Sustainable Maritime Freight Transportation: Current Status and Future Directions
Abstract
:1. Introduction
2. Overview of Sustainable Maritime Freight Transportation
3. Methodology
3.1. Planning Phase
3.2. Conducting the Review and Bibliometric Analysis
3.3. Material Evaluation
4. Results and Analysis
4.1. Initial Data Statistics
4.2. Descriptive Analysis
4.3. Statistics Related to Authors, Countries, and Affiliations
4.4. Network Analysis
4.4.1. Citation Analysis
4.4.2. Co-Citation Analysis
4.4.3. Keyword Co-Occurrence Network Analysis
5. Content Analysis
5.1. Sustainability in Maritime Shipping
5.2. Environmental Impact of Sea Transportation
5.3. Green Shipping
5.4. Infrastructure and Port Development
5.5. Decarbonization of Maritime Shipping
5.6. Alternate Energy Solutions and Technologies
6. Discussion
Practical Insights and Policy Implications
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SteadieSeifi, M.; Dellaert, N.; Nuijten, W.; Van Woensel, T.; Raoufi, R. Multimodal freight transportation planning: A literature review. Eur. J. Oper. Res. 2014, 233, 1–15. [Google Scholar] [CrossRef]
- NITI AAYOG, RMI, and RMI INDIA, JUNE. 2021. Available online: https://www.niti.gov.in/sites/default/files/2021-06/FreightReportNationalLevel.pdf (accessed on 16 November 2022).
- Bazaluk, O.; Havrysh, V.; Nitsenko, V. Energy Efficiency of Inland Waterways Transport for Agriculture: The Ukraine Case Study. Appl. Sci. 2021, 11, 8937. [Google Scholar] [CrossRef]
- Furtado, G.C.D.A.; Mesquita, A.L.A.; Morabito, A.; Hendrick, P.; Hunt, J.D. Using hydropower waterway locks for energy storage and renewable energies integration. Appl. Energy 2020, 275, 115361. [Google Scholar] [CrossRef]
- Dwivedi, A.; Pratap, S.; Zhou, F. Antecedents of freight transportation for sustainable supply chain in the post-COVID era: An emerging market study. Int. J. Emerg. Markets, 2022; ahead-of-print. [Google Scholar] [CrossRef]
- IBEF. Shipping Industry & Ports in India. 2022. Available online: https://www.ibef.org/industry/ports-india-shipping#:~:text=According%20to%20the%20Ministry%20of,of%20Ports%2C%20Shipping%20and%20Waterways (accessed on 20 May 2021).
- UNCTAD. Review of Maritime Transport. 2021. Available online: https://unctad.org/system/files/official-document/rmt2021_en_0.pdf (accessed on 20 November 2022).
- European Energy Agency (EEA). Emission of Air Pollutants from Transport. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-6#tab-related-briefings (accessed on 25 May 2021).
- Tiller, S.J.; Rhindress, A.P.; Oguntola, I.O.; Ülkü, M.A.; Williams, K.A.; Sundararajan, B. Exploring the Impact of Climate Change on Arctic Shipping through the Lenses of Quadruple Bottom Line and Sustainable Development Goals. Sustainability 2022, 14, 2193. [Google Scholar] [CrossRef]
- Monteiro, A.; Russo, M.; Gama, C.; Borrego, C. How important are maritime emissions for the air quality: At European and national scale. Environ. Pollut. 2018, 242, 565–575. [Google Scholar] [CrossRef]
- Bagoulla, C.; Guillotreau, P. Maritime transport in the French economy and its impact on air pollution: An input-output analysis. Mar. Policy 2020, 116, 103818. [Google Scholar] [CrossRef]
- Kuzmicz, K.A.; Pesch, E. Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation. Omega 2018, 85, 194–213. [Google Scholar] [CrossRef]
- Zhou, W.-H.; Lee, C.-Y. Pricing and competition in a transportation market with empty equipment repositioning. Transp. Res. Part B Methodol. 2009, 43, 677–691. [Google Scholar] [CrossRef]
- Zheng, W.; Li, B.; Song, D.-P. Effects of risk-aversion on competing shipping lines’ pricing strategies with uncertain demands. Transp. Res. Part B Methodol. 2017, 104, 337–356. [Google Scholar] [CrossRef]
- Yun, S.-H.; Choi, C.-W.; Kwon, S.O.; Lee, Y.G.; Chung, Y.-H.; Jung, H.J.; Kim, Y.-J.; Lee, J.-H.; Choi, J.-S.; Kim, S.; et al. Enrichment and proteome analysis of a hyperthermostable protein set of archaeon Thermococcus onnurineus NA1. Extremophiles 2011, 15, 451–461. [Google Scholar] [CrossRef]
- Yan, X.; Xu, M.; Xie, C. Local container drayage problem with improved truck platooning operations. Transp. Res. Part E Logist. Transp. Rev. 2023, 169, 102992. [Google Scholar] [CrossRef]
- Najafi, M.; Zolfagharinia, H. Pricing and quality setting strategy in maritime transportation: Considering empty repositioning and demand uncertainty. Int. J. Prod. Econ. 2021, 240, 108245. [Google Scholar] [CrossRef]
