The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches
Abstract
:1. Introduction
1.1. Agroecology and Natural Resource Management
1.2. Sustainable Agricultural Practices: A Brief History
2. Review—Methodological Overview
3. Why Sustainability in Vegetable Production?
4. Exploration of Diversity of Sustainable Vegetable Agriculture Practices
4.1. Vegetable Status in Sustainable Agricultural Practices: Europe
4.2. Vegetable Status in Sustainable Agriculture Practices: China
4.3. Vegetable Status in Sustainable Agriculture Practices: Southern Africa
5. Barriers and Opportunities for Sustainable Agriculture Practices
5.1. A Synoptic Representation of the Barriers to Adoption Surveyed by Area
5.2. Comparative Barrier Analysis
6. Lessons for Southern Africa and Developing Societies
6.1. Lessons from Europe
6.2. Lessons from China
6.3. Documented Sustainable Vegetable Production Practices
7. The Future of Sustainable Vegetable Production: A Proposal
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. Ending Poverty and Hunger by 2030: An Agenda for the Global Food System, 2nd ed.; Townsend, R.F., Ed.; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- World Bank. World Development Report: Agriculture for Development; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Yasin, A.M.; Ashraf, M.; Ozturk, M. Underutilized Vegetables: A Tool to Address Nutritional Issues, Poverty Reduction and Food Security. In Global Perspectives on Underutilized Crops; Springer: Cham, Switzerland, 2018; pp. 1–23. [Google Scholar]
- Mariyono, J. Profitability and Determinants of Smallholder Commercial Vegetable Production. Int. J. Veg. Sci. 2018, 24, 274–288. [Google Scholar] [CrossRef]
- McCullough, E.B.; Pingali, P.L.; Stamoulis, K.G. The Transformation of Agri-Food Systems: Globalization, Supply Chains and Smallhold. Farmers; FAO: New York, NY, USA, 2008. [Google Scholar]
- Altieri MA Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.R. Man over nature: Origins of the conservation movement. Am. Stud. 1975, 16, 49–62. Available online: https://www.jstor.org/stable/40641111 (accessed on 16 February 2023).
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Letourneau, D.K.; Davis, J.R. Developing Sustainable Agroecosystems. BioScience 1983, 33, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.; Bellon, S. The rhetorics of agroecology: Positions, trajectories, strategies. Agroecological Transitions, between Determinist and Open-Ended Visions; Lamine, C., Magda, D., Hazard, L., Eds.; Peterlang: Paris, France; Bern, Switzerland; Berlin, Germany, 2021. [Google Scholar]
- Gómez, F.L.; Alberto Ríos-Osorio, L.; Luisa Eschenhagen-Durán, M. Key concepts of agroecology science. a systematic review. Trop. Subtrop. Agroecosystems 2016, 19, 109–117. [Google Scholar]
- Castella, J.-C.; Kibler, J.-F. Towards an Agroecological Transition in Southeast Asia: Cultivating Diversity and Developing Synergies. GRET, 2015. Available online: https://agritrop.cirad.fr/577288 (accessed on 2 February 2023).
- Giller, K.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Connor, D.J. What is the real productivity of organic farming systems? Outlook Agric. 2021, 50, 125–129. [Google Scholar] [CrossRef]
- Lanka, S.V.; Khadaroo, I.; Böhm, S. Agroecology accounting: Biodiversity and sustainable livelihoods from the margins. Account. Audit. Account. J. 2017, 30, 1592–1613. [Google Scholar] [CrossRef] [Green Version]
- Isgren, E.; Ness, B. Agroecology to promote just sustainability transitions: Analysis of a civil society network in the Rwenzori Region, Western Uganda. Sustainability 2017, 9, 1357. [Google Scholar] [CrossRef] [Green Version]
- D’Annolfo, R.D.; Gemmill-Herren, B.; Graeub, B.; Garibaldi, L.A.; D’annolfo, R. A review of social and economic performance of agroecology. Int. J. Agric. Sustain. 2017, 15, 632–644. [Google Scholar] [CrossRef]
- Andersson, J.; D’Souza, S. From adoption claims to understanding farmers and contexts: A literature review of Conservation Agriculture (CA) adoption among smallholder farmers in southern. Agric. Ecosyst. Environ. 2014, 187, 116–132. [Google Scholar] [CrossRef]
- Mugwanya, N. Why agroecology is a dead end for Africa. Outlook Agric. 2019, 48, 113–116. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Hardlife, Z.; Talent, M.; Oswell, R. Streambank Cultivation along Chiredzi River in Zaka District, Zimbabwe: An Activity Widely Practiced But Institutionally Condemned. Int. J. Agric. Environ. Bio-Res. 2017, 2, 79–96. [Google Scholar]
- Silva, A.; Rios, M. Terracing Recovers the Quality of a Riverbank Soil Degraded by Water Erosion in Brazilian Semiarid. Floresta Ambient. 2020, 27, e20190094. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wu, W.; Giller, P.; O’Halloran, J.; Liang, L.; Peng, P.; Zhao, G. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China. Sustainability 2018, 10, 983. [Google Scholar] [CrossRef] [Green Version]
