125 (9) | ||||
Political orientation | 1297 | 1 | 10 | 5.93 | 1.76 |
One-Factor Model | Two-Factor Model | Three-Factor Model | Four-Factor Model | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λF1 | h2 | λF1 | λF2 | h2 | λF1 | λF2 | λF3 | h2 | λF1 | λF2 | λF3 | λF4 | h2 | |
RH1 | 0.78 | 0.60 | 0.44 | 0.38 | 0.59 | 0.60 | 0.32 | 0.64 | 0.89 | 0.91 | ||||
RH2 | 0.70 | 0.49 | 0.95 | 0.70 | 0.84 | 0.70 | 0.85 | 0.70 | ||||||
RH3 | 0.72 | 0.52 | 0.54 | 0.54 | 0.35 | 0.47 | 0.56 | 0.33 | 0.36 | 0.57 | ||||
RH4 | 0.63 | 0.39 | 0.49 | 0.39 | 0.73 | 0.47 | 0.64 | 0.46 | ||||||
RH5 | 0.70 | 0.49 | 0.81 | 0.62 | 0.70 | 0.61 | 0.80 | 0.65 | ||||||
OH6 | 0.83 | 0.69 | 0.65 | 0.69 | 0.65 | 0.70 | 0.72 | 0.72 | ||||||
OH7 | 0.62 | 0.39 | 0.57 | 0.40 | 0.81 | 0.63 | 0.83 | 0.67 | ||||||
OH1 | 0.78 | 0.61 | 0.91 | 0.70 | 0.76 | 0.70 | 0.77 | 0.69 | ||||||
OH2 | 0.67 | 0.45 | 0.35 | 0.36 | 0.45 | 0.31 | 0.61 | 0.58 | 0.56 | 0.57 | ||||
OH3 | 0.68 | 0.46 | 0.46 | 0.46 | 0.46 | 0.36 | 0.47 | |||||||
OH4 | 0.58 | 0.34 | 0.55 | 0.35 | 0.48 | 0.34 | 0.52 | 0.35 | ||||||
OH5 | 0.71 | 0.50 | 0.89 | 0.60 | 0.58 | 0.41 | 0.61 | 0.64 | 0.35 | 0.61 | ||||
Explained σ2 (eigenvalue) | 0.49 (5.94) | 0.32 (3.85) | 0.22 (2.65) | 0.26 (3.15) | 0.18 (2.13) | 0.14 (1.73) | 0.24 (2.83) | 0.16 (1.91) | 0.13 (1.51) | 0.09 (1.12) |
Model | CFI | RMSEA | SRMR | BIC | χ2 (df) |
---|---|---|---|---|---|
12 items | |||||
One-factor model (exploratory) | 0.899 | 0.110 | 0.051 | 44871 | 789.4 *** (54) |
Two-factor model (exploratory) | 0.920 | 0.099 | 0.049 | 44683 | 639.9 *** (53) |
Two-factor model (hypothesized) | 0.927 | 0.094 | 0.043 | 44619 | 587.9 *** (53) |
11 items | |||||
Two-factor model (hypothesized) | 0.927 | 0.096 | 0.043 | 41601 | 490.4 *** (43) |
10 items | |||||
Two-factor model (hypothesized) | 0.939 | 0.093 | 0.040 | 37804 | 366.2 *** (34) |
Two-factor model with error covariance (hypothesized) | 0.962 | 0.075 | 0.036 | 37651 | 243.7 *** (33) |
λ | ||
---|---|---|
Restriction Heuristic | Optimization Heuristic | |
RH1 | 0.83 | |
RH2 | 0.70 | |
RH3 | 0.78 | |
RH4 | 0.64 | |
RH5 | 0.69 | |
OH1 | 0.81 | |
OH2 | 0.66 | |
OH3 | 0.69 | |
OH4 | 0.59 | |
OH5 | 0.74 |
Gender (n = 1425) | ||||
CFI | RMSEA | SRMR | BIC | |
Configural | 0.968 | 0.068 | 0.032 | 37751 |
Metric | 0.968 | 0.065 | 0.035 | 37702 |
Scalar | 0.953 | 0.074 | 0.044 | 37754 |
Partial scalar | 0.958 | 0.071 | 0.041 | 37726 |
Partial residual | 0.956 | 0.068 | 0.042 | 37677 |
Age groups (N = 1427) | ||||
CFI | RMSEA | SRMR | BIC | |
Configural | 0.965 | 0.071 | 0.038 | 38387 |
Metric | 0.967 | 0.063 | 0.047 | 38177 |
Scalar | 0.952 | 0.071 | 0.055 | 38083 |
Partial scalar | 0.962 | 0.064 | 0.051 | 38037 |
Partial residual | 0.962 | 0.059 | 0.051 | 37799 |
Income (n = 1323) | ||||
CFI | RMSEA | SRMR | BIC | |
Configural | 0.963 | 0.074 | 0.035 | 35225 |
Metric | 0.959 | 0.072 | 0.049 | 35152 |
Scalar | 0.944 | 0.079 | 0.055 | 35153 |
Partial scalar | 0.958 | 0.070 | 0.050 | 35076 |
Partial residual | 0.952 | 0.069 | 0.050 | 34997 |
Education (N = 1427) | ||||
CFI | RMSEA | SRMR | BIC | |
Configural | 0.961 | 0.075 | 0.036 | 37965 |
Metric | 0.958 | 0.073 | 0.051 | 37889 |
Scalar | 0.945 | 0.078 | 0.056 | 37879 |
Partial scalar | 0.953 | 0.072 | 0.053 | 37831 |
Partial residual | 0.950 | 0.070 | 0.052 | 37735 |
Min. | Max. | Median | Mean | SD | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|
Heuristics (N = 1427) | |||||||
Restriction heuristic | 0.89 | 5.14 | 3.40 | 3.39 | 0.93 | −0.41 | −0.16 |
Optimization heuristic | 0.89 | 5.16 | 3.40 | 3.37 | 0.85 | −0.49 | 0.22 |
Biospheric values (N = 1427) | −1 | 7 | 5.33 | 5.03 | 1.59 | −0.78 | 0.43 |
Personal norm (N = 1427) | 0.90 | 5.12 | 3.67 | 3.48 | 1.09 | −0.57 | −0.18 |
Stern’s behavioral roles | |||||||
Curtailment (n = 1423) | 1 | 6 | 4 | 3.98 | 1.08 | −0.41 | −0.11 |
Efficiency (n = 1416) | 1 | 6 | 2.75 | 2.78 | 1.08 | 0.26 | −0.41 |
New alternatives (n = 1419) | 1 | 6 | 3.33 | 3.51 | 1.03 | 0.12 | −0.04 |
Political consumption (n = 1411) | 1 | 6 | 3 | 2.96 | 1.08 | 0.21 | −0.10 |
Activism (n = 1409) | 1 | 6 | 2.67 | 2.65 | 1.15 | 0.44 | −0.24 |
Support for different measures (N = 1427) | |||||||
Support for restrictive policy measures | 1 | 5.94 | 3.20 | 3.19 | 0.95 | −0.17 | −0.44 |
