Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalgal Species and Culture Conditions
2.2. Domestic Wastewater Sources
2.3. Microalgae Cultivation Using Domestic Wastewater
2.4. Harvesting and Drying Microalgae
2.5. Determination of Microalgal Growth
2.6. Nutrient Removal Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Microalgal Growth in Wastewater Medium and BBM
3.2. Nutrient Removal Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Anza, I.; Vidal, D.; Laguna, C.; Díaz-Sánchez, S.; Sánchez, S.; Chicote, Á.; Florín, M.; Mateo, R. Eutrophication and bacterial pathogens as risk factors for avian botulism outbreaks in wetlands receiving effluents from urban wastewater treatment plants. Appl. Environ. Microbiol. 2014, 80, 4251–4259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awual, M.R. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. J. Clean. Prod. 2019, 228, 1311–1319. [Google Scholar] [CrossRef]
- Fetahi, T. Eutrophication of Ethiopian water bodies: A serious threat to water quality, biodiversity and public health. Afr. J. Aquat. Sci. 2019, 44, 303–312. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Sanseverino, I.; Conduto, D.; Pozzoli, L.; Dobricic, S.; Lettieri, T. Algal Bloom and Its Economic Impact; European Commission Joint Research Centre: Mestreechv, The Netherlands, 2016; ISBN 978-92-79-58101-4. [Google Scholar]
- Zhu, G.; Noman, M.A.; Narale, D.D.; Feng, W.; Pujari, L.; Sun, J. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 2020, 264, 114791. [Google Scholar] [CrossRef]
- Hauser-Davis, R.A.; Lavradas, R.T.; Lavandier, R.C.; Rojas, E.G.A.; Guarino, A.W.S.; Ziolli, R.L. Accumulation and toxic effects of microcystin in tilapia (Oreochromis niloticus) from an eutrophic Brazilian lagoon. Ecotoxicol. Environ. Saf. 2015, 112, 132–136. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Xu, H.; de Koning, J.; Geng, Y. Reliability and efficiency of an advanced tertiary treatment process for wastewater reclamation. J. Water Reuse Desalin. 2019, 9, 385–395. [Google Scholar] [CrossRef]
- Hunter, R.G.; Day, J.W.; Wiegman, A.R.; Lane, R.R. Municipal wastewater treatment costs with an emphasis on assimilation wetlands in the Louisiana coastal zone. Ecol. Eng. 2019, 137, 21–25. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Zepka, L.Q.; Queiroz, M.I. Energy from Microalgae: A Brief Introduction; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9783319690926. [Google Scholar]
- van Puijenbroek, P.J.T.M.; Beusen, A.H.W.; Bouwman, A.F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manag. 2019, 231, 446–456. [Google Scholar] [CrossRef]
- Capps, K.A.; Bentsen, C.N.; Ramírez, A. Poverty, urbanization, and environmental degradation: Urban streams in the developing world. Freshw. Sci. 2016, 35, 429–435. [Google Scholar] [CrossRef]
- Indah Water Konsortium. Reuse Wastewater as an Alternative Sustainable Resources; Indah Water Konsortium: Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Awual, M.R.; Asiri, A.M.; Rahman, M.M.; Alharthi, N.H. Assessment of enhanced nitrite removal and monitoring using ligand modified stable conjugate materials. Chem. Eng. J. 2019, 363, 64–72. [Google Scholar] [CrossRef]
- Daguerre-Martini, S.; Vanotti, M.B.; Rodriguez-Pastor, M.; Rosal, A.; Moral, R. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Res. 2018, 137, 201–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Kothari, R.; Shankarayan, R.; Tyagi, V.V. Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: An experimental investigation. 3 Biotech 2020, 10, 24. [Google Scholar] [CrossRef]
