Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Catalyst and Reactor
2.2.1. Catalyst
2.2.2. Batch Reactor
2.3. Pilot Reactor
Characterization
2.4. Procedure
3. Results and Discussion
3.1. Laboratory Scale
3.1.1. Effect of the Pollutant Concentration
3.1.2. Study of the Catalyst Cycle
3.1.3. FT-IR Analysis
3.1.4. SEM Analysis
3.1.5. Effect of pH
3.1.6. Effect of the Presence of Salts
3.2. Pilot-Scale
4. Conclusions
- Degradation of the model pollutant was observed in the presence of UV light and the photocatalyst, not in the presence of UV light alone;
- Maximum degradation of the brilliant blue was observed under neutral conditions, which was explained by catalyst-molecule attractions;
- For low concentration of brilliant blue, high degradation and mineralization were obtained, which was correlated with the high availability of reactive species;
- Brilliant blue inlet concentration and flow rate were studied in a pilot-scale recirculation reactor, and it was shown that degradation and mineralization efficiencies decreased at high concentrations due to the decrease in contact time between the pollutant and the catalyst-active sites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghasemzadeh, G.; Momenpour, M.; Omidi, F.; Hosseini, M.R.; Ahani, M.; Barzegari, A. Applications of nanomaterials in water treatment and environmental remediation. Front. Environ. Sci. Eng. 2014, 8, 471–482. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Bai, H.; Sun, D.D. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res. 2012, 46, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Iqbal, Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef]
- Singh, T.; Srivastava, N.; Mishra, P.; Bhatiya, A.; Singh, N.L. Application of TiO2 Nanoparticle in Photocatalytic Degradation of Organic Pollutants. Mater. Sci. Forum 2016, 855, 20–32. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- Zare, K.; Gupta, V.K.; Moradi, O.; Makhlouf, A.S.H.; Sillanpää, M.; Nadagouda, M.N.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Pal, A.; Wang, Z.-J.; et al. A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: A review. J. Nanostructure Chem. 2015, 5, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Wei, Y.; Xiong, J.; Cheng, G. Impact of post-processing modes of precursor on adsorption and photocatalytic capability of mesoporous TiO2 nanocrystallite aggregates towards ciprofloxacin removal. Chem. Eng. J. 2018, 349, 1–16. [Google Scholar] [CrossRef]
- Zhang, M.; Xiong, J.; Yang, H.; Wen, Z.; Chen, R.; Cheng, G. Surface potential/wettability and interface charge transfer engineering of copper-oxides (Cu-MOx, M = W, Ti, and Ce) hybrids for efficient wastewater treatment through adsorption-photocatalysis synergy. Ind. Eng. Chem. Res. 2020, 59, 15454–15463. [Google Scholar] [CrossRef]
- Patchaiyappan, S.; Saran, S.P. Devipriya Recovery and reuse of TiO2 photocatalyst from aqueous suspension using plant based coagulant—A green approach Korean. J. Chem. Eng. 2016, 33, 2107–2113. [Google Scholar]
- Qiu, P.; Lu, M.; Cheng, G.; Li, W.; Liu, L.; Xiong, J. Co-implantation of oxygen vacancy and well-dispersed Cu cocatalyst into TiO2 nanoparticles for promoting solar-to-hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 933–942. [Google Scholar] [CrossRef]
- Samhaber, W.M.; Nguyen, M.T. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents. Beilstein J. Nanotechnol. 2014, 5, 476–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerhoff, P.; Alvarez, P.; Li, Q.; Gardea-Torresdey, J.; Zimmerman, J. Zimmerman Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ. Sci. Nano 2016, 6, 1241–1253. [Google Scholar] [CrossRef]
- Ghezzar, M.R.; Ognier, S.; Cavadias, S.; Abdelmalek, F.; Addou, A. DBDplate-TiO2 treatment of Yellow Tartrazine azo dye solution in falling film. Sep. Purif. Technol. 2013, 104, 250–255. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, M.; Liu, M.; Ma, L.; Yang, H. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chem. Eng. J. 2016, 298, 55–67. [Google Scholar] [CrossRef]
- Qiu, M.; Huang, C. A comparative study of degradation of the azo dye C.I. Acid Blue 9 by Fenton and photo-Fenton oxidation. Desalination Water Treat. 2010, 24, 273–277. [Google Scholar] [CrossRef]