Support for economic push measures | 0.45 | 5.19 | 2.50 | 2.55 | 1.23 | 0.29 | −0.96 |
Support for economic pull measures | 1 | 5.20 | 3.83 | 3.72 | 0.83 | −0.57 | 0.07 |
Min. | Max. | Median | Mean | SD | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|---|---|
Restriction heuristic (N = 1427) | ||||||||
RH1 | 1 | 6.04 | 4 | 3.70 | 1.13 | −0.64 | −0.25 | |
RH2 | 0.32 | 5.29 | 3 | 3.04 | 1.19 | −0.13 | −0.68 | |
RH3 | 0.68 | 6.43 | 3 | 3.20 | 1.22 | −0.19 | −0.76 | |
RH4 | 0.46 | 6.60 | 4 | 3.91 | 1.13 | −0.91 | 0.21 | |
RH5 | −0.07 | 5.42 | 3 | 3.10 | 1.20 | −0.17 | −0.71 | |
Optimization heuristic (N = 1427) | ||||||||
OH1 | 0.73 | 6.06 | 4 | 3.70 | 1.03 | −0.67 | 0.22 | |
OH2 | 0.12 | 6.01 | 3 | 2.77 | 1.25 | 0.06 | −0.92 | |
OH3 | 0.52 | 5.72 | 3 | 3.34 | 1.10 | −0.31 | −0.34 | |
OH4 | −0.19 | 5.84 | 3.43 | 3.50 | 0.99 | −0.33 | −0.02 | |
OH5 | 0.04 | 5.81 | 4 | 3.51 | 1.13 | −0.60 | −0.17 | |
Biospheric values (N = 1427) | ||||||||
BV1 | −1 | 7 | 5 | 5.14 | 1.75 | −0.90 | 0.58 | |
BV2 | −1 | 7 | 5 | 4.59 | 1.92 | −0.58 | −0.14 | |
BV3 | −1 | 7 | 6 | 5.38 | 1.68 | −1.04 | 0.76 | |
Personal norm (N = 1427) | ||||||||
PN1 | 1 | 5 | 4 | 3.49 | 1.18 | −0.58 | −0.40 | |
PN2 | 1 | 5.18 | 4 | 3.54 | 1.14 | −0.59 | −0.25 | |
PN3 | 0.71 | 5.69 | 3.50 | 3.41 | 1.17 | −0.45 | −0.48 | |
Curtailment | ||||||||
CB1 (n = 1395) | 1 | 6 | 4 | 4.34 | 1.53 | −0.57 | −0.60 | |
CB2 (n = 1310) | 1 | 6 | 4 | 3.66 | 1.71 | −0.08 | −1.23 | |
CB3 (n = 1390) | 1 | 6 | 4 | 4.12 | 1.68 | −0.41 | −0.99 | |
CB4 (n = 1400) | 1 | 6 | 4 | 3.59 | 1.25 | −0.12 | −0.19 | |
CB5 (n = 1408) | 1 | 6 | 4 | 4.13 | 1.52 | −0.35 | −0.80 | |
Efficiency | ||||||||
EB1 (n = 1168) | 1 | 6 | 2 | 2.64 | 1.51 | 0.70 | −0.40 | |
EB2 (n = 996) | 1 | 6 | 3 | 3.12 | 1.62 | 0.42 | −0.89 | |
EB3 (n = 1034) | 1 | 6 | 3 | 2.91 | 1.49 | 0.60 | −0.42 | |
EB4 (n = 1021) | 1 | 6 | 3 | 3.17 | 1.67 | 0.42 | −0.98 | |
EB5 (n = 1370) | 1 | 6 | 2 | 2.65 | 1.51 | 0.56 | −0.64 | |
EB6 (n = 1363) | 1 | 6 | 2 | 2.46 | 1.47 | 0.75 | −0.33 | |
New alternatives | ||||||||
NB1 (n = 1408) | 1 | 6 | 4 | 4.51 | 1.21 | −0.57 | 0.09 | |
NB2 (n = 1317) | 1 | 6 | 2 | 2.60 | 1.39 | 0.65 | −0.26 | |
NB3 (n = 1303) | 1 | 6 | 3 | 3.24 | 1.44 | 0.16 | −0.69 | |
Political consumption | ||||||||
PB1 (n = 1304) | 1 | 6 | 2 | 2.56 | 1.28 | 0.59 | −0.10 | |
PB2 (n = 1278) | 1 | 6 | 2 | 2.37 | 1.20 | 0.87 | 0.67 | |
PB3 (n = 1376) | 1 | 6 | 3 | 2.77 | 1.44 | 0.60 | −0.27 | |
PB4 (n = 1334) | 0.34 | 6 | 4 | 4.02 | 1.63 | −0.24 | −1.06 | |
Activism | ||||||||
AB1 (n = 1377) | 1 | 6 | 2 | 2.17 | 1.25 | 1.07 | 0.79 | |
AB2 (n = 1376) | 1 | 6 | 3 | 3.15 | 1.47 | 0.26 | −0.65 | |
AB3 (n = 1345) | 1 | 6 | 2 | 2.61 | 1.45 | 0.68 | −0.34 | |
Support for restrictive policy measures (N = 1427) | ||||||||
SR1 | 1 | 5.85 | 4 | 3.72 | 1.19 | −0.63 | −0.44 | |
SR2 | −0.06 | 7.91 | 3 | 3.20 | 1.39 | −0.20 | −0.99 | |
SR3 | 0.79 | 6.22 | 4 | 3.71 | 1.19 | −0.68 | −0.31 | |
SR4 | −0.97 | 6.24 | 2 | 2.25 | 1.35 | 0.68 | −0.71 | |
SR5 | −0.09 | 6.79 | 3 | 3.06 | 1.37 | −0.07 | −1.09 | |
Support for economic push measures (N = 1427) | ||||||||
ST1 | −0.09 | 5.58 | 2 | 2.37 | 1.31 | 0.50 | −0.85 | |
ST2 | −0.15 | 6.63 | 3 | 2.72 | 1.42 | 0.22 | −1.19 | |
Support for economic pull measures (N = 1427) | ||||||||
SS1 | −0.15 | 6.15 | 3 | 3.07 | 1.43 | −0.11 | −1.21 | |
SS2 | 1 | 6.17 | 4 | 4.02 | 1.07 | −0.89 | 0.12 | |
SS3 | 0.81 | 6.25 | 4 | 3.75 | 1.15 | −0.66 | −0.26 | |
SS4 | 0.66 | 6.22 | 4 | 3.73 | 1.19 | −0.66 | −0.35 | |
SS5 | 1 | 6.67 | 4 | 3.84 | 1.17 | −0.74 | −0.13 | |
SS6 | 0.22 | 6.19 | 4 | 3.92 | 1.08 | −0.85 | 0.23 |
W | |||||
---|---|---|---|---|---|
Item level | |||||
Restriction heuristic (N = 1427) | |||||
RH1 | 0.88 | ||||
RH2 | 0.92 | ||||
RH3 | 0.92 | ||||
RH4 | 0.85 | ||||
RH5 | 0.92 | ||||
Optimization heuristic (N = 1427) | |||||
OH1 | 0.88 | ||||
OH2 | 0.91 | ||||
OH3 | 0.92 | ||||
OH4 | 0.92 | ||||
OH5 | 0.90 | ||||
W | Henze-Zirkler | Mardia skewness | Mardia kurtosis | ||
Scale level | |||||
Restriction heuristic | 0.98 | 8.27 | 445.75 | 20.23 | |
Optimization heuristic | 0.98 | 4.98 | 326.94 | 12.70 |
W | ||||
---|---|---|---|---|
Item level | ||||
BV1 | 0.88 | |||
BV2 | 0.92 | |||
BV3 | 0.86 | |||
W | Henze-Zirkler | Mardia skewness | Mardia kurtosis | |
Scale level | ||||