- Lee, S.; Moon, I. Robust empty container repositioning considering foldable containers. Eur. J. Oper. Res. 2019, 280, 909–925. [Google Scholar] [CrossRef]
- Toygar, A.; Yildirim, U.; Inegöl, G.M. Investigation of empty container shortage based on SWARA-ARAS methods in the COVID-19 era. Eur. Transp. Res. Rev. 2022, 14, 8. [Google Scholar] [CrossRef]
- Lister, J. Green Shipping: Governing Sustainable Maritime Transport. Glob. Policy 2014, 6, 118–129. [Google Scholar] [CrossRef]
- Serra, P.; Fancello, G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas(GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Safety Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Rojon, I.; Lazarou, N.-J.; Rehmatulla, N.; Smith, T. The impacts of carbon pricing on maritime transport costs and their implications for developing economies. Mar. Policy 2021, 132, 104653. [Google Scholar] [CrossRef]
- Kuang, H.; Zhu, J.; Bai, Z. Study on the Interaction between Green Competitiveness of Coastal Ports and Hinterland Economy. Sustainability 2023, 15, 1364. [Google Scholar] [CrossRef]
- Gibbs, D.; Rigot-Muller, P.; Mangan, J.; Lalwani, C. The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy 2014, 64, 337–348. [Google Scholar] [CrossRef]
- Dai, L.; Hu, H.; Wang, Z.; Shi, Y.; Ding, W. An environmental and techno-economic analysis of shore side electricity. Transp. Res. Part D Transp. Environ. 2019, 75, 223–235. [Google Scholar] [CrossRef]
- Cammin, P.; Yu, J.; Heilig, L.; Voß, S. Monitoring of air emissions in maritime ports. Transp. Res. Part D Transp. Environ. 2020, 87, 102479. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Ye, J.; Chen, J.; Wen, H.; Wan, Z.; Tang, T. Emissions assessment of bulk carriers in China’s east Coast-Yangtze River maritime network based on different shipping modes. Ocean Eng. 2022, 249, 110903. [Google Scholar] [CrossRef]
- Liu, Z.; Schindler, S.; Liu, W. Demystifying Chinese overseas investment in infrastructure: Port development, the Belt and Road Initiative and regional development. J. Transp. Geogr. 2020, 87, 102812. [Google Scholar] [CrossRef]
- Zhang, X.; Lam, J.S.L. A fuzzy Delphi-AHP-TOPSIS framework to identify barriers in big data analytics adoption: Case of maritime organizations. Marit. Policy Manag. 2019, 46, 781–801. [Google Scholar] [CrossRef]
- Munim, Z.H.; Dushenko, M.; Jimenez, V.J.; Shakil, M.H.; Imset, M. Big data and artificial intelligence in the maritime industry: A bibliometric review and future research directions. Marit. Policy Manag. 2020, 47, 577–597. [Google Scholar] [CrossRef]
- Heilig, L.; Lalla-Ruiz, E.; Voß, S. Digital transformation in maritime ports: Analysis and a game theoretic framework. NETNOMICS Econ. Res. Electron. Netw. 2017, 18, 227–254. [Google Scholar] [CrossRef]
- Yang, C.-S. Maritime shipping digitalization: Blockchain-based technology applications, future improvements, and intention to use. Transp. Res. Part E Logist. Transp. Rev. 2019, 131, 108–117. [Google Scholar] [CrossRef]
- Johnsson, F.; Karlsson, I.; Rootzén, J.; Ahlbäck, A.; Gustavsson, M. The framing of a sustainable development goals assessment in decarbonizing the construction industry—Avoiding “Greenwashing”. Renew. Sustain. Energy Rev. 2020, 131, 110029. [Google Scholar] [CrossRef]
- Al-Enazi, A.; Okonkwo, E.C.; Bicer, Y.; Al-Ansari, T. A review of cleaner alternative fuels for maritime transportation. Energy Rep. 2021, 7, 1962–1985. [Google Scholar] [CrossRef]
- Jović, M.; Tijan, E.; Žgaljić, D.; Aksentijević, S. Improving Maritime Transport Sustainability Using Blockchain-Based Information Exchange. Sustainability 2020, 12, 8866. [Google Scholar] [CrossRef]
- Parmentola, A.; Petrillo, A.; Tutore, I.; De Felice, F. Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs). Bus. Strat. Environ. 2021, 31, 194–217. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Lee, H.; Aluko, O. Multi-objective decision support to enhance environmental sustainability in maritime shipping: A review and future directions. Transp. Res. Part E Logist. Transp. Rev. 2015, 78, 3–18. [Google Scholar] [CrossRef]
- Saether, E.A.; Eide, A.E.; Bjørgum, Ø. Sustainability among Norwegian maritime firms: Green strategy and innovation as mediators of long-term orientation and emission reduction. Bus. Strat. Environ. 2021, 30, 2382–2395. [Google Scholar] [CrossRef]
- Agrawal, R.; Majumdar, A.; Majumdar, K.; Raut, R.D.; Narkhede, B.E. Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses. Bus. Strat. Environ. 2022, 31, 3669–3687. [Google Scholar] [CrossRef]