- Khataee, A.; Vatanpour, V.; Ghadim, A.A. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J. Hazard. Mater. 2009, 161, 1225–1233. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, G.; Wang, W.; Yu, X.; Yu, F.; Zhang, Q.; Zhou, M. A new type of continuous-flow heterogeneous electro-Fenton reactor for Tartrazine degradation. Sep. Purif. Technol. 2018, 208, 76–82. [Google Scholar] [CrossRef]
- Dotto, G.; Pinto, L. Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. J. Hazard. Mater. 2011, 187, 164–170. [Google Scholar] [CrossRef]
- Yang, R.; Liu, G.; Xu, X.; Li, M.; Zhang, J.; Hao, X. Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation. Biomass Bioenergy 2011, 35, 437–445. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Muñoz-Batista, M.J.; Kubacka, A.; Zárate-Medina, J.; Cortés, J.A.; Fernández-García, M. Measuring and interpreting quantum efficiency of acid blue 9 photodegradation using TiO2-based catalysts. Appl. Catal. A Gen. 2018, 550, 38–47. [Google Scholar] [CrossRef]
- Ben Torkia, Y.; Atrous, M.; Bouzid, M.; Dotto, G.L.; Ben Lamine, A. Stereographic and energetic studies of acid blue 9 adsorption onto Spirulina platensis (strain LEB-52) based on statistical physics approach. Chem. Eng. Commun. 2019, 207, 445–457. [Google Scholar] [CrossRef]
- Neetha, J.; Ujwal, P.; Sandesh, K.; Santhosh, H.; Girish, K. Aerobic biodegradation of Acid Blue-9 dye by Bacillus fermus Isolated from Annona reticulata. Environ. Technol. Innov. 2018, 11, 253–261. [Google Scholar] [CrossRef]
- Marci, G.; Augugliaro, V.; Munoz, M.J.L.; Martin, C.; Palmisano, L.; Schiavello, M.; Tilley, R.J.D.; Venezia, A.M.J. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid−Solid Regime . Phys. Chem. B 2001, 105, 1033. [Google Scholar]
- Galindo, C.; Jacques, P.; Kalt, A.J. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. Photochem. Photobiol. A 2000, 130, 35–47. [Google Scholar] [CrossRef]
- Merabet, S.; Assadi, A.A.; Bouzaza, A.; Wolbert, D. Photocatalyticdegradation of indole–4-methylphenol mixture in an aqueoussolution: Optimization and statistical analysis. Desalin. Water Treat. 2016, 57, 17039–17050. [Google Scholar]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titani-um dioxide. Prog. Solid State. Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Bharati, R.; Suresh, S. Biosynthesis of ZnO/SiO2 nanocatalyst withpalash leaves’powder for treatment of petroleum refinery effluent. Reffit 2017, 3, 528–541. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Assadi, A.A.; Bouzaza, B.; Wolbert, D.; Rtimi, S.; Bousselmi, L.; Jellali, S. Discoloration of simulated textile effluent incontinuous photoreactor using immobilized titanium dioxide: Effect of zinc and sodium chloride. J. Photochem. Photobiol. A Chem. 2018, 358, 111–120. [Google Scholar] [CrossRef]
- Rabahi, A.; Assadi, A.A.; Nasrallah, N.; Bouzaza, A.; Maachi, R.; Wolbert, D. Photocatalytic treatment of petroleum industry wastewater using recirculating annular reactor: Comparison of experimental and modeling. Environ. Sci. Pollut. Res. 2018, 26, 19035–19046. [Google Scholar] [CrossRef]
- Sakkayawong, N.; Thiravetyan, P.; Nakbanpote, W. Adsorption mechanism ofsynthetic reactive dye wastewater by chitosan. J. Hazard. Mater. 2011, 187, 164–170. [Google Scholar]
- N’guettia, R.K.; Gombert, B.; Soro, B.-D.; Traore, S.K.; Vel Leitner Karpel, N. Photocatalytic degradation of 5-fluorouracil by a UV-A/TiO2 system: Effect of catalyst and pollutant concentration, pH and dilution matrices. Int. J. Biol. Chem. Sci. 2017, 11, 1373. [Google Scholar] [CrossRef] [Green Version]
- Aljuboury D al Deen, A.; Al-Abri, M.; Shaik, F.; Al-Sabahi, J.N.; Alkhadori, A.N. Assessment of TiO2/ZnO/H2O2 Photocatalyst to treat wastewater from oil refinery within visible light circumstances. South Afr. J. Chem. Eng. 2020, 35, 69–77. [Google Scholar] [CrossRef]
- Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A.A.L.; Akhbari, A. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol. 2012, 221, 203–212. [Google Scholar] [CrossRef]
- Hu, C.; Yuchao, T.; Lanyu, L.; Zhengping, H.; Yizhong, W.; Hongxiao, T. Effects of inorganic anions on photoactivity of various photocatalysts under different conditions. J. Chem. Technol. Biotechnol. 2004, 79, 247–252. [Google Scholar] [CrossRef]