- Nyamwanza, A. Livelihood Resilience, Climate Risk Management and Agriculture in the Mid-Zambezi Valley, Zimbabwe. In Agriculture and Ecosystem Resilience in Sub Saharan Africa, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 473–486. [Google Scholar]
- Thompson, R.; Incrocci, L.; van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E. Global vegetable intake and supply compared to recommendations: A systematic review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Mason-D’Croz, D.; Bogard, J.; Sulser, T. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: An integrated modelling study. Lancet Planet. Health 2019, 3, e318–e329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, M.; Thornton, P.K.; Power, B.; Bogard, J.R.; Remans, R.; Fritz, S.; Gerber, J.S.; Nelson, G.; See, L.; Waha, K.; et al. Farming and the geography of nutrient production for human use: A transdisciplinary analysis. Lancet Planet. Health 2017, 1, e33–e42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayne, T.S.; Wineman, A.; Chamberlin, J.; Muyanga, M.; Yeboah, F.K. Changing Farm Size Distributions and Agricultural Transformation in Sub-Saharan Africa. Annu. Rev. Resour. Econ. 2022, 14, 109–130. [Google Scholar] [CrossRef]
- Jayne, T.; Chamberlin, J.; Traub, L.; Sitko, N.; Muyanga, M.; Yeboah, F.K.; Anseeuw, W.; Chapoto, A.; Wineman, A.; Nkonde, C.; et al. Africa’s changing farm size distribution patterns: The rise of medium-scale farms. Agric Econ. 2016, 47, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Ebert, A.W. The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants 2020, 9, 736. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.S.; Ao, J.; Dias, S.; Ryder, E.J. World vegetable industry: Production, breeding, trends. Hortic. Rev. 2011, 38, 299. [Google Scholar] [CrossRef]
- Yan, H.; Hui, X.; Li, M.; Xu, Y. Development in sprinkler irrigation technology in China. Irrig. Drain. 2020, 69, 75–87. [Google Scholar] [CrossRef]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Dalla Valle, C.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What is the future for agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef] [Green Version]
- Pantera, A.; Burgess, P.J.; Losada, R.M.; Moreno, G.; López-Díaz, M.L.; Corroyer, N.; Mcadam, J.; Rosati, A.; Papadopoulos, A.M.; Graves, A.; et al. Agroforestry for high value tree systems in Europe. Agrofor. Syst. 2018, 92, 945–959. [Google Scholar] [CrossRef] [Green Version]
- Papanastasis, V.; Mantzanas, K.; Dini-Papanastasi, O.; Ispikoudis, I. Traditional agroforestry systems and their evolution in Greece. Agrofor. Eur. 2009, 1, 89–109. [Google Scholar] [CrossRef]
- Dagar, J.C.; Tewari, V.P. Evolution of agroforestry as a modern science. Agrofor. Anecdotal Mod. Sci. 2018, 13–90. [Google Scholar] [CrossRef]
- Martin-Chave, A.; Béral, C.; Mazzia, C.; Capowiez, Y. Agroforestry impacts the seasonal and diurnal activity of dominant predatory arthropods in organic vegetable crops. Agrofor. Syst. 2019, 93, 2067–2083. [Google Scholar] [CrossRef]
- Lehmann, L.M.; Smith, J.; Westaway, S.; Pisanelli, A.; Russo, G.; Borek, R.; Sandor, M.; Gliga, A.; Smith, L.; Ghaley, B.B. Productivity and economic evaluation of agroforestry systems for sustainable production of food and non-food products. Sustainability 2020, 12, 5429. [Google Scholar] [CrossRef]
- Basch, G.; Friedrich, T.; Kassam, A.; Gonzalez-Sanchez, E. Conservation agriculture in Europe. Conserv. Agric. 2015, 357–389. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.; Falloon, R.; Hedderley, D. A long-term vegetable crop rotation study to determine effects on soil microbial communities and soilborne diseases of potato and onion. N. Z. J. Crop. Hortic. Sci. 2016, 45, 29–54. [Google Scholar] [CrossRef]
- Reganold, J.; Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Wang, S.; Yin, N.; Yang, Z. Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain. Environ. Dev. Sustain. 2021, 23, 10528–10546. [Google Scholar] [CrossRef]
- Manici, L.M.; Caputo, F.; Babini, V. Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil. 2004, 263, 133–142. [Google Scholar] [CrossRef]
- Paine, L.; Harrison, H. The historical roots of living mulch and related practices. HortTechnology 1993, 3, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Scaringelli, M.; Giannoccaro, G.; Prosperi, M. Adoption of biodegradable mulching films in agriculture: Is there a negative prejudice towards materials derived from organic wastes? Ital. J. Agron. 2016, 11, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.G. Enhanced end-of-life performance for biodegradable plastic mulch films through improving standards and addressing research gaps. Curr. Opin. Chem. Eng. 2021, 33, 100695. [Google Scholar] [CrossRef]