- Chen, T.; Zhou, R.; Liu, C.; Xu, X. Research on Coordination in a Dual-Channel Green Supply Chain under Live Streaming Mode. Sustainability 2023, 15, 878. [Google Scholar] [CrossRef]
- Hailemariam, A.; Erdiaw-Kwasie, M.O. Towards a circular economy: Implications for emission reduction and environmental sustainability. Bus. Strat. Environ. 2022, 1–15. [Google Scholar] [CrossRef]
- Sharma, N.K.; Govindan, K.; Lai, K.K.; Chen, W.K.; Kumar, V. The transition from linear economy to circular economy for sustainability among SMEs: A study on prospects, impediments, and prerequisites. Bus. Strat. Environ. 2020, 30, 1803–1822. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Muhuri, P.K.; Shukla, A.K.; Abraham, A. Industry 4.0: A bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 2018, 78, 218–235. [Google Scholar] [CrossRef]
- Farrukh, M.; Meng, F.; Wu, Y.; Nawaz, K. Twenty-eight years of business strategy and the environment research: A bibliometric analysis. Bus. Strat. Environ. 2020, 29, 2572–2582. [Google Scholar] [CrossRef]
- Jaller, M.; Pahwa, A. Evaluating the environmental impacts of online shopping: A behavioral and transportation approach. Transp. Res. Part D Transp. Environ. 2020, 80, 102223. [Google Scholar] [CrossRef]
- Benz, L.; Münch, C.; Hartmann, E. Development of a search and rescue framework for maritime freight shipping in the Arctic. Transp. Res. Part A Policy Pract. 2021, 152, 54–69. [Google Scholar] [CrossRef]
- Bălan, C. The disruptive impact of future advanced ICTs on maritime transport: A systematic review. Supply Chain. Manag. Int. J. 2018, 25, 157–175. [Google Scholar] [CrossRef]
- Kougias, I.; Nikitas, A.; Thiel, C.; Szabó, S. Clean energy and transport pathways for islands: A stakeholder analysis using Q method. Transp. Res. Part D Transp. Environ. 2019, 78, 102180. [Google Scholar] [CrossRef]
- Li, C.; Solangi, Y.A.; Ali, S. Evaluating the Factors of Green Finance to Achieve Carbon Peak and Carbon Neutrality Targets in China: A Delphi and Fuzzy AHP Approach. Sustainability 2023, 15, 2721. [Google Scholar] [CrossRef]
- Rauch, J.N.; Newman, J. Institutionalizing a greenhouse gas emission reduction target at Yale. Int. J. Sustain. High. Educ. 2009, 10, 390–400. [Google Scholar] [CrossRef]
- Shardeo, V.; Patil, A.; Dwivedi, A.; Madaan, J. Investigating the transport flexibility measures for freight transportation: A fuzzy best-worst method approach. Int. J. Logist. Syst. Manag. 2022, 43, 268–295. [Google Scholar] [CrossRef]
- Idemudia, U.; Okoli, N.; Goitom, M.; Bawa, S. Life after trafficking: Reintegration experiences of human trafficking survivors in Nigeria. Int. J. Migr. Health Soc. Care, 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Caspersen, E.; Navrud, S. The sharing economy and consumer preferences for environmentally sustainable last mile deliveries. Transp. Res. Part D Transp. Environ. 2021, 95, 102863. [Google Scholar] [CrossRef]
- Prajapati, D.; Zhou, F.; Dwivedi, A.; Singh, T.; Lakshay, L.; Pratap, S. Sustainable agro-food supply chain in e-commerce: Towards the circular economy. Sustainability 2022, 14, 8698. [Google Scholar] [CrossRef]
- Withorn, T.; Eslami, J.; Lee, H.; Clarke, M.; Caffrey, C.; Springfield, C.; Ospina, D.; Andora, A.; Castañeda, A.; Mitchell, A.; et al. Library instruction and information literacy 2020. Ref. Serv. Rev. 2021, 49, 329–418. [Google Scholar] [CrossRef]
- Rasel, A.; Win, S. Microfinance governance: A systematic review and future research directions. J. Econ. Stud. 2020, 47, 1811–1847. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Kazemi, N.; Modak, N.M.; Govindan, K. A review of reverse logistics and closed loop supply chain management studies published in IJPR: A bibliometric and content analysis. Int. J. Prod. Res. 2018, 57, 4937–4960. [Google Scholar] [CrossRef]
- Nobanee, H.; Al Hamadi, F.; Abdulaziz, F.; Abukarsh, L.; Alqahtani, A.; AlSubaey, S.; Alqahtani, S.; Almansoori, H. A Bibliometric Analysis of Sustainability and Risk Management. Sustainability 2021, 13, 3277. [Google Scholar] [CrossRef]
- He, Z. The challenges in sustainability of urban freight network design and distribution innovations: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2020, 50, 601–640. [Google Scholar] [CrossRef]
- Meyer, T. Decarbonizing road freight transportation—A bibliometric and network analysis. Transp. Res. Part D Transp. Environ. 2020, 89, 102619. [Google Scholar] [CrossRef]