Biopsheric value orientation | 0.93 | 45.72 | 693.43 | 31.09 |
W | ||||
---|---|---|---|---|
Item level | ||||
PN1 | 0.89 | |||
PN2 | 0.89 | |||
PN3 | 0.90 | |||
W | Henze-Zirkler | Mardia skewness | Mardia kurtosis | |
Scale level | ||||
Personal norm | 0.94 | 74.71 | 171.51 | 24.42 |
W (W’) | |||||
---|---|---|---|---|---|
Item level | |||||
Curtailment | |||||
CB1 (n = 1395) | 0.87 | ||||
CB2 (n = 1310) | 0.90 (0.91) | ||||
CB3 (n = 1390) | 0.88 | ||||
CB4 (n = 1400) | 0.93 | ||||
CB5 (n = 1408) | 0.90 | ||||
Efficiency | |||||
EB1 (n = 1168) | 0.88 | ||||
EB2 (n = 996) | 0.90 | ||||
EB3 (n = 1034) | 0.90 | ||||
EB4 (n = 1021) | 0.89 | ||||
EB5 (n = 1370) | 0.88 | ||||
EB6 (n = 1363) | 0.85 | ||||
New alternatives | |||||
NB1 (n = 1408) | 0.88 | ||||
NB2 (n = 1317) | 0.89 | ||||
NB3 (n = 1303) | 0.93 | ||||
Political consumption | |||||
PB1 (n = 1304) | 0.89 (0.90) | ||||
PB2 (n = 1278) | 0.87 | ||||
PB3 (n = 1376) | 0.89 (0.90) | ||||
PB4 (n = 1334) | 0.89 | ||||
Activism | |||||
AB1 (n = 1377) | 0.83 | ||||
AB2 (n = 1376) | 0.92 | ||||
AB3 (n = 1345) | 0.88 | ||||
W (W’) | Henze-Zirkler | Mardia skewness | Mardia kurtosis | ||
Scale level | |||||
Curtailment (n = 1423) | 0.98 | 6.68 | 238.90 | 9.87 | |
Efficiency (n = 1416) | 0.98 | 8.69 | 442.16 | 14.98 | |
New alternatives (n = 1419) | 0.98 (0.99) | 8.50 | 262.18 | 0.78 (p = 0.44) | |
Political consumption (n = 1411) | 0.98 | 12.54 | 529.02 | 12.26 | |
Activism (n = 1409) | 0.96 | 27.12 | 575.18 | 11.31 |
W (W’) | |||||
---|---|---|---|---|---|
Item level | |||||
Support for restrictive policy measures (N = 1427) | |||||
SR1 | 0.87 | ||||
SR2 | 0.90 | ||||
SR3 | 0.87 (0.88) | ||||
SR4 | 0.84 | ||||
SR5 | 0.91 | ||||
Support for economic push measures (N = 1427) | |||||
ST1 | 0.87 (0.88) | ||||
ST2 | 0.89 | ||||
Support for economic pull measures (N = 1427) | |||||
SS1 | 0.90 | ||||
SS2 | 0.83 | ||||
SS3 | 0.88 | ||||
SS4 | 0.88 | ||||
SS5 | 0.87 | ||||
SS6 | 0.85 | ||||
W (W’) | Henze-Zirkler | Mardia skewness | Mardia kurtosis | ||
Scale level | |||||
Support for restrictive policy measures | 0.99 | 6.49 | 550.93 | 2.99 (p = 0.003) | |
Support for economic push measures | 0.93 | 55.39 | 101.36 | −0.79 (p = 0.43) | |
Support for economic pull measures | 0.97 | 12.39 | 854.75 | 27.08 |
Criterion: Curtailment behavior (n = 1110) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Predictors | β (95% CI of B) | β (95% CI of B) | β (95% CI of B) | β (95% CI of B) |
Age | 0.166 *** (0.008, 0.016) | 0.164 *** (0.008, 0.016) | 0.174 *** (0.009, 0.016) | 0.172 *** (0.008, 0.016) |
Formal education | 0.057 (−0.011, 0.266) | 0.026 (−0.071, 0.188) | 0.015 (−0.091, 0.16) | 0.014 (−0.094, 0.156) |
Household income | −0.034 (−0.209, 0.057) | −0.028 (−0.186, 0.062) | −0.059 * (−0.253, −0.013) | −0.053 (−0.239, 0.001) |
Gender | −0.186 *** (−0.536, −0.282) | −0.188 *** (−0.532, −0.295) | −0.171 *** (−0.491, −0.262) | −0.174 *** (−0.497, −0.269) |
Residence | −0.037 (−0.221, 0.047) | −0.045 (−0.23, 0.02) | −0.044 (−0.224, 0.017) | −0.045 (−0.226, 0.015) |
Political orientation | 0.165 *** (0.067, 0.139) | 0.06 * (0.003, 0.072) | 0.054 * (0.001, 0.067) | 0.043 (−0.006, 0.061) |
Restriction Heuristic | 0.366 *** (0.361, 0.488) | 0.103 ** (0.03, 0.208) | ||
Optimization Heuristic | 0.436 *** (0.492, 0.628) | 0.362 *** (0.366, 0.564) | ||
Adjusted R2 | 0.087 | 0.209 | 0.261 | 0.265 |
Criterion: Efficiency behavior (n = 1106) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | −0.18 *** (−0.017, −0.009) | −0.181 *** (−0.017, −0.009) | −0.172 *** (−0.016, −0.008) | −0.172 *** (−0.016, −0.008) |
Formal education | 0.147 *** (0.193, 0.471) | 0.123 *** (0.145, 0.41) | 0.109 *** (0.119, 0.371) | 0.109 *** (0.119, 0.371) |
Household income | 0.083 ** (0.054, 0.32) | 0.087 ** (0.069, 0.322) | 0.057 * (0.008, 0.249) | 0.057 * (0.007, 0.249) |
Gender | 0.032 (−0.056, 0.197) | 0.031 (−0.053, 0.188) | 0.047 (−0.01, 0.219) | 0.048 (−0.01, 0.22) |
Residence | −0.057 (−0.268, 0.001) | −0.065 * (−0.281, −0.024) | −0.065 * (−0.275, −0.032) | −0.065 * (−0.275, −0.032) |
Political orientation | 0.102 *** (0.028, 0.099) | 0.014 (−0.027, 0.044) | −0.006 (−0.037, 0.029) | −0.006 (−0.037, 0.03) |
Restriction Heuristic | 0.306 *** (0.29, 0.421) | −0.006 (−0.096, 0.083) | ||