- Menossi, M.; Alvarez, V.A.; Menossi, M.; Cisneros, M.; Alvarez, V.A.; Casalongué, C. Current and emerging biodegradable mulch films based on polysaccharide bio-composites. A review. Agron Sustain Dev. 2021, 41, 53. [Google Scholar] [CrossRef]
- Marí, A.; Pardo, G.; Aibar, J.; Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Agronomy 2020, 263, 109111. [Google Scholar] [CrossRef]
- Liu, Z.; Jongsma, M.A.; Huang, C.; Dons, J.J.M.; Omta, S.W.F. The Sectoral Innovation System of the Dutch Vegetable Breeding Industry. NJAS Wageningen J. Life Sci. 2015, 74–75, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; Chable, V.; Groenen, R.; Fleck, M.; Levillain Riccardo Bocci, T.; Silveri, D.; Larsson, H. Inventory of initiatives on seeds of landraces in Europe. J. Agric. Environ. Int. Dev. 2009, 103, 95–130. [Google Scholar]
- Agneessens, L.; de Waele, J.; de Neve, S.; Montemurro, F.; Diacono, M. Review of alternative management options of vegetable crop residues to reduce nitrate leaching in intensive vegetable rotations. Agronomy 2014, 4, 529–555. [Google Scholar] [CrossRef]
- de liedekerke De pailhe, A. Designing Intercropping in Vegetables, Scope for Improvements. A Case Study Implemented at Bec Hellouin Farm, Normandy, France; Wageningen University, ISARA: Lyon, France, 2009. [Google Scholar]
- Ficiciyan, A.M.; Loos, J.; Tscharntke, T. Better performance of organic than conventional tomato varieties in single and mixed cropping. Agroecol. Sustain. Food Syst. 2022, 46, 491–509. [Google Scholar] [CrossRef]
- de Jesus Pereira, B.; Cecílio Filho, A.B.; la Scala, N., Jr. Greenhouse gas emissions and carbon footprint of cucumber, tomato and lettuce production using two cropping systems. J. Clean. Prod. 2021, 282, 124517. [Google Scholar] [CrossRef]
- Ouma, G.; Jeruto, P. Sustainable horticultural crop production through intercropping: The case of fruits and vegetable crops: A review. Am. J. Agric. Biol. Sci. 2010, 1, 1098–1105. [Google Scholar] [CrossRef]
- Turan, M.; Erenler, S.; Ekinci, M.; Yildirim, E.; Argin, S. Intercropping of Cauliflower with Lettuce Is More Effective for Sustainable Fertilizer Management and Minimizing Environmental Risks. Sustainability 2022, 14, 7874. [Google Scholar] [CrossRef]
- Willer, H.; Trávníček, J.; Meier, C.; Schlatter, B. The World of Organic Agriculture Statistics and Emerging Trends 2021; Research Institute of Organic Agriculture FiBL, Frick, and IFOAM—Organics International: Bonn, Germany, 2021; Volume v20210301. [Google Scholar]
- Testani, E.C.C.; Campanelli, G.; Leteo, F.; Salvati, L.; Canali, S. Mulch-based no-tillage effects on weed community and management in an organic vegetable system. Agronomy 2019, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Miró, D.; Iocola, I.; Persiani, A.; Blanco-Moreno, J. Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops. Energy 2019, 188, 116096. [Google Scholar] [CrossRef]
- Branco, R.; Blat, S.; Gimenes, T. Nitrogen fertilization of vegetables cultivated under no-tillage after cover crops. Hortic. Bras. 2017, 35, 103–110. [Google Scholar] [CrossRef]
- Gliessman, S. Advancing agroecology in China. Agroecol. Sustain. Food Syst. 2016, 41, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Wang, Z.; Li, Q. The ecological agriculture movement in modern China. Agric. Ecosyst. Environ. 2002, 92, 261–281. [Google Scholar] [CrossRef]
- Lingling, L.; Renzhi, Z.; Zhuzhu, L.; Weili, L.; Junhong, X.; Liqun, C. Evolution of soil and water conservation in rain-fed areas of China. Int. Soil Water Conserv. Res. 2014, 2, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; LI, X.; Song, J. Vegetable Genetic Resources in China. Hortic. Plant J. 2018, 4, 83–88. [Google Scholar] [CrossRef]
- Hsiung, W.; Yang, S.; Tao, Q. Historical development of agroforestry in China. Agrofor. Syst. 1995, 30, 277–287. [Google Scholar] [CrossRef]
- Agugliaro, F.M.; Wang, S.; Zhu, Z.; Yang, R.; Yang, L.; Ge, B. Land-Use Conversion Altered Topsoil Properties and Stoichiometry in a Reclaimed Coastal Agroforestry System. Agronomy 2022, 12, 1143. [Google Scholar] [CrossRef]
- Hong, Y.; Heerink, N.; Jin, S.; Berentsen, P.; Zhang, L.; van der Werf, W. Intercropping and agroforestry in China—Current state and trends. Agric. Ecosyst. Environ. 2017, 244, 52–61. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Bharucha, Z.; Lal, R. Improving China’s food and environmental security with conservation agriculture. Int. J. Agric. Sustain. 2016, 14, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Lin, P.; Chen, J.; Hu, X. Classical farming systems of China. J. Crop. Prod. 2001, 3, 11–21. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of crop rotation on climate resilience and its prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Li, F.; Yang, P.; Zhang, K.; Yin, Y.; Zhang, Y.; Yin, C. The influence of smartphone use on conservation agricultural practice: Evidence from the extension of rice-green manure rotation system in China. Sci. Total Environ. 2022, 813, 152555. [Google Scholar] [CrossRef] [PubMed]