- Jimenez, V.J.; Kim, H.; Munim, Z.H. A review of ship energy efficiency research and directions towards emission reduction in the maritime industry. J. Clean. Prod. 2022, 366, 132888. [Google Scholar] [CrossRef]
- Del Giudice, M.; Di Vaio, A.; Hassan, R.; Palladino, R. Digitalization and new technologies for sustainable business models at the ship–port interface: A bibliometric analysis. Marit. Policy Manag. 2021, 49, 410–446. [Google Scholar] [CrossRef]
- Kołakowski, P.; Ampah, J.D.; Wróbel, K.; Yusuf, A.A.; Gil, M.; Afrane, S.; Jin, C.; Liu, H. Alternative fuels in shipping: Discussion on the findings of two recently published, independent bibliometric studies. J. Clean. Prod. 2022, 338, 130651. [Google Scholar] [CrossRef]
- Cui, W.; Tang, J.; Zhang, Z.; Dai, X. A bibliometric analysis on innovation convergence. Libr. Hi Tech 2022. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Wong, Y.D.; Zhou, Q. Antecedents and outcomes of sustainable shipping practices: The integration of stakeholder and behavioural theories. Transp. Res. Part E Logist. Transp. Rev. 2017, 108, 18–35. [Google Scholar] [CrossRef]
- Innes, A.; Monios, J. Identifying the unique challenges of installing cold ironing at small and medium ports–The case of Aberdeen. Transp. Res. Part D Transp. Environ. 2018, 62, 298–313. [Google Scholar] [CrossRef]
- Wang, X.; Yuen, K.F.; Wong, Y.D.; Li, K.X. How can the maritime industry meet Sustainable Development Goals? An analysis of sustainability reports from the social entrepreneurship perspective. Transp. Res. Part D Transp. Environ. 2020, 78, 102173. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Yuen, K.F. Sustainability disclosure for container shipping: A text-mining approach. Transp. Policy 2021, 110, 465–477. [Google Scholar] [CrossRef]
- Vural, C.A.; Baştuğ, S.; Gülmez, S. Sustainable brand positioning by container shipping firms: Evidence from social media communications. Transp. Res. Part D Transp. Environ. 2021, 97, 102938. [Google Scholar] [CrossRef]
- Hansson, J.; Månsson, S.; Brynolf, S.; Grahn, M. Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass Bioenergy 2019, 126, 159–173. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Wong, Y.D.; Zhou, Q. The effect of sustainable shipping practices on shippers’ loyalty: The mediating role of perceived value, trust and transaction cost. Transp. Res. Part E Logist. Transp. Rev. 2018, 116, 123–135. [Google Scholar] [CrossRef]
- Ren, J.; Liang, H. Measuring the sustainability of marine fuels: A fuzzy group multi-criteria decision making approach. Transp. Res. Part D Transp. Environ. 2017, 54, 12–29. [Google Scholar] [CrossRef]
- Yuen, K.F.; Li, K.X.; Xu, G.; Wang, X.; Wong, Y.D. A taxonomy of resources for sustainable shipping management: Their interrelationships and effects on business performance. Transp. Res. Part E Logist. Transp. Rev. 2019, 128, 316–332. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Wong, Y.D.; Ma, F. A contingency view of the effects of sustainable shipping exploitation and exploration on business performance. Transp. Policy 2019, 77, 90–103. [Google Scholar] [CrossRef]
- Stalmokaitė, I.; Yliskylä-Peuralahti, J. Sustainability transitions in Baltic Sea shipping: Exploring the responses of firms to regulatory changes. Sustainability 2019, 11, 1916. [Google Scholar] [CrossRef]
- Yuen, K.F.; Lim, J.M. Barriers to the implementation of strategic corporate social responsibility in shipping. Asian J. Shipp. Logist. 2016, 32, 49–57. [Google Scholar] [CrossRef]
- Poulsen, R.T.; Ponte, S.; Lister, J. Buyer-driven greening? Cargo-owners and environmental upgrading in maritime shipping. Geoforum 2016, 68, 57–68. [Google Scholar] [CrossRef]
- Bach, H.; Bergek, A.; Bjørgum, Ø.; Hansen, T.; Kenzhegaliyeva, A.; Steen, M. Implementing maritime battery-electric and hydrogen solutions: A technological innovation systems analysis. Transp. Res. Part D Transp. Environ. 2020, 87, 102492. [Google Scholar] [CrossRef]
- Hua, J.; Wu, Y.; Chen, H. Alternative fuel for sustainable shipping across the Taiwan Strait. Transp. Res. Part D Transp. Environ. 2017, 52, 254–276. [Google Scholar] [CrossRef]
- Linder, A. Explaining shipping company participation in voluntary vessel emission reduction programs. Transp. Res. Part D Transp. Environ. 2018, 61, 234–245. [Google Scholar] [CrossRef]