- Hu, C.; Yu, J.C.; Hao, Z.; Wong, P. Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes. Appl. Catal. B Environ. 2003, 46, 35–47. [Google Scholar] [CrossRef]
- Madriz, L.; Tatá, J.; Carvajal, D.; Núñez, O.; Scharifker, B.; Mostany, J.; Borrás, C.; Cabrerizo, F.M.; Vargas, R. Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renew. Energy 2020, 152, 974–983. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Guedioura, B.; Amrane, A.; Nguyen-Tri, P.; Nanda, S.; Assadi, A.A. Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles. Environ. Sci. Pollut. Res. 2020, 28, 15436–15452. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Bouallouche, R.; Kenfoud, H.; Khezami, L.; Assadi, A.A. High efficient Cefixime removal from water by the sillenite Bi12TiO20: Photocatalytic mechanism and degradation pathway. J. Clean. Prod. 2021, 330, 129934. [Google Scholar] [CrossRef]
- Kenfoud, H.; Baaloudj, O.; Nasrallah, N.; Bagtache, R.; Assadi, A.A.; Trari, M. Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals: Degradation and reduction of organic and inorganic pollutants. J. Mater. Sci. Mater. Electron. 2021, 32, 16411–16420. [Google Scholar] [CrossRef]
- Saoud, W.A.; Assadi, A.A.; Guiza, M.; Bouzaza, A.; Aboussaoud, W.; Ouederni, A.; Soutrel, I.; Wolbert, D.; Rtimi, S. Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: Abatement of pollutants in air mixture system. Appl. Catal. B Environ. 2017, 213, 53–61. [Google Scholar] [CrossRef]
- Zhong, L.; Brancho, J.J.; Batterman, S.; Bartlett, B.M.; Godwin, C. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Appl. Catal. B Environ. 2017, 216, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.; Núñez, O. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Sol. Energy 2010, 84, 345–351. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16, 8751–8760. [Google Scholar] [CrossRef] [PubMed]
Process | The Pollutant | References |
---|---|---|
DBD Plasma Process | Tartrazine | [13] |
Electro Fenton | Tartrazine | [14] |
Fenton and photo-Fenton | Acid blue 9 | [15] |
UV/Nano-TiO2 Fenton-Like Electro-Fenton and electrocoagulation process | Acid blue 9 | [16] |
Electro-Fenton | Tartrazine | [17] |
Adsorption | Acid blue 9 | [18] |
Adsorption | Acid blue 9 | [19] |
Photodegradation using TiO2 based Catalysts | Acid blue 9 | [20] |
Adsorption | Acid blue 9 | [21] |
Aerobic biodegradation | Acid blue 9 | [22] |
Structure | |
Chemicals class | Triphenylmethane |
λmax (nm) | 630 |
M (g/mol) | 792.86 |
Parametre | Unités | Valeurs | ||
---|---|---|---|---|
Minimum | Moyenne | Maximum | ||
pH | mg/L | 5.4 | 11.7 | 12.7 |
Nitrate | mg/L | 16.4 | 17.0 | 44.0 |
Sulfure | mg/L | 0.0 | 0.1 | 0.2 |
Chlorure | mg/L | 22 | 78 | 126 |
Orthophosphate | mg/L | 17 | 34 | 70 |
Experimental Conditions | kapp (mg L−1 min−1) | R2 |
---|---|---|
[BB] = 10 ppm, 800 m3/h | 0.0293 | 0.9478 |
[BB] = 10 ppm, 200 m3/h | 0.0061 | 0.9721 |
[BB] = 20 ppm, 800 m3/h | 0.0189 | 0.9688 |
[BB] = 20 ppm, 200 m3/h | 0.005 | 0.9912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drhimer, F.; Rahmani, M.; Regraguy, B.; El Hajjaji, S.; Mabrouki, J.; Amrane, A.; Fourcade, F.; Assadi, A.A. Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration. Sustainability 2023, 15, 5788. https://doi.org/10.3390/su15075788
Drhimer F, Rahmani M, Regraguy B, El Hajjaji S, Mabrouki J, Amrane A, Fourcade F, Assadi AA. Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration. Sustainability. 2023; 15(7):5788. https://doi.org/10.3390/su15075788
Chicago/Turabian StyleDrhimer, Fatine, Maryem Rahmani, Boutaina Regraguy, Souad El Hajjaji, Jamal Mabrouki, Abdeltif Amrane, Florence Fourcade, and Aymen Amine Assadi. 2023. "Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration" Sustainability 15, no. 7: 5788. https://doi.org/10.3390/su15075788
APA StyleDrhimer, F., Rahmani, M., Regraguy, B., El Hajjaji, S., Mabrouki, J., Amrane, A., Fourcade, F., & Assadi, A. A. (2023). Treatment of a Food Industry Dye, Brilliant Blue, at Low Concentration Using a New Photocatalytic Configuration. Sustainability, 15(7), 5788. https://doi.org/10.3390/su15075788