Optimization Heuristic | 0.425 *** (0.479, 0.615) | 0.429 *** (0.453, 0.651) | ||
Adjusted R2 | 0.093 | 0.178 | 0.259 | 0.258 |
Criterion: Trying out new alternatives and practices (n = 1108) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | *−0.08 ** (−0.009, −0.001) | −0.081 ** (−0.009, −0.002) | −0.074 ** (−0.009, −0.001) | −0.074 ** (−0.009, −0.001) |
Formal education | 0.144 *** (0.175, 0.437) | 0.119 *** (0.127, 0.379) | 0.107 *** (0.105, 0.349) | 0.107 *** (0.104, 0.348) |
Household income | −0.067 * (−0.269, −0.017) | −0.062 * (−0.253, −0.012) | −0.089 ** (−0.305, −0.071) | −0.087 ** (−0.302, −0.067) |
Gender | −0.135 *** (−0.4, −0.16) | −0.137 *** (−0.399, −0.169) | −0.122 *** (−0.364, −0.141) | −0.123 *** (−0.367, −0.143) |
Residence | 0.042 (−0.034, 0.22) | 0.036 (−0.041, 0.202) | 0.036 (−0.037, 0.198) | 0.036 (−0.038, 0.198) |
Political orientation | 0.157 *** (0.059, 0.126) | 0.075 * (0.011, 0.078) | 0.063 * (0.005, 0.069) | 0.059 * (0.002, 0.068) |
Restriction Heuristic | 0.287 *** (0.251, 0.375) | 0.032 (−0.053, 0.122) | ||
Optimization Heuristic | 0.373 *** (0.386, 0.519) | 0.350 *** (0.328, 0.521) | ||
Adjusted R2 | 0.085 | 0.159 | 0.212 | 0.212 |
Criterion: Political consumption and divestment (n = 1104) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | −0.059 (−0.008, 0) | −0.062 * (−0.008, −0.001) | −0.051 * (−0.007, 0) | −0.051 * (−0.007, 0) |
Formal education | 0.153 *** (0.202, 0.476) | 0.118 *** (0.137, 0.387) | 0.101 *** (0.109, 0.337) | 0.1 *** (0.109, 0.337) |
Household income | 0.07 * (0.024, 0.287) | 0.077 ** (0.052, 0.291) | 0.039 (−0.023, 0.195) | 0.04 (−0.022, 0.197) |
Gender | −0.033 (−0.196, 0.055) | −0.034 (−0.187, 0.042) | −0.011 (−0.127, 0.081) | −0.011 (−0.129, 0.08) |
Residence | −0.015 (−0.167, 0.098) | −0.023 (−0.175, 0.067) | −0.024 (−0.166, 0.054) | −0.024 (−0.166, 0.054) |
Political orientation | 0.215 *** (0.097, 0.167) | 0.096 ** (0.025, 0.092) | 0.072 ** (0.014, 0.074) | 0.07 ** (0.012, 0.074) |
Restriction Heuristic | 0.414 *** (0.411, 0.534) | 0.017 (−0.062, 0.101) | ||
Optimization Heuristic | 0.558 *** (0.645, 0.769) | 0.545 *** (0.601, 0.781) | ||
Adjusted R2 | 0.089 | 0.244 | 0.374 | 0.374 |
Criterion: Activism (n = 1102) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | −0.178 *** (−0.018, −0.009) | −0.179 *** (−0.018, −0.009) | −0.170 *** (−0.017, −0.009) | −0.170 *** (−0.017, −0.009) |
Formal education | 0.089 ** (0.064, 0.358) | 0.065 * (0.013, 0.295) | 0.051 (−0.014, 0.255) | 0.051 (−0.014, 0.256) |
Household income | −0.042 (−0.24, 0.042) | −0.037 (−0.222, 0.047) | −0.066 * (−0.285, −0.028) | −0.066 * (−0.286, −0.028) |
Gender | −0.035 (−0.216, 0.053) | −0.036 (−0.212, 0.045) | −0.02 (−0.169, 0.076) | −0.02 (−0.168, 0.077) |
Residence | 0.003 (−0.135, 0.15) | −0.004 (−0.146, 0.127) | −0.004 (−0.139, 0.12) | −0.004 (−0.139, 0.121) |
Political orientation | 0.205 *** (0.098, 0.173) | 0.120 *** (0.042, 0.117) | 0.100 *** (0.03, 0.101) | 0.100 *** (0.03, 0.102) |
Restriction Heuristic | 0.297 *** (0.294, 0.433) | −0.005 (−0.102, 0.09) | ||
Optimization Heuristic | 0.411 *** (0.486, 0.633) | 0.415 *** (0.458, 0.67) | ||
Adjusted R2 | 0.093 | 0.173 | 0.248 | 0.247 |
Criterion: Support for restrictive policy measures (n = 1114) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | 0.053 (0, 0.007) | 0.05 (0, 0.006) | 0.063 * (0.001, 0.007) | 0.059 * (0.001, 0.007) |
Formal education | 0.122 *** (0.118, 0.358) | 0.078 ** (0.049, 0.256) | 0.067 * (0.031, 0.231) | 0.064 * (0.027, 0.223) |
Household income | −0.053 (−0.22, 0.011) | −0.044 (−0.184, 0.014) | −0.085 ** (−0.261, −0.07) | −0.072 ** (−0.234, −0.046) |
Gender | 0.004 (−0.103, 0.117) | 0.001 (−0.092, 0.097) | 0.023 (−0.047, 0.135) | 0.017 (−0.058, 0.121) |
Residence | 0.074 * (0.036, 0.268) | 0.063 * (0.029, 0.228) | 0.065 ** (0.037, 0.229) | 0.063 ** (0.034, 0.223) |
Political orientation | 0.265 *** (0.113, 0.175) | 0.119 *** (0.037, 0.092) | 0.124 *** (0.041, 0.094) | 0.101 *** (0.029, 0.081) |
Restriction Heuristic | 0.513 *** (0.466, 0.568) | 0.221 *** (0.153, 0.293) | ||
Optimization Heuristic | 0.559 *** (0.571, 0.679) | 0.400 *** (0.37, 0.524) | ||
Adjusted R2 | 0.097 | 0.335 | 0.384 | 0.404 |