- Dabin, Z.; Pengwei, Y.; Na, Z.; Changwei, Y.; Weidong, C.; Yajun, G. Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. Eur. J. Agron. 2016, 72, 47–55. [Google Scholar] [CrossRef]
- Ablimit, R.; Li, W.; Zhang, J.; Gao, H.; Zhao, Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest. J. Environ. Manag. 2022, 321, 115859. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Meng, J.; Wang, X.; Yin, C.; Hao, W.; Ma, B.; Tao, Z. Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China. Front. Environ. Sci. Eng. 2020, 14, 2. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, X.; Zhang, X.; Li, J. Effects of plastic mulch and crop rotation on soil physical properties in rain-fed vegetable production in the mid-Yunnan plateau, China. Soil Tillage Res. 2015, 145, 111–117. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, H.-B.; Hu, W.-L.; Qin, X.-H.; Ma, X.-W.; Yan, C.-R.; Wang, H.-Y. The status and distribution characteristics of residual mulching film in Xinjiang, China. J. Integr. Agric. 2016, 15, 2639–2646. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Qi, J.; Lu, Y.; Tantiwat, W.; Guo, J.; Arif, M. Factors affecting Farmers’ Adoption of and Willingness to Pay for Biodegradable Mulch Films in China. Res. Sq. 2022, 3, 100016. [Google Scholar] [CrossRef]
- Qu, D. History and Status of the Vegetable Industry in China. Acta Hortic. 2003, 620, 43–51. [Google Scholar] [CrossRef]
- Curtis, K.; McCluskey, J.; Wahl, T. Is China the market for genetically modified potatoes? AgBioForum 2002, 5, 175–178. [Google Scholar]
- Lichtfouse, E. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Feike, T.; Doluschitz, R.; Chen, Q.; Graeff-Hönninger, S. How to overcome the slow death of intercropping in the North China Plain. Sustainability 2012, 4, 2550–2565. [Google Scholar] [CrossRef] [Green Version]
- Kendy, E.; Zhang, Y.; Liu, C.; Wang, J.; Steenhuis, T. Groundwater recharge from irrigated cropland in the North China Plain: Case study of Luancheng County, Hebei Province, 1949–2000. Hydrol. Process. 2004, 18, 2289–2302. [Google Scholar] [CrossRef]
- Currell, M.; Cartwright, I.; Bradley, D.; Han, D. Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J. Hydrol. 2010, 385, 216–229. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Yang, Y.; Zang, H.; Yan, P.; Meki, M.N.; Doro, L.; Sui, P.; Jeong, J.; Zeng, Z. Alternative cropping systems for groundwater irrigation sustainability in the North China Plain. Agric. Water Manag. 2021, 250, 106867. [Google Scholar] [CrossRef]
- Zhang, F.; Qiao, Y.; Wang, F.; Zhang, W. A Perspective on Organic Agriculture in China-Opportunities and Challenges. Organic Eprints, 2007. Available online: https://orgprints.org/10388/ (accessed on 2 February 2023).
- Kendall, H.; Clark, B.; Li, W.; Jin, S.; Jones, G.D.; Chen, J.; Taylor, J.; Li, Z.; Frewer, L.J. Precision agriculture technology adoption: A qualitative study of small-scale commercial “family farms” located in the North China Plain. Precis. Agric. 2022, 23, 319–351. [Google Scholar] [CrossRef]
- Mutale, B.; Xianbao, L. Precision Agriculture in Denmark and China: A Comprehensive Comparative Review with Policy Implications for China. Precis. Agric. 2021, 76, 71–84. [Google Scholar]
- Makate, C.; Makate, M.; Mango, N. Sustainable agriculture practices and livelihoods in pro-poor smallholder farming systems in southern Africa. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 269–279. [Google Scholar] [CrossRef]
- Thierfelder, C.; Baudron, F.; Setimela, P. Complementary practices supporting conservation agriculture in southern Africa. A review. Agron Sustain Dev. 2018, 38, 16. [Google Scholar] [CrossRef] [Green Version]
- Rosenstock, T.S.; Dawson, I.K.; Aynekulu, E.; Chomba, S.; Degrande, A.; Fornace, K.; Jamnadass, R.; Kimaro, A.; Kindt, R.; Lamanna, C.; et al. A Planetary Health Perspective on Agroforestry in Sub-Saharan Africa. One Earth 2019, 1, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Muthee, K.; Duguma, L.; Majale, C.; Mucheru-Muna, M.; Wainaina, P.; Minang, P. A quantitative appraisal of selected agroforestry studies in the Sub-Saharan Africa. Heliyon 2022, 8, e10670. [Google Scholar] [CrossRef]
- Tambo, J.A.; Mockshell, J. Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa. Ecol. Econ. 2018, 151, 95–105. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Zhao, W.; Wang, S.; Jacinthe, P.A. Ecosystem service provision of grain legume and cereal intercropping in Africa. Agric. Syst. 2020, 178, 102761. [Google Scholar] [CrossRef]