- Ramsundar, P.; Guldhe, A.; Singh, P.; Bux, F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour. Technol. 2017, 227, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Osundeko, O.; Ansolia, P.; Gupta, S.K.; Bag, P.; Bajhaiya, A.K. Promises and Challenges of Growing Microalgae in Wastewater. In Water Conservation, Recycling and Reuse: Issues and Challenges; Springer: Berlin/Heidelberg, Germany, 2019; pp. 29–53. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Chaudhary, R.; Tong, Y.W.; Dikshit, A.K. CO2-assisted removal of nutrients from municipal wastewater by microalgae Chlorella vulgaris and Scenedesmus obliquus. Int. J. Environ. Sci. Technol. 2018, 15, 2183–2192. [Google Scholar] [CrossRef]
- Trivedi, T.; Jain, D.; Mulla, N.S.S.; Mamatha, S.S.; Damare, S.R.; Sreepada, R.A.; Kumar, S.; Gupta, V. Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renew. Energy 2019, 139, 326–335. [Google Scholar] [CrossRef]
- Wang, F.; Gao, B.; Su, M.; Dai, C.; Huang, L.; Zhang, C. Integrated biorefinery strategy for tofu wastewater biotransformation and biomass valorization with the filamentous microalga Tribonema minus. Bioresour. Technol. 2019, 292, 121938. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Pawar, S.B.; Pandey, R.A. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Sci. Total Environ. 2019, 687, 1107–1126. [Google Scholar] [CrossRef]
- Han, X.; Hu, X.; Yin, Q.; Li, S.; Song, C. Intensification of brewery wastewater purification integrated with CO2 fixation via microalgae co-cultivation. J. Environ. Chem. Eng. 2021, 9, 105710. [Google Scholar] [CrossRef]
- Hariz, H.B.; Takriff, M.S.; Mohd Yasin, N.H.; Ba-Abbad, M.M.; Mohd Hakimi, N.I.N. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. J. Water Process Eng. 2019, 32, 100907. [Google Scholar] [CrossRef]
- Nagappan, S.; Kumar, G. Investigation of four microalgae in nitrogen deficient synthetic wastewater for biorefinery based biofuel production. Environ. Technol. Innov. 2021, 23, 101572. [Google Scholar] [CrossRef]
- Biswas, T.; Bhushan, S.; Prajapati, S.K.; Ray Chaudhuri, S. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production. J. Environ. Manag. 2021, 286, 112196. [Google Scholar] [CrossRef] [PubMed]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 2019, 7, 100214. [Google Scholar] [CrossRef]
- Pereira, H.; Sardinha, M.; Santos, T.; Gouveia, L.; Barreira, L.; Dias, J.; Varela, J. Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). Algal Res. 2020, 47, 101869. [Google Scholar] [CrossRef]
- Zhao, X.C.; Tan, X.B.; Yang, L.B.; Liao, J.Y.; Li, X.Y. Cultivation of Chlorella pyrenoidosa in anaerobic wastewater: The coupled effects of ammonium, temperature and pH conditions on lipids compositions. Bioresour. Technol. 2019, 284, 90–97. [Google Scholar] [CrossRef]
- Farooq, W.; Suh, W.I.; Park, M.S.; Yang, J.W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour. Technol. 2015, 184, 73–81. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Sayed, E.T.; Rodriguez, C.; Anyanwu, R.C.; Russell, C.; Abdelkareem, M.A. Role of microalgae in achieving sustainable development goals and circular economy. Sci. Total Environ. 2023, 854, 158689. [Google Scholar] [CrossRef]
- Tan, X.-B.; Zhang, Y.-L.; Yang, L.-B.; Chu, H.-Q.; Guo, J. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresour. Technol. 2016, 200, 606–615. [Google Scholar] [CrossRef]
- Walls, L.E.; Velasquez-Orta, S.B.; Romero-Frasca, E.; Leary, P.; Yáñez Noguez, I.; Orta Ledesma, M.T. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem. Eng. J. 2019, 151, 107319. [Google Scholar] [CrossRef]