Criterion: Support for economic push measures (n = 1114) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | −0.095 ** (−0.012, −0.003) | −0.098 *** (−0.012, −0.004) | −0.085 ** (−0.011, −0.003) | −0.090 *** (−0.011, −0.003) |
Formal education | 0.181 *** (0.306, 0.614) | 0.137 *** (0.217, 0.481) | 0.127 *** (0.195, 0.451) | 0.124 *** (0.188, 0.439) |
Household income | 0.009 (−0.125, 0.171) | 0.019 (−0.079, 0.174) | −0.022 (−0.178, 0.067) | −0.008 (−0.141, 0.1) |
Gender | −0.012 (−0.17, 0.112) | −0.014 (−0.155, 0.086) | 0.008 (−0.098, 0.135) | 0.001 (−0.113, 0.116) |
Residence | 0.081 ** (0.067, 0.365) | 0.07 ** (0.058, 0.312) | 0.072 ** (0.068, 0.315) | 0.070 ** (0.064, 0.306) |
Political orientation | 0.221 *** (0.117, 0.196) | 0.076 ** (0.018, 0.089) | 0.083 ** (0.025, 0.092) | 0.059 * (0.008, 0.075) |
Restriction Heuristic | 0.511 *** (0.604, 0.734) | 0.231 *** (0.213, 0.392) | ||
Optimization Heuristic | 0.551 *** (0.73, 0.869) | 0.384 *** (0.458, 0.656) | ||
Adjusted R2 | 0.118 | 0.355 | 0.396 | 0.419 |
Criterion: Support for economic pull measures (n = 1114) | ||||
Step 1 | Step 2a | Step 2b | Step 3 | |
Age | 0.015 (−0.002, 0.004) | 0.013 (−0.002, 0.004) | 0.024 (−0.002, 0.004) | 0.022 (−0.002, 0.004) |
Formal education | 0.120 *** (0.098, 0.311) | 0.084 ** (0.046, 0.241) | 0.070 * (0.027, 0.212) | 0.068 * (0.025, 0.209) |
Household income | −0.026 (−0.146, 0.058) | −0.018 (−0.124, 0.063) | −0.054 * (−0.181, −0.004) | −0.048 (−0.171, 0.006) |
Gender | −0.045 (−0.173, 0.022) | −0.047 (−0.167, 0.011) | −0.027 (−0.13, 0.039) | −0.03 (−0.135, 0.034) |
Residence | 0.007 (−0.091, 0.115) | −0.003 (−0.099, 0.089) | −0.002 (−0.092, 0.086) | −0.003 (−0.094, 0.084) |
Political orientation | 0.222 *** (0.078, 0.133) | 0.103 *** (0.023, 0.075) | 0.094 *** (0.02, 0.069) | 0.084 ** (0.015, 0.064) |
Restriction Heuristic | 0.417 *** (0.319, 0.415) | 0.099 ** (0.021, 0.153) | ||
Optimization Heuristic | 0.507 *** (0.445, 0.545) | 0.436 *** (0.353, 0.498) | ||
Adjusted R2 | 0.066 | 0.223 | 0.302 | 0.306 |
Appendix C
Climate-Change-Mitigation Behavior
References
- Stern, P.C.; Dietz, T.; Abel, T.; Guagnano, G.A.; Kalof, L. A value-belief-norm theory of support for social movements: The case of environmentalism. Hum. Ecol. Rev. 1999, 6, 81–97. [Google Scholar]
- Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen. Welt im Wandel: Gesellschaftsvertrag für Eine Große Transformation; Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen: Berlin, Deutschland, 2011. [Google Scholar]
- Nielsen, K.S.; Clayton, S.; Stern, P.C.; Dietz, T.; Capstick, S.; Whitmarsh, L. How psychology can help limit climate change. Am. Psychol. 2021, 76, 130–144. [Google Scholar] [CrossRef]
- Gardner, G.T.; Stern, P.C. The short list: The most effective actions US households can take to curb climate change. Environ. Sci. Policy Sustain. Dev. 2008, 50, 12–25. [Google Scholar] [CrossRef]
- Stern, P.C.; Gardner, G.T. Psychological Research and Energy Policy. Am. Psychol. 1981, 36, 329. [Google Scholar] [CrossRef]
- Nielsen, K.S.; Cologna, V.; Lange, F.; Brick, C.; Stern, P.C. The case for impact-focused environmental psychology. J. Environ. Psychol. 2021, 74, 101559. [Google Scholar] [CrossRef]
- Thøgersen, J. Consumer behavior and climate change: Consumers need considerable assistance. Curr. Opin. Behav. Sci. 2021, 42, 9–14. [Google Scholar] [CrossRef]
- Moran, D.; Wood, R.; Hertwich, E.; Mattson, K.; Rodriguez, J.F.; Schanes, K.; Barrett, J. Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. Clim. Policy 2020, 20, S28–S38. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar]
- Bassen, A.; Drewes, J.; Fischer, M.; Gabrysch, S.; Hornidge, A.K.; Pittel, K.; Pörtner, H.O.; Schlacke, S.; Weidenkaff, A. Über Klimaneutralität Hinausdenken; Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen: Berlin, Deutschland, 2021. [Google Scholar]
- Bandh, S.A.; Malla, F.A.; Qayoom, I.; Mohi-Ud-Din, H.; Butt, A.K.; Altaf, A.; Wani, S.A.; Betts, R.; Truong, T.H.; Pham, N.D.K. Importance of Blue Carbon in Mitigating Climate Change and Plastic/Microplastic Pollution and Promoting Circular Economy. Sustainability 2023, 15, 2682. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Schwartz, S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. In Advances in Experimental Social Psychology; Elsevier: Amsterdam, The Netherlands, 1992; Volume 25, pp. 1–65. [Google Scholar]