- Tani, E.; Abraham, E.; Chachalis, D.; Travlos, I. Molecular, genetic and agronomic approaches to utilizing pulses as cover crops and green manure into cropping systems. Int. J. Mol. Sci. 2017, 18, 1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbede, T.; Adekiya, A.; Ale, M.; Eifediyi, E.K. Soil properties, growth, fruit yield, mineral, lycopene and vitamin C contents of tomato (Lycopersicon esculentum mill) grown with green manures and NPK fertilizer. Agric. Conspec. Sci. 2018, 83, 291–297. [Google Scholar]
- Moswetsi, G.; Fanadzo, M.; Ncube, B. Cropping systems and agronomic management practices in smallholder farms in South Africa: Constraints, challenges and opportunities. J. Agron. 2017, 16, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Schreinemachers, P.; Sequeros, T.; Lukumay, P.J. International research on vegetable improvement in East and Southern Africa: Adoption, impact, and returns. Agric Econ. 2017, 48, 707–717. [Google Scholar] [CrossRef]
- Ochieng, J.; Schreinemachers, P.; Ogada, M.; Dinssa, F.; Bornos, W.; Mdinga, H. Adoption of improved amaranth varieties and good agricultural practices in East Africa. Land Use Policy 2019, 83, 187–194. [Google Scholar] [CrossRef]
- Shayanowako, A.I.T.; Morrissey, O.; Tanzi, A.; Muchuweti, M.; Mendiondo, G.M.; Mayes, S.; Modi, A.T.; Mabhaudhi, T. African Leafy Vegetables for Improved Human Nutrition and Food System Resilience in Southern Africa: A Scoping Review. Sustainability 2021, 13, 2896. [Google Scholar] [CrossRef]
- Afari-Sefa, V.; Tenkouano, A.; Ojiewo, C.O.; Keatinge, J.D.H.; Hughes, J.d.A. Vegetable breeding in Africa: Constraints, complexity and contributions toward achieving food and nutritional security. Food Secur. 2012, 4, 115–127. [Google Scholar] [CrossRef]
- Croft, M.M.; Marshall, M.I.; Odendo, M.; Ndinya, C.; Ondego, N.N.; Obura, P.; Hallett, S.G. Formal and Informal Seed Systems in Kenya: Supporting Indigenous Vegetable Seed Quality. J. Dev. Stud. 2018, 54, 758–775. [Google Scholar] [CrossRef]
- Belshaw, D. Taking Indigenous Technology seriously: The Case of Inter-cropping Techniques in East Africa. IDS Bull. 1979, 10, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Mafongoya, P.L.; Bationo, A.; Kihara, J.; Waswa, B.S. Appropriate technologies to replenish soil fertility in southern Africa. Nutr. Cycl. Agroecosyst. 2006, 76, 137–151. [Google Scholar] [CrossRef]
- Namara, R.; Bank, W.; Hope, L.; Owusu, E.; Namara, R.E.; Sarpong, E.O.; de Fraiture, C.; Owusu, D. Adoption patterns and constraints pertaining to small-scale water lifting technologies in Ghana. Agric. Water Manag. 2014, 131, 194–203. [Google Scholar] [CrossRef]
- Karlberg, L.; Rockström, J.; Annandale, J.G. Low-cost drip irrigation—A suitable technology for southern Africa? An example with tomatoes using saline irrigation water. Agric. Water Manag. 2007, 89, 59–70. [Google Scholar] [CrossRef]
- Postel, S.; Polak, P.; Gonzales, F.; Keller, J. Drip irrigation for small farmers: A new initiative to alleviate hunger and poverty. Water Int. 2018, 26, 3–13. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Thammachai, A. A systematic review of factors influencing farmers’ adoption of organic farming. Sustainability 2021, 13, 3842. [Google Scholar] [CrossRef]
- Nordey, T.; Basset-Mens, C.; De Bon, H.; Martin, T.; Déletré, E.; Simon, S.; Parrot, L.; Despretz, H.; Huat, J.; Biard, Y.; et al. Protected cultivation of vegetable crops in sub-Saharan Africa: Limits and prospects for smallholders. A review. Agron. Sustain. Dev. 2017, 37, 53. [Google Scholar] [CrossRef] [Green Version]
- Nchanji, E.B.; Bellwood-Howard, I.; Schareika, N.; Chagomoka, T.; Schlesinger, J.; Rüdiger, G. Assessing the sustainability of vegetable production practices in northern Ghana. Int. J. Agric. Sustain. 2017, 15, 321–337. [Google Scholar] [CrossRef]
- Marsh, A. Building on traditional gardening to improve household food security. Food Nutri. Agric. 1998, 4, 4–14. [Google Scholar]
- Casagrande, M.; Peigné, J.; Payet, V.; Mäder, P.; Sans, F.X.; Blanco-Moreno, J.M.; Antichi, D.; Bàrberi, P.; Beeckman, A.; Bigongiali, F.; et al. Organic farmers’ motivations and challenges for adopting conservation agriculture in Europe. Org. Agric. 2016, 6, 281–295. [Google Scholar] [CrossRef]
- Antichi, D.; Sbrana, M.; Martelloni, L.; Chehade, L.A.; Fontanelli, M.; Raffaelli, M.; Mazzoncini, M.; Peruzzi, A.; Frasconi, C. Agronomic Performances of Organic Field Vegetables Managed with Conservation Agriculture Techniques: A Study from Central Italy. Agronomy 2019, 9, 810. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, D.; Custers, R.; Edvardsson Björnberg, K.; Hansson, S.O.; Purnhagen, K.; Qaim, M.; Romeis, J.; Schiemann, J.; Schleissing, S.; Tosun, J.; et al. Options to Reform the European Union Legislation on GMOs: Scope and Definitions. Trends Biotechnol. 2020, 38, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hundleby, P.; Harwood, W. Impacts of the EU GMO regulatory framework for plant genome editing. Food Energy Secur. 2019, 8, e00161. [Google Scholar] [CrossRef] [Green Version]