- Sys, C.; Vanelslander, T.; Adriaenssens, M.; Van Rillaer, I. International emission regulation in sea transport: Economic feasibility and impact. Transp. Res. Part D Transp. Environ. 2016, 45, 139–151. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Bibliometric mapping of the computational intelligence field. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2007, 15, 625–645. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Jović, M.; Tijan, E.; Brčić, D.; Pucihar, A. Digitalization in Maritime Transport and Seaports: Bibliometric, Content and Thematic Analysis. J. Mar. Sci. Eng. 2022, 10, 486. [Google Scholar] [CrossRef]
- Ashrafi, M.; Walker, T.R.; Magnan, G.M.; Adams, M.; Acciaro, M. A review of corporate sustainability drivers in maritime ports: A multi-stakeholder perspective. Marit. Policy Manag. 2020, 47, 1027–1044. [Google Scholar] [CrossRef]
- Pangalos, G. Financing for a Sustainable Dry Bulk Shipping Industry: What Are the Potential Routes for Financial Innovation in Sustainability and Alternative Energy in the Dry Bulk Shipping Industry? J. Risk Financ. Manag. 2023, 16, 101. [Google Scholar] [CrossRef]
- Kapidani, N.; Bauk, S.; Davidson, I. Digitalization in Developing Maritime Business Environments towards Ensuring Sustainability. Sustainability 2020, 12, 9235. [Google Scholar] [CrossRef]
- Frederiksen, P.; Morf, A.; von Thenen, M.; Armoskaite, A.; Luhtala, H.; Schiele, K.S.; Strake, S.; Hansen, H.S. Proposing an ecosystem services-based framework to assess sustainability impacts of maritime spatial plans (MSP-SA). Ocean Coast. Manag. 2021, 208, 105577. [Google Scholar] [CrossRef]
- Rupo, D.; Perano, M.; Centorrino, G.; Vargas-Sanchez, A. A Framework Based on Sustainability, Open Innovation, and Value Cocreation Paradigms—A Case in an Italian Maritime Cluster. Sustainability 2018, 10, 729. [Google Scholar] [CrossRef]
- Prajapati, D.; Daultani, Y.; Cheikhrouhou, N.; Pratap, S. Identification and ranking of key factors impacting efficiency of Indian shipping logistics sector. Opsearch 2020, 57, 765–786. [Google Scholar] [CrossRef]
- Tillig, F.; Ringsberg, J.W.; Psaraftis, H.N.; Zis, T. Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion. Transp. Res. Part D Transp. Environ. 2020, 83, 102380. [Google Scholar] [CrossRef]
- Pirotta, V.; Grech, A.; Jonsen, I.D.; Laurance, W.F.; Harcourt, R.G. Consequences of global shipping traffic for marine giants. Front. Ecol. Environ. 2018, 17, 39–47. [Google Scholar] [CrossRef]
- Tseng, P.-H.; Pilcher, N. Estimating the emissions potential of marine transportation using the Kra Canal. Marit. Transp. Res. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Wan, Z.; Zhu, M.; Chen, S.; Sperling, D. Pollution: Three steps to a green shipping industry. Nature 2016, 530, 451–466. [Google Scholar] [CrossRef]
- Lee, T.; Nam, H. A Study on Green Shipping in Major Countries: In the View of Shipyards, Shipping Companies, Ports, and Policies. Asian J. Shipp. Logist. 2017, 33, 253–262. [Google Scholar] [CrossRef]
- Carter, C.R.; Hatton, M.R.; Wu, C.; Chen, X. Sustainable supply chain management: Continuing evolution and future directions. Int. J. Phys. Distrib. Logist. Manag. 2019, 50, 122–146. [Google Scholar] [CrossRef]
- Metzger, D.; Schinas, O. Fuzzy real options and shared savings: Investment appraisal for green shipping technologies. Transp. Res. Part D Transp. Environ. 2019, 77, 1–10. [Google Scholar] [CrossRef]
- Moshiul, A.M.; Mohammad, R.; Anjum, H.F.; Yesmin, A.; Chelliapan, S. The Evolution of Green Shipping Practices Adoption in the International Maritime Industry. TEM J. 2021, 10, 1112–1121. [Google Scholar] [CrossRef]
- Singh, S.; Barve, A.; Muduli, K.; Kumar, A.; Luthra, S. Evaluating roadblocks to implementing a green freight transportation system: An interval valued intuitionistic fuzzy digraph matrix approach. IEEE Trans. Eng. Manag. 2022. [CrossRef]
- Singh, S.; Barve, A.; Shanker, S. An ISM-gDEMATEL framework for assessing barriers to green freight transportation: A case of Indian logistics system. Int. J. Sustain. Eng. 2021, 14, 1871–1892. [Google Scholar] [CrossRef]
- Munim, Z.H.; Schramm, H.-J. The impacts of port infrastructure and logistics performance on economic growth: The mediating role of seaborne trade. J. Shipp. Trade 2018, 3, 1. [Google Scholar] [CrossRef]
- Lawer, E.T. Examining stakeholder participation and conflicts associated with large scale infrastructure projects: The case of Tema port expansion project, Ghana. Marit. Policy Manag. 2019, 46, 735–756. [Google Scholar] [CrossRef]
- Pratap, S.; Nayak, A.; Kumar, A.; Cheikhrouhou, N.; Tiwari, M.K. An integrated decision support system for berth and ship unloader allocation in bulk material handling port. Comput. Ind. Eng. 2017, 106, 386–399. [Google Scholar] [CrossRef]