- Schwartz, S.H. Are there universal aspects in the structure and contents of human values? J. Soc. Issues 1994, 50, 19–45. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Morality and prosocial behavior: The role of awareness, responsibility, and norms in the norm activation model. J. Soc. Psychol. 2009, 149, 425–449. [Google Scholar] [CrossRef]
- Wang, C.-P.; Zhang, Q.; Wong, P.P.W.; Wang, L. Consumers’ green purchase intention to visit green hotels: A value-belief-norm theory perspective. Front. Psychol. 2023, 14, 1–14. [Google Scholar] [CrossRef]
- Çakır Yıldırım, B.; Karaarslan Semiz, G. Future teachers’ sustainable water consumption behavior: A test of the value-belief-norm theory. Sustainability 2019, 11, 1558. [Google Scholar] [CrossRef]
- Hein, N. Factors Influencing the Purchase Intention for Recycled Products: Integrating Perceived Risk into Value-Belief-Norm Theory. Sustainability 2022, 14, 3877. [Google Scholar] [CrossRef]
- Zhang, L.; Sheng, L.; Zhang, W.; Zhang, S. Do personal norms predict citizens’ acceptance of green transport policies in China. Sustainability 2020, 12, 5090. [Google Scholar] [CrossRef]
- Schwartz, S.H. Normative influences on altruism. Adv. Exp. Soc. Psychol. 1977, 10, 221–279. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 2011, 62, 451–482. [Google Scholar] [CrossRef]
- Korteling, J.E.H.; Paradies, G.L.; Sassen-van Meer, J.P. Cognitive bias and how to improve sustainable decision making. Front. Psychol. 2023, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gigerenzer, G. Why heuristics work. Perspect. Psychol. Sci. 2008, 3, 20–29. [Google Scholar] [CrossRef]
- Wassmann, B.; Siegrist, M.; Hartmann, C. The role of heuristics for composing an environmentally friendly meal. J. Clean. Prod. 2023, 402, 136818. [Google Scholar] [CrossRef]
- Liu, P.; Yang, R.; Xu, Z. Public acceptance of fully automated driving: Effects of social trust and risk/benefit perceptions. Risk Anal. 2019, 39, 326–341. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W., III. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Institut für Baubiologie und Ökologie Neubeuern. Zukunftsfähiges Deutschland: Gut Leben Statt viel Haben; Schneider, R., Ed.; Institut für Baubiologie und Ökologie Neubeuern: Neubeuern, Germany, 2011. [Google Scholar]
- Brundtland, G.H. Our Common Future: Report of the World Commission on Environment and Development; Oxford University Press: Geneva, Switzerland, 1987. [Google Scholar]
- Barclay, L.J.; Skarlicki, D.P.; Pugh, S.D. Exploring the role of emotions in injustice perceptions and retaliation. J. Appl. Psychol. 2005, 90, 629. [Google Scholar] [CrossRef] [PubMed]
- Nordlund, A.M.; Garvill, J. Effects of values, problem awareness, and personal norm on willingness to reduce personal car use. J. Environ. Psychol. 2003, 23, 339–347. [Google Scholar] [CrossRef]
- Thøgersen, J. Norms for environmentally responsible behaviour: An extended taxonomy. J. Environ. Psychol. 2006, 26, 247–261. [Google Scholar] [CrossRef]
- Marshall, N.A.; Thiault, L.; Beeden, A.; Beeden, R.; Benham, C.; Curnock, M.I.; Diedrich, A.; Gurney, G.G.; Jones, L.; Marshall, P.A. Our environmental value orientations influence how we respond to climate change. Front. Psychol. 2019, 10, 938. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Vedlitz, A.; Shi, L. Examining the determinants of public environmental concern: Evidence from national public surveys. Environ. Sci. Policy 2014, 39, 77–94. [Google Scholar] [CrossRef]
- Van Heuvelen, T.; Summers, N. Divergent roads: A cross-national intercohort analysis of affluence and environmental concern. Soc. Sci. Res. 2019, 82, 72–91. [Google Scholar] [CrossRef]
- Nielsen, K.S.; Nicholas, K.A.; Creutzig, F.; Dietz, T.; Stern, P.C. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nat. Energy 2021, 6, 1011–1016. [Google Scholar] [CrossRef]
- Little, R.J. A test of missing completely at random for multivariate data with missing values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Schafer, J.L. NORM: Multiple Imputation of Incomplete Multivariate Data under a Normal Model, Version 2. Software for Windows 95/98/NT. Available online: http://www.stat.psu.edu/~jls/misoftwa.html (accessed on 21 November 2022).