- Galioto, F.; Cuming, D.; Raggi, M.; Viaggi, D. Drivers and barriers for the adoption of precision irrigation in Europe. In Proceedings of the 4th AIEAA Conference Innovation, Production and Growth: Towards Sustainable Agri-Food Production, Ancona, Italy, 11–12 June 2015; Available online: https://www.aieaa.org/sites/default/files/galioto-drivers_and_barriers_over_the_adoption_of_precision_irrigation-173_b.pdf (accessed on 16 February 2023).
- Alcon, F.; López, E.; Dolores, M.; Gómez, M.; Dolores De Miguel, M.; Burton, M. Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technol. Forecast. Soc. Chang. 2011, 78, 991–1001. [Google Scholar] [CrossRef]
- Schneeberger, W.; Darnhofer, I.; Eder, M. Barriers to the adoption of organic farming by cash-crop producers in Austria. Am. J. Altern. Agric. 2002, 17, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Ammann, J.; Umstätter, C.; el Benni, N. The adoption of precision agriculture enabling technologies in Swiss outdoor vegetable production: A Delphi study. Precis. Agric. 2022, 23, 1354–1374. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Walter, A.; Liebisch, F.; Umstätter, C. Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precis. Agric. 2020, 21, 1327–1350. [Google Scholar] [CrossRef]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Sustainable intensification of China’s agroecosystems by conservation agriculture. Int. Soil Water Conserv. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Q.; Zhou, Q.; Wang, C. Mapping the Complex Crop Rotation Systems in Southern China Considering Cropping Intensity, Crop Diversity and Their Seasonal Dynamics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9584–9598. [Google Scholar] [CrossRef]
- Nong, Y.; Yin, C.; Yi, X.; Ren, J.; Chien, H. Farmers’ Adoption Preferences for Sustainable Agriculture Practices in Northwest China. Sustainability 2020, 12, 6269. [Google Scholar] [CrossRef]
- Ntakirutimana, L.; Li, F.; Huang, X.; Wang, S.; Yin, C. Green Manure Planting Incentive Measures of Local Authorities and Farmers’ Perceptions of the Utilization of Rotation Fallow for Sustainable Agriculture in Guangxi, China. Sustainability 2019, 11, 2723. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Li, H.; Wang, E.; He, W.; Hao, W.; Yan, C.; Li, Y.; Mei, X.; Zhang, Y.; Sun, Z.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Hill, R.; Xue, D.; Yang, J. In situ conservation of traditional vegetable diversity in Wa homegardens in southwestern Yunnan, China. J. Ethnobiol. Ethnomed. 2021, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Gao, Y.; Zhang, Y.; Henneberry, S. Changing attitudes toward genetically modified foods in urban China. China Agric. Econ. Rev. 2017, 9, 397–414. [Google Scholar] [CrossRef]
- Feike, T.; Chen, Q.; Graeff-Hö Nninger, S.; Pfenning, J.; Claupein, W. Farmer-developed vegetable intercropping systems in southern Hebei, China. Renew. Agric. Food Syst. 2010, 25, 272–280. [Google Scholar] [CrossRef]
- Sanders, R. A market road to sustainable agriculture? Ecological agriculture, green food and organic agriculture in China. Dev. Chang. 2006, 37, 201–226. [Google Scholar] [CrossRef]
- Kendall, H.; Naughton, P.; Clark, B.; Taylor, J.; Li, Z.; Zhao, C.; Yang, G.; Chen, J.; Frewer, L.J. Precision agriculture in China: Exploring awareness, understanding, attitudes and perceptions of agricultural experts and end-users in China. Adv. Anim. Biosci. 2017, 8, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Mwase, W.; Sefasi, A.; Njoloma, J.; Nyoka, B.I.; Manduwa, D.; Nyaika, J. Factors Affecting Adoption of Agroforestry and Evergreen Agriculture in Southern Africa. Environ. Nat. Resour. J. 2015, 5, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Nkomoki, W.; Bavorová, M.; Banout, J. Adoption of sustainable agricultural practices and food security threats: Effects of land tenure in Zambia. Land Use Policy 2018, 78, 532–538. [Google Scholar] [CrossRef]
- Rodenburg, J.; Büchi, L.; Haggar, J. Adoption by adaptation: Moving from conservation agriculture to conservation practices. Int. J. Agric. Sustain. 2021, 19, 437–455. [Google Scholar] [CrossRef]
- Holden, S.T.; Fisher, M.; Katengeza, S.P.; Thierfelder, C. Can lead farmers reveal the adoption potential of conservation agriculture? The case of Malawi. Land Use Policy 2018, 76, 113–123. [Google Scholar] [CrossRef]
- Kinyua, M.; Diogo, R.C.; Sibomana, J.; Bolo, P. Green Manure Cover Crops in Benin and Western Kenya—A Review; CIAT, 2019. Available online: https://alliancebioversityciat.org/publications-data/green-manure-cover-crops-benin-and-western-kenya-review (accessed on 2 February 2023).