- de Langen, P.W.; Sornn-Friese, H.; Hallworth, J. The Role of Port Development Companies in Transitioning the Port Business Ecosystem; The Case of Port of Amsterdam’s Circular Activities. Sustainability 2020, 12, 4397. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Zhen, L. Blockchain technology in maritime supply chains: Applications, architecture and challenges. Int. J. Prod. Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Hönke, J.; Cuesta-Fernandez, I. Mobilising security and logistics through an African port: A controversies approach to infrastructure. Mobilities 2018, 13, 246–260. [Google Scholar] [CrossRef]
- Singh, A. Port Development: History, Present and Future Challenges; Springer: Singapore, 2022; pp. 25–34. [Google Scholar] [CrossRef]
- Johansson, M.; Langlet, D.; Larsson, O.; Löfgren, Å.; Harring, N.; Jagers, S. A risk framework for optimising policies for deep decarbonisation technologies. Energy Res. Soc. Sci. 2021, 82, 102297. [Google Scholar] [CrossRef]
- Linton, S.; Clarke, A.; Tozer, L. Strategies and Governance for Implementing Deep Decarbonization Plans at the Local Level. Sustainability 2020, 13, 154. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E. Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Daniel, H.; Trovão, J.P.F.; Williams, D. Shore power as a first step toward shipping decarbonization and related policy impact on a dry bulk cargo carrier. Etransportation 2021, 11, 100150. [Google Scholar] [CrossRef]
- Psaraftis, H.; Kontovas, C. Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel? Sustainability 2020, 13, 237. [Google Scholar] [CrossRef]
- Zis, T.P.V.; Psaraftis, H.N. Impacts of short-term measures to decarbonize maritime transport on perishable cargoes. Marit. Econ. Logist. 2021, 24, 602–629. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: A comparative evaluation. Int. J. Hydrogen Energy 2018, 43, 4583–4596. [Google Scholar] [CrossRef]
- Jeong, B.; Jeon, H.; Kim, S.; Kim, J.; Zhou, P. Evaluation of the Lifecycle Environmental Benefits of Full Battery Powered Ships: Comparative Analysis of Marine Diesel and Electricity. J. Mar. Sci. Eng. 2020, 8, 580. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Dong, B.; Christiansen, M.; Fagerholt, K.; Chandra, S. Design of a sustainable maritime multi-modal distribution network—Case study from automotive logistics. Transp. Res. Part E Logist. Transp. Rev. 2020, 143, 102086. [Google Scholar] [CrossRef]
- Lespier, L.P.; Long, S.; Shoberg, T.; Corns, S. A model for the evaluation of environmental impact indicators for a sustainable maritime transportation systems. Front. Eng. Manag. 2018, 6, 368–383. [Google Scholar] [CrossRef]
- Jarašūnienė, A.; Čižiūnienė, K. Ensuring Sustainable Freight Carriage through Interoperability between Maritime and Rail Transport. Sustainability 2021, 13, 12766. [Google Scholar] [CrossRef]
- Garg, C.P.; Kashav, V. Evaluating value creating factors in greening the transportation of Global Maritime Supply Chains (GMSCs) of containerized freight. Transp. Res. Part D Transp. Environ. 2019, 73, 162–186. [Google Scholar] [CrossRef]
- Halim, R.A.; Kirstein, L.; Merk, O.; Martinez, L.M. Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment. Sustainability 2018, 10, 2243. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Danao, D. Green Shipping Practices of Shipping Firms. Sustainability 2017, 9, 829. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Harris, K.; Tifft, S.M.; Steward, D.; Kinchin, C.; Thompson, T.N. Adoption of biofuels for marine shipping decarbonization: A long-term price and scalability assessment. Biofuels Bioprod. Biorefining 2022, 16, 942–961. [Google Scholar] [CrossRef]
- Prussi, M.; Scarlat, N.; Acciaro, M.; Kosmas, V. Potential and limiting factors in the use of alternative fuels in the European maritime sector. J. Clean. Prod. 2021, 291, 125849. [Google Scholar] [CrossRef] [PubMed]
- Gore, K.; Rigot-Müller, P.; Coughlan, J. Cost assessment of alternative fuels for maritime transportation in Ireland. Transp. Res. Part D Transp. Environ. 2022, 110, 103416. [Google Scholar] [CrossRef]
- Moshiul, A.M.; Mohammad, R.; Hira, F.A. Alternative Fuel Selection Framework toward Decarbonizing Maritime Deep-Sea Shipping. Sustainability 2023, 15, 5571. [Google Scholar] [CrossRef]