- McNeish, D.; An, J.; Hancock, G.R. The thorny relation between measurement quality and fit index cutoffs in latent variable models. J. Personal. Assess. 2018, 100, 43–52. [Google Scholar] [CrossRef]
- Stern, P.C.; Dietz, T.; Guagnano, G.A. A brief inventory of values. Educ. Psychol. Meas. 1998, 58, 984–1001. [Google Scholar] [CrossRef]
- Matthies, E.; Merten, M.J. High-income Households—Damned to consume or free to engage in high-impact energy-saving behaviours? J. Environ. Psychol. 2022, 82, 101829. [Google Scholar] [CrossRef]
- Rainer, H.; Albrecht, C.; Bauernschuster, S.; Fichtl, A.; Hener, T.; Ragnitz, J. Deutschland 2017-Studie zu den Einstellungen und Verhaltensweisen der Bürgerinnen und Bürger im vereinigten Deutschland; ifo Forschungsberichte: München, Germany, 2018. [Google Scholar]
- Horn, J. A rationale and test for the number of components from the matrix of partial correlations. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
- Nunnally, J. Psychometric Theory 2nd Edition; McGraw: New York, NY, USA, 1978. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics. 5; Allyn and Bacon: Boston, MA, USA, 2007. [Google Scholar]
- Buchholz, J.; Hartig, J. Measurement invariance testing in questionnaires: A comparison of three Multigroup-CFA and IRT-based approaches. Psychol. Test Assess. Model. 2020, 62, 29–53. [Google Scholar]
- Marsh, H.W.; Guo, J.; Parker, P.D.; Nagengast, B.; Asparouhov, T.; Muthén, B.; Dicke, T. What to do when scalar invariance fails: The extended alignment method for multi-group factor analysis comparison of latent means across many groups. Psychol. Methods 2018, 23, 524. [Google Scholar] [CrossRef]
- Borsboom, D. When does measurement invariance matter? Med. Care 2006, 44, S176–S181. [Google Scholar] [CrossRef]
- Byrne, B.; Shavelson, R.; Muthén, B. Testing for the equivalence of factor covariance and means structures: The issue of partial measurement invariance. Psychol. Bull. 1989, 105, 456–466. [Google Scholar] [CrossRef]
- Steenkamp, J.-B.E.; Baumgartner, H. Assessing measurement invariance in cross-national consumer research. J. Consum. Res. 1998, 25, 78–90. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 5 March 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation. R Package Version 1.0.5. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 5 March 2023).
- Steiner, M.D.; Grieder, S. EFAtools: An R package with fast and flexible implementations of exploratory factor analysis tools. J. Open Source Softw. 2020, 5, 2521. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R package for assessing multivariate Normality. R J. 2014, 6, 151–162. [Google Scholar] [CrossRef]
- Gross, J.; Ligges, U. Nortest: Tests for Normality. R Package Version 1.0-4. Available online: https://CRAN.R-project.org/package=nortest (accessed on 21 November 2022).
- Grosjean, P.; Ibanez, F. Pastecs: Package for Analysis of Space-Time Ecological Series. R Package Version 1.3.21. Available online: https://CRAN.R-project.org/package=pastecs (accessed on 21 November 2022).
- Revelle, W. psych: Procedures for Personality and Psychological Research. Version 2.0.12. Available online: https://CRAN.R-project.org/package=psych (accessed on 21 November 2022).
- IBM Corporation. IBM SPSS Statistics for Windows, Version 27.0; IBM Corporation: Armonk, NY, USA, 2020. [Google Scholar]
- Hemmerich, W. StatistikGuru: Korrelationen Statistisch Vergleichen. Available online: https://statistikguru.de/rechner/korrelationen-vergleichen.html (accessed on 21 November 2022).
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research; SAGE: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Hemmerich, W. StatistikGuru: Poweranalyse für Korrelationen. Available online: https://statistikguru.de/rechner/poweranalyse-korrelation.html (accessed on 21 November 2022).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hemmerich, W. StatistikGuru: Poweranalyse und Stichprobenberechnung für Regression. Available online: https://statistikguru.de/rechner/poweranalyse-regression.html (accessed on 22 November 2022).