- Adesida, I.; Nkomoki, W.; Bavorova, M.; Madaki, M. Effects of agricultural programmes and land ownership on the adoption of sustainable agricultural practices in Nigeria. Sustainability 2021, 13, 7249. [Google Scholar] [CrossRef]
- Issaka, Y.; Nyarko, G.; Quaidoo, D. Factors influencing technology adoption by traditional African vegetable farmers in northern Ghana. Int. J. Dev. 2021, 8, 474–487. [Google Scholar] [CrossRef]
- Simtowe, F.; Marenya, P.; Amondo, E.; Worku, M.; Rahut, D.B.; Erenstein, O. Heterogeneous seed access and information exposure: Implications for the adoption of drought-tolerant maize varieties in Uganda. Agric. Food Econ. 2019, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, R.; Huang, W.-C.; Shrestha, R.B. Factors affecting adoption of improved rice varieties among rural farm households in Central Nepal. Rice Sci. 2015, 22, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Balana, B.; Kabore, E.; Sawadogo, E.; Trucker, J.; Bossa, A.Y.; Sanfo, S.; Fonta, W.M. Can drip irrigation help farmers to adapt to climate change and increase their incomes? WLE Brief. 2017, 15. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/83175/WLE%20Briefing%2015_English_Final_Web.pdf?sequence=1 (accessed on 16 February 2023).
- Gross, B.; Jaubert, R. Vegetable gardening in Burkina Faso: Drip irrigation, agroecological farming and the diversity of smallholders. Water Altern. 2019, 12, 46–67. [Google Scholar]
- Ogindo, H.; Walker, S. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern. Phys. Chem. Earth. 2005, 30, 799–808. [Google Scholar] [CrossRef]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K. Organic farming and small-scale farmers: Main opportunities and challenges. Ecol. Econ. 2017, 135, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.T.; Sanchez, B.; Vangeyte, J.; Fountas, S. Influencing incentives for precision agricultural technologies within European arable farming systems. Environ. Sci. Policy 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Onyango, C.; Nyaga, J.; Wetterlind, J.; Söderström, M. Precision agriculture for resource use efficiency in smallholder farming systems in sub-saharan africa: A systematic review. Sustainability 2021, 13, 1158. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.; Rahman, I.; Noor, A. Adoption of green fertilizer technology among paddy farmers: A possible solution for Malaysian food security. Land Use Policy 2017, 63, 38–52. [Google Scholar] [CrossRef]
- Tapsoba, P.K.; Aoudji, A.K.; Kabore, M.; Kestemont, M.P.; Legay, C.; Achigan-Dako, E.G. Sociotechnical context and agroecological transition for smallholder farms in Benin and Burkina Faso. Agronomy 2020, 10, 1447. [Google Scholar] [CrossRef]
- Peano, C.; Massaglia, S.; Ghisalberti, C.; Sottile, F. Pathways for the amplification of agroecology in African sustainable urban agriculture. Sustainability 2020, 12, 2718. [Google Scholar] [CrossRef] [Green Version]
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T. Experience versus expectation: Farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 2020, 21, 34–50. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Bostrom, A.; Ball, J.; Applegate, C. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Hortic. Res. 2019, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Kong, J.; Jin, X.; Wang, X.; Su, T.; Zuo, M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [Green Version]
- Burkitbayeva, S.; Swinnen, J. Smallholder agriculture in transition economies. J. Agrar. Chang. 2018, 18, 882–892. [Google Scholar] [CrossRef]
- Rozelle, S.; Swinnen, J.F.M. Success and failure of reform: Insights from the transition of agriculture. J. Econ. Lit. 2004, 42, 404–456. [Google Scholar] [CrossRef] [Green Version]
- Recanati, F.; Maughan, C.; Pedrotti, M.; Dembska, K. Assessing the role of CAP for more sustainable and healthier food systems in Europe: A literature review. Sci. Total Environ. 2019, 653, 908–919. [Google Scholar] [CrossRef]
- Westhoek, H.; van Zeijts, H.; Witmer, M.; van den Berg, M. Greening the CAP. An Analysis of the Effects of the European Commission’s Proposals for the Common Agricultural Policy 2014–2020; PBL: Hague, The Netherlands, 2012. [Google Scholar]
- Zhang, L.; Yuan, J.; Zhang, M.; Zhang, Y.; Wang, L.; Li, J. Long term effects of crop rotation and fertilization on crop yield stability in southeast China. Sci. Rep. 2022, 12, 14234. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, H.; Guan, C.; Guan, M. Decomposition of Rapeseed Green Manure and Its Effect on Soil under Two Residue Return Levels. Sustainability 2022, 14, 11102. [Google Scholar] [CrossRef]
- Lizhi, C. Green Manure Cultivation and Use for Rice in China. In Green Manure Rice Farming; 1988; pp. 63–70. Available online: https://books.google.co.jp/books?hl=en&lr=&id=nYm9aXTskYsC&oi=fnd&pg=PA63&dq=Green+Manure+Cultivation+and+Use+for+Rice+in+China.&ots=LDf3A_lXVc&sig=MRvKW97n9lR621m09ocKV_lew-4&redir_esc=y#v=onepage&q=Green%20Manure%20Cultivation%20and%20Use%20for%20Rice%20in%20China.&f=false (accessed on 16 February 2023).