- Chiu, S.-Y.; Kao, C.-Y.; Chen, T.-Y.; Chang, Y.-B.; Kuo, C.-M.; Lin, C.-S. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour. Technol. 2015, 184, 179–189. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, W.; Fu, Z.; Cheng, Y.; Min, M.; Liu, Y.; Zhang, Y.; Chen, P.; Ruan, R. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresour. Technol. 2014, 167, 8–13. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, J.; Li, L. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. Bioresour. Technol. 2017, 243, 905–913. [Google Scholar] [CrossRef] [PubMed]
- SundarRajan, P.S.; Gopinath, K.P.; Greetham, D.; Antonysamy, A.J. A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. J. Clean. Prod. 2019, 210, 445–458. [Google Scholar] [CrossRef]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef]
- Damiani, M.C.; Popovich, C.A.; Constenla, D.; Leonardi, P.I. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 2010, 101, 3801–3807. [Google Scholar] [CrossRef]
- Singh, P.; Guldhe, A.; Kumari, S.; Rawat, I.; Bux, F. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem. Eng. J. 2015, 94, 22–29. [Google Scholar] [CrossRef]
- Phang, S.-M.; Mustafa, E.M.; Ambati, R.R.; Nik Sulaiman, N.M.; Lim, P.-E.; Abdul Majid, N.; Dommange, X.; Schwob, C.; Liew, K.-E. Checklist of Microalgae Collected From Different Habitats in Peninsular Malaysia for Selection of Algal Biofuel Feedstocks. Malays. J. Sci. 2015, 34, 141–167. [Google Scholar] [CrossRef] [Green Version]
- Algae Resource Database. Available online: https://shigen.nig.ac.jp/algae/quickSearchQueryAction.do (accessed on 16 March 2023).
- Apandi, N.M.; Radin Mohamed, R.M.S.; Latiffi, N.A.A.; Rozlan, N.F.M.; Al-Gheethi, A.A.S. Protein and Lipid Content of Microalgae Scenedesmus sp. Biomass Grown in Wet Market Wastewater. MATEC Web Conf. 2017, 103, 06011. [Google Scholar] [CrossRef] [Green Version]
- Jalal, K.C.A.; Md Zahangir, A.; Matin, W.A.; Kamaruzzaman, B.Y.; Akbar, J.; Toffazel, H. Removal of Nitrate and Phosphate From Municipal Wastewater Sludge By Chlorella Vulgaris, Spirulina Platensis and Scenedesmus quadricauda. IIUM Eng. J. 2011, 12, 125–132. [Google Scholar]
- Ding, G.T.; Mohd Yasin, N.H.; Takriff, M.S.; Kamarudin, K.F.; Salihon, J.; Yaakob, Z.; Mohd Hakimi, N.I.N. Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7. J. Water Process Eng. 2020, 35, 101202. [Google Scholar] [CrossRef]
- Hach Water Analysis Handbook. Available online: https://www.hach.com/wah (accessed on 19 September 2020).
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Incharoensakdi, A.; Cornejo, P.; Kamaraj, B.; Chi, N.T.L. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Chemosphere 2021, 268, 129323. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Yao, X.; Shu, L.; Yan, Y.; Wang, Z.; Li, N. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. Int. Biodeterior. Biodegrad. 2016, 113, 120–125. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ansari, F.A.; Shriwastav, A.; Sahoo, N.K.; Rawat, I.; Bux, F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016, 115, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.Y.; Yun, Y.M.; Shin, H.S.; Han, J.I. Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production. Bioresour. Technol. 2017, 224, 738–742. [Google Scholar] [CrossRef]
- Tripathi, R.; Gupta, A.; Thakur, I.S. An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1. Renew. Energy 2019, 135, 617–625. [Google Scholar] [CrossRef]
- Yap, S.M.; Lan, J.C.-W.; Kee, P.E.; Ng, H.S.; Yim, H.S. Enhancement of protein production using synthetic brewery wastewater by Haematococcus pluvialis. J. Biotechnol. 2022, 350, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aketo, T.; Hoshikawa, Y.; Nojima, D.; Yabu, Y.; Maeda, Y.; Yoshino, T.; Takano, H.; Tanaka, T. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J. Biosci. Bioeng. 2020, 129, 565–572. [Google Scholar] [CrossRef]