- Royston, J. A Simple method for evaluating the shapiro–francia W’ test of non-normality. J. R. Stat. Soc. Ser. D (Stat. ) 1983, 32, 297–300. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Henze, N.; Zirkler, B. A class of invariant consistent tests for multivariate normality. Commun. Stat. Theory Methods 1990, 19, 3595–3617. [Google Scholar] [CrossRef]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Pearson, K.; Filon, L.N.G. VII. Mathematical contributions to the theory of evolution.—IV. On the probable errors of frequency constants and on the influence of random selection on variation and correlation. Philos. Trans. R. Soc. London Ser. A Contain. Pap. A Math. Phys. Character 1898, 62, 173–176. [Google Scholar] [CrossRef]
- Raghunathan, T.E.; Rosenthal, R.; Rubin, D.B. Comparing correlated but nonoverlapping correlations. Psychol. Methods 1996, 1, 178. [Google Scholar] [CrossRef]
- Alin, A. Multicollinearity. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 370–374. [Google Scholar] [CrossRef]
- Bouman, T.; Steg, L.; Kiers, H.A. Measuring values in environmental research: A test of an environmental portrait value questionnaire. Front. Psychol. 2018, 9, 564. [Google Scholar] [CrossRef]
- Ertz, M.; Karakas, F.; Sarigöllü, E. Exploring pro-environmental behaviors of consumers: An analysis of contextual factors, attitude, and behaviors. J. Bus. Res. 2016, 69, 3971–3980. [Google Scholar] [CrossRef]
- Stern, P.C. New environmental theories: Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Cheung, G.W.; Lau, R.S. A direct comparison approach for testing measurement invariance. Organ. Res. Methods 2012, 15, 167–198. [Google Scholar] [CrossRef]
Hypotheses | Type of Behavior (Intention) | Restriction Heuristic | Optimization Heuristic |
---|---|---|---|
H1.1, H1.2 & H1.3 | Curtailment | ++ | + |
H2.1, H2.2 & H2.3 | Efficiency | + | ++ |
H3.3, H3.2 & H3.3 | New alternatives | + | ++ |
H4.1, H4.2 & H4.3 | Political consumption | + | ++ |
Activism | No hypothesis | ||
H5.1, H5.2 & H5.3 | Support for restrictive measures | ++ | + |
H6.1, H6.2 & H6.3 | Support for push measures | + | ++ |
H7.1, H7.2 & H7.3 | Support for pull measures | + | ++ |
Min. | Max. | Mean | SD | SE | |
---|---|---|---|---|---|
Heuristics (N = 1427) | |||||
Restriction heuristic | 0.89 | 5.14 | 3.39 | 0.93 | 0.02 |
Optimization heuristic | 0.89 | 5.16 | 3.37 | 0.85 | 0.02 |
Biospheric values (N = 1427) | −1 | 7 | 5.03 | 1.59 | 0.04 |
Personal norm (N = 1427) | 0.90 | 5.12 | 3.48 | 1.09 | 0.03 |
Stern’s behavioral roles (intention) | |||||
Curtailment (n = 1423) | 1 | 6 | 3.98 | 1.08 | 0.03 |
Efficiency (n = 1416) | 1 | 6 | 2.78 | 1.08 | 0.03 |
New alternatives (n = 1419) | 1 | 6 | 3.51 | 1.03 | 0.03 |
Political consumption (n = 1411) | 1 | 6 | 2.96 | 1.08 | 0.03 |
Activism (n = 1409) | 1 | 6 | 2.65 | 1.15 | 0.03 |
Support for different measures (N = 1427) | |||||
Support for restrictive policy measures | 1 | 5.94 | 3.19 | 0.95 | 0.03 |
Support for economic push measures | 0.45 | 5.19 | 2.55 | 1.23 | 0.03 |
Support for economic pull measures | 1 | 5.20 | 3.72 | 0.83 | 0.02 |
Restriction | Optimization | Pearson & Filon’s z | Dominance of Restriction | |
---|---|---|---|---|
Optimization (N = 1427) | 0.74 *** | 1 | ||
Biospheric values (N = 1427) | 0.41 *** | 0.47 *** | z = −3.624, p < 0.001 | −0.02 |
Personal norm (N = 1427) | 0.69 *** | 0.80 *** | z = −9.310, p < 0.001 | −0.05 |
Curtailment (n = 1423) | 0.38 *** | 0.44 *** | z = −3.151, p = 0.002 | −0.02 |
Efficiency (n = 1416) | 0.34 *** | 0.44 *** | z = −5.912, p < 0.001 | −0.09 ** |
New alternatives (n = 1419) | 0.31 *** | 0.39 *** | z = −4.526, p < 0.001 | −0.06 * |
Political consumption (n = 1411) | 0.45 *** | 0.58 *** | z = −7.926, p < 0.001 | −0.11 *** |
Activism (n = 1409) | 0.36 *** | 0.45 *** | z = −5.435, p < 0.001 | −0.07 ** |
Support for restrictive measures (N = 1427) | 0.58 *** | 0.60 *** | z = −1.280, p = 0.201 | 0.05 * |
Support for push measures (N = 1427) | 0.57 *** | 0.60 *** | z = −2.002, p = 0.045 | 0.04 |
Support for pull measures (N = 1427) | 0.46 *** | 0.54 *** | z = −5.144, p < 0.001 | −0.05 |
Type of Behavior (Intention) | Hypotheses about the Relevance of Restriction (R) and Optimization (O) Heuristic for the Intentions | Correlation with Dominance of Restriction | Evidence for Hypothesis |
---|---|---|---|
Curtailment | H1.3: R > O | −0.02 | not significant |
Efficiency | H2.3: O > R | −0.09 ** | As expected |
New alternatives | H3.3: O > R | −0.06 * | As expected |
Political consumption | H4.3: O > R | −0.11 *** | As expected |
Activism | No hypothesis | −0.07 ** | |
Support for restrictive measures | H5.3: R > O | 0.05 * | As expected |
Support for push measures | H6.3: O > R | −0.05 | not significant |
Support for pull measures | H7.3: O > R | 0.04 | not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthies, E.; de Paula Sieverding, T.; Engel, L.; Blöbaum, A. Simple and Smart: Investigating Two Heuristics That Guide the Intention to Engage in Different Climate-Change-Mitigation Behaviors. Sustainability 2023, 15, 7156. https://doi.org/10.3390/su15097156
Matthies E, de Paula Sieverding T, Engel L, Blöbaum A. Simple and Smart: Investigating Two Heuristics That Guide the Intention to Engage in Different Climate-Change-Mitigation Behaviors. Sustainability. 2023; 15(9):7156. https://doi.org/10.3390/su15097156
Chicago/Turabian StyleMatthies, Ellen, Theresa de Paula Sieverding, Lukas Engel, and Anke Blöbaum. 2023. "Simple and Smart: Investigating Two Heuristics That Guide the Intention to Engage in Different Climate-Change-Mitigation Behaviors" Sustainability 15, no. 9: 7156. https://doi.org/10.3390/su15097156