- Kronfeld-Goharani, U. Maritime economy: Insights on corporate visions and strategies towards sustainability. Ocean Coast. Manag. 2018, 165, 126–140. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, X.; Li, K.X.; Zhou, Y.; Yuen, K.F. Research topics and trends in the maritime transport: A structural topic model. Transp. Policy 2020, 102, 11–24. [Google Scholar] [CrossRef]
- Sislian, L.; Jaegler, A.; Cariou, P. A literature review on port sustainability and ocean’s carrier network problem. Res. Transp. Bus. Manag. 2016, 19, 19–26. [Google Scholar] [CrossRef]
- Wong, S.; Yeung, J.-K.-W.; Lau, Y.-Y.; So, J. Technical Sustainability of Cloud-Based Blockchain Integrated with Machine Learning for Supply Chain Management. Sustainability 2021, 13, 8270. [Google Scholar] [CrossRef]
- Pratap, S.; Daultani, Y.; Dwivedi, A.; Zhou, F. Supplier selection and evaluation in e-commerce enterprises: A data envelopment analysis approach. Benchmarking Int. J. 2022, 29, 325–341. [Google Scholar] [CrossRef]
- Denktas-Sakar, G.; Karatas-Cetin, C. Port Sustainability and Stakeholder Management in Supply Chains: A Framework on Resource Dependence Theory. Asian J. Shipp. Logist. 2012, 28, 301–320. [Google Scholar] [CrossRef]
Search Keywords | Results (No. of Papers) |
---|---|
Environmental science | 359 |
Energy | 207 |
Business Management and Accounting | 158 |
Economics, Econometrics, and Finance | 72 |
Decision sciences | 55 |
Engineering | 387 |
Social sciences | 326 |
Mathematics | 40 |
Total | 1604 |
Excluding Articles matching more than one field | 811 |
Source | Total | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|
Sustainability (Switzerland) | 62 | 0 | 1 | 1 | 2 | 1 | 5 | 8 | 15 | 18 | 11 |
Transportation Research Part D: Transport and Environment | 26 | 1 | 1 | 1 | 1 | 3 | 5 | 3 | 3 | 5 | 3 |
Journal of Cleaner Production | 24 | 0 | 0 | 0 | 1 | 3 | 1 | 1 | 4 | 7 | 7 |
Maritime by Holland | 12 | 2 | 2 | 2 | 3 | 1 | 2 | 0 | 0 | 0 | 0 |
Marine Policy | 12 | 0 | 1 | 0 | 0 | 3 | 2 | 0 | 0 | 1 | 3 |
Maritime Policy and Management | 11 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 4 | 2 |
Transportation Research Part E: Logistics and Transportation Review | 11 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 0 |
Energies | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 6 | 1 |
Journal of Marine Science and Engineering | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 5 |
Asian Journal of Shipping and Logistics | 6 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 1 |
Main Information | |||
---|---|---|---|
Timespan | 2017:2022 | Authors | |
Sources | 168 | Authors | 1157 |
Documents | 387 | Author appearances | 1366 |
Annual Growth Rate | 25.74 | ||
Document Average Age | 1.81 | Authors of single-authored documented | 52 |
Average citations per year per doc | 9.708 | Authors of multi-authored documents | 1105 |
References | 22,541 | ||
Author Collaborations | |||
Document Type | Single-authored documents | 52 | |
Articles | 387 | Author per Documents | 2.99 |
Documents Content | Co-Authors per document | 3.53 | |
Keywords plus (ID) | 2210 | International co-Authorship% | 30.49 |
Author’s Keywords (DE) | 1440 | Collaboration Index | 3.29 |
Country | Articles | SCP | MCP | Freq | MCP Ratio |
---|---|---|---|---|---|
China | 60 | 35 | 25 | 0.111 | 0.417 |
USA | 43 | 32 | 11 | 0.08 | 0.256 |
United Kingdom | 40 | 32 | 8 | 0.074 | 0.2 |
Spain | 22 | 18 | 4 | 0.041 | 0.182 |
Sweden | 22 | 15 | 7 | 0.041 | 0.318 |
Singapore | 19 | 7 | 12 | 0.035 | 0.632 |
Italy | 18 | 12 | 6 | 0.033 | 0.333 |
Norway | 17 | 13 | 4 | 0.031 | 0.235 |
Germany | 13 | 8 | 5 | 0.024 | 0.385 |
Korea | 13 | 8 | 5 | 0.024 | 0.385 |
Affiliations | Articles |
---|---|
Nanyang Technological University | 37 |
University Of Strathclyde | 36 |
Dalian Maritime University | 20 |
University of Malaysia, Terengganu | 20 |
Shanghai Maritime University | 18 |
Chalmers University of Technology | 17 |
Zhejiang University | 16 |
Technical University of Denmark | 15 |
Chung-Ang University | 13 |
Dalhousie University | 12 |
S. No. | Authors | Title | Results | Method |
---|---|---|---|---|
1 | Dong et al. [123] | Design of a Sustainable Maritime multi-modal distribution network—A case study from automotive logistics | The model proposes a route that makes the most efficient use of both waterways and roadways. | Mixed integer programming |
2 | Pérez Lespier et al. [124] | A model for the evaluation of environmental impact indicators for a sustainable maritime transportation system | This study creates an instrument for making decisions in complex environments by quantifying and ranking favoured environmental impact indicators within a multi-criteria decision-making framework (MTS). | Fuzzy AHP and FTOPSIS |