- Álvarez-Díaz, P.D.; Ruiz, J.; Arbib, Z.; Barragán, J.; Garrido-Pérez, M.C.; Perales, J.A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Res. 2017, 24, 477–485. [Google Scholar] [CrossRef]
- George, B.; Pancha, I.; Desai, C.; Chokshi, K.; Paliwal, C.; Ghosh, T.; Mishra, S. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—A potential strain for bio-fuel production. Bioresour. Technol. 2014, 171, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Psachoulia, P.; Schortsianiti, S.N.; Lortou, U.; Gkelis, S.; Chatzidoukas, C.; Samaras, P. Assessment of Nutrients Recovery Capacity and Biomass Growth of Four Microalgae Species in Anaerobic Digestion Effluent. Water 2022, 14, 221. [Google Scholar] [CrossRef]
- Khatiwada, J.R.; Guo, H.; Shrestha, S.; Chio, C.; Chen, X.; Mokale Kognou, A.L.; Qin, W. Cultivation of Microalgae in Unsterile Malting Effluent for Biomass Production and Lipid Productivity Improvement. Fermentation 2022, 8, 186. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Bulynina, S.S.; Ziganshin, A.M. Assessment of Chlorella sorokiniana growth in anaerobic digester effluent. Plants 2021, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Wang, K.; Wang, C.; Yu, F.; He, X.; Ma, J.; Li, X. A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes. Environ. Technol. Innov. 2020, 19, 100849. [Google Scholar] [CrossRef]
- Taheri, R.; Shariati, M. Interactive effect of ammonium and nitrate on the nitrogen uptake and biomass production by Chlorella vulgaris in different environmental conditions. Malays. Appl. Biol. 2014, 43, 97–105. [Google Scholar]
- Whitton, R.; Ometto, F.; Pidou, M.; Jarvis, P.; Villa, R.; Jefferson, B. Microalgae for municipal wastewater nutrient remediation: Mechanisms, reactors and outlook for tertiary treatment. Environ. Technol. Rev. 2015, 4, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Su, Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, H.; Hu, W.; Hou, Q.; Han, F.; Nie, C. Biomass production and nutrient assimilation by a novel microalga, Monoraphidium spp. SDEC-17, cultivated in a high-ammonia wastewater. Energy Convers. Manag. 2016, 123, 423–430. [Google Scholar] [CrossRef]
- Yewalkar-Kulkarni, S.; Gera, G.; Nene, S.; Pandare, K.; Kulkarni, B.; Kamble, S. Exploiting Phosphate-Starved cells of Scenedesmus sp. for the Treatment of Raw Sewage. Indian J. Microbiol. 2017, 57, 241–249. [Google Scholar] [CrossRef]
- Mayhead, E.; Silkina, A.; Llewellyn, C.A.; Fuentes-Grünewald, C. Comparing nutrient removal from membrane filtered and unfiltered domestic wastewater using Chlorella vulgaris. Biology 2018, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaño San Agustin, D.; Orta Ledesma, M.T.; Monje Ramírez, I.; Yáñez Noguez, I.; Luna Pabello, V.M.; Velasquez-Orta, S.B. A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater. Renew. Energy 2022, 181, 592–603. [Google Scholar] [CrossRef]
- Qu, W.; Zhang, C.; Zhang, Y.; Ho, S. Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri. Bioresour. Technol. 2019, 289, 121702. [Google Scholar] [CrossRef] [PubMed]
- Bohutskyi, P.; Kligerman, D.C.; Byers, N.; Nasr, L.K.; Cua, C.; Chow, S.; Su, C.; Tang, Y.; Betenbaugh, M.J.; Bouwer, E.J. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Res. 2016, 19, 278–290. [Google Scholar] [CrossRef]
- Department of Environment Malaysia. Environmental Requirements: A Guide For Investors; Department of Environment Malaysia: Kuala Lumpur, Malaysia, 2010; Volume 11.