- Li, Y.; Barker, R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ. 2004, 2, 187–193. [Google Scholar] [CrossRef]
- Lernoud, J.; Willer, H. Organic Agriculture Worldwide: Key Results from the FiBL Survey on Organic Agriculture Worldwide 2018; Part 1; Research Institute of Organic Agriculture (FIBL): Brussels, Belgium, 2018. [Google Scholar]
- Gao, H.; Park, H.; Sakashita, A. Conventionalization of organic agriculture in China: A case study of Haobao Organic Agricultural Company in Yunnan Province. Jpn. J. Agric. Econ. 2017, 19, 37–42. [Google Scholar] [CrossRef]
- Yomichan, S. Niravu Organic Village-a study on Niravu Organic Village model, Vengeri, Kozhikode District, Kerala. Acta Sci. Agric. 2020, 19, 100. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Moiwo, J.; Hu, Y. Estimation of irrigation requirement for sustainable water resources reallocation in North China. Agric. Water Manag. 2010, 97, 1711–1721. [Google Scholar] [CrossRef]
- Xue, Z.J.; Liu, S.Q.; Liu, Y.L.; Yan, Y.L. Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environ. Monit. Assess. 2012, 184, 3503–3513. [Google Scholar] [CrossRef]
- Tong, Y.; Niu, H.; Fan, L. Willingness of farmers to transform vacant rural residential land into cultivated land in a major grain-producing area of central China. Sustainability 2016, 8, 1192. [Google Scholar] [CrossRef] [Green Version]
- Serebrennikov, D.; Thorne, F.; Kallas, Z.; McCarthy, S.N. Factors influencing adoption of sustainable farming practices in Europe: A systemic review of empirical literature. Sustainability 2020, 12, 9719. [Google Scholar] [CrossRef]
- Nicholls, C.; Altieri, M.A. Pathways for the amplification of agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- Mier, M.; Cacho, T.G.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 2018, 42, 637–665. [Google Scholar] [CrossRef]
- Alam, Z.; Wadud, M.A. Performance of summer vegetables in charland based agroforestry system. Agrofor. Environ. 2012, 6, 1–8. [Google Scholar]
- Khatun, M.; Wadud, M.; Yasmin, R. Agroforestry practices with three winter vegetables during early establishment period of civit (Swintonia floribunda) plantation. J. Agrofor. Environ. 2009, 3, 1–4. [Google Scholar]
- Sultana, T.; Rahman, S.; Naher, N. Performance of fruit vegetables in summer under mahagony based agroforestry systems. J. Halal Res. 2018, 1, 8–14. [Google Scholar] [CrossRef]
- Rajalingam, G.; Divya, M.; Prabaharan, C. Performance of vegetable crops under Ailanthus excelsa based agroforestry system. Indian J. Agrofor. 2016, 1, 16–20. [Google Scholar]
- Spiegelaar, N.; Tsuji, L.; Oelbermann, M. The potential use of agroforestry community gardens as a sustainable import-substitution strategy for enhancing food security in subarctic Ontario, Canada. Sustainability 2013, 5, 4057–4075. [Google Scholar] [CrossRef] [Green Version]
- Stirzaker, R.; Sutton, B. Soil management for irrigated vegetable production. I. The growth of processing tomatoes following soil preparation by cultivation, zero-tillage and an in situ-grown. Aust. J. Agric. Res. 1993, 44, 817–829. [Google Scholar] [CrossRef]
- Sanjay-Swami, A.; Yadav, O.S. Towards oilseeds sufficiency in northeastern hill region of India: Augmenting oilseed production in acid soils. Int. J. Chem. Stud. 2019, 7, 768–772. [Google Scholar]
- Pokhrel, A.; Soni, P. An investigation into a resource and environmentally sustainable system: Zero-tillage lentil and garlic production in Nepal. Agroecol. Sustain. Food Syst. 2018, 42, 982–1002. [Google Scholar] [CrossRef]