3 | Jarašūnienė and Čižiūnienė [125] | Ensuring Sustainable Freight Carriage through Interoperability between Maritime and Rail Transport | The model’s viability analysis provided further evidence that the absence of interoperability between maritime and rail transport in international freight carriage is an important issue, and that the developed model could be used to boost the attractiveness of such interoperability. | Theoretical Assessment |
4 | Garg and Kashav [126] | Evaluating value-creating factors in greening the transportation of Global Maritime Supply Chains of containerized freight | Greater Economy of Scale, More Reliability and Predictability, Consolidation, Optimization, and Integration are the top three value-creating factors. | FAHP |
5 | Halim et al. [127] | Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment | By utilising all currently available technologies, it may be feasible to achieve nearly complete decarbonization by 2035. Along with this, the price difference between conventional fuels and more environmentally friendly fuel choices must be bridged with financial incentives. | International Transport Forum’s International freight model (IFM) and the “ASIF” (Activity, Structure, Intensity, Emission Factor) method |
6 | Zis and Psaraftis [119] | Impacts of short-term measures to decarbonize maritime transport on perishable cargoes | In contrast to a speed restriction, a power limit or a goal-based measure would benefit liner shipping companies using more efficient vessels. | An extension of a nested modal split model |
7 | Ampah et al. [28] | Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the Maritime transport sector | The USA has been a driving force in the development of this area, which is expanding at a rate of 15.8 percent per year. In terms of alternative transportation fuels, liquefied natural gas (LNG) has received the most attention. | R-studio |
8 | Chang and Danao [128] | Green Shipping Practices of Shipping Firms | Industrial institutionalized norms are the most influential element in shipping companies adopting GSP, followed by the firm’s environmental strategy and finally, the environmental demand of customers. | Structural Equation Modelling |
9 | Tan et al. [129] | Adoption of biofuels for marine shipping decarbonization: A long-term price and scalability assessment | With the help of modern conversion technologies and abundant domestic feedstock in the United States, significant quantities of biofuels can be produced to reach a critical mass and have an effect as alternative marine fuels. | Linear programming model |
10 | Prussi et al. [130] | Potential and limiting factors in the use of alternative fuels in the European maritime sector | The paper demonstrates how, even though cost and GHG reduction are key drivers of fuel uptake, other factors such as technological sophistication, safety laws, operator expertise, etc., are not adequately analysed for some solutions, (e.g., ammonia, hydrogen). | Fleets and Fuels” (FF20) modelling |
11 | Gore et al. [131] | Cost assessment of alternative fuels for maritime transportation in Ireland | Even though renewable hydrogen is the best choice for meeting future decarbonization goals, it will not be competitive with LNG and methanol until its fuel price is reduced by another 60% or the proposed carbon tax rate is increased by another 275%. | Net Present Value |
12 | Moshiul et al. [132] | Alternative Fuel Selection Framework toward Decarbonizing Maritime Deep-Sea Shipping | Technological factors, technology status, expenses, ecological impact, and wellbeing/safety considerations are the most significant criteria for determining the most suitable choices for shipping firm-level players. | Factor analysis and TOPSIS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Dwivedi, A.; Pratap, S. Sustainable Maritime Freight Transportation: Current Status and Future Directions. Sustainability 2023, 15, 6996. https://doi.org/10.3390/su15086996
Singh S, Dwivedi A, Pratap S. Sustainable Maritime Freight Transportation: Current Status and Future Directions. Sustainability. 2023; 15(8):6996. https://doi.org/10.3390/su15086996
Chicago/Turabian StyleSingh, Suneet, Ashish Dwivedi, and Saurabh Pratap. 2023. "Sustainable Maritime Freight Transportation: Current Status and Future Directions" Sustainability 15, no. 8: 6996. https://doi.org/10.3390/su15086996