- European Commission. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment; European Commission: Mestreechv, The Netherlands, 1991; Volume 34.
- Minister of the Environment Japan National Effluent Standards. Available online: https://www.env.go.jp/en/water/wq/nes.html (accessed on 2 February 2023).
Characteristics | Concentration (mg/L) |
---|---|
pH | 7 ± 0.5 |
Chemical oxygen demand | 120 ± 20 |
Total suspended solids | 45 ± 5 |
Ammonia | 29 ± 0.3 |
Total nitrogen | 27 ± 1.1 |
Total phosphorus | 12 ± 0.5 |
pH | 7 ± 0.5 |
Maximum Biomass Productivity (Pbiomass, mg/L/day) | Maximum Biomass Concentration (Xmax, g/L) | Specific Growth Rate, μ (d−1) | |
---|---|---|---|
H. pluvialis | |||
BBM | 45.83 ± 3.61 a | 554.17 ± 38.19 a | 0.563 ± 0.148 a |
100% | 51.19 ± 3.72 b | 815.00 ± 37.75 b | 0.588 ± 0.114 a |
75% | 54.94 ± 3.34 b | 733.33 ± 57.74 b | 0.589 ± 0.005 a |
Scenedesmus sp. | |||
BBM | 39.17 ± 7.64 a | 430.00 ± 26.46 a | 0.580 ± 0.026 a |
100% | 99.33 ± 5.13 b | 588.60 ± 26.01 b | 0.798 ± 0.023 b |
75% | 91.67 ± 5.77 b | 520.00 ± 27.04 c | 0.770 ± 0.025 b |
C. aquaticum | |||
BBM | 36.43 ± 1.14 a | 629.17 ± 26.03 a | 0.326 ± 0.037 a |
100% | 54.11 ± 2.35 b | 775.83 ± 1.44 b | 0.406 ± 0.039 a |
75% | 49.17 ± 1.14 b | 693.33 ± 11.55 c | 0.335 ± 0.029 a |
A. augustus | |||
BBM | 33.70 ± 4.85 a | 483.29 ± 13.28 a | 0.238 ± 0.013 a |
100% | 30.91 ± 3.88 a | 476.67 ± 2.89 a | 0.263 ± 0.016 a |
75% | 28.64 ± 1.20 a | 447.67 ± 2.52 b | 0.222 ± 0.021 a |
Pollutant | Initial Residue (mg/L) a | After Treatment (mg/L) | Malaysia c (mg/L) | EU f (mg/L) | Japan h (mg/L) | ||||
---|---|---|---|---|---|---|---|---|---|
HP b | S b | CA b | AA b | Std A d | Std B d | ||||
N-NH4 | 29.28 ± 0.38 | 0.10 ± 0.17 | 0.37 ± 0.05 | 0.23 ± 0.03 | 0.33 ± 0.06 | 5 | 5 | - g | - |
TN | 26.75 ± 1.09 | 1.53 ± 0.31 | 1.47 ± 0.06 | 2.90 ± 0.33 | 10.67 ± 1.35 | 20 (10) e | 50 (10) e | 10 | 60 |
TP | 12.45 ± 0.45 | 3.62 ± 0.02 | 0.03 ± 0.06 | 0.26 ± 0.02 | 0.25 ± 0.12 | 5 | 10 | 1 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.H.; Chai, M.K.; Na, J.Y.; Wong, L.S. Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater. Sustainability 2023, 15, 6601. https://doi.org/10.3390/su15086601
Tan YH, Chai MK, Na JY, Wong LS. Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater. Sustainability. 2023; 15(8):6601. https://doi.org/10.3390/su15086601
Chicago/Turabian StyleTan, Yeong Hwang, Mee Kin Chai, Ji Yu Na, and Ling Shing Wong. 2023. "Microalgal Growth and Nutrient Removal Efficiency in Non-Sterilised Primary Domestic Wastewater" Sustainability 15, no. 8: 6601. https://doi.org/10.3390/su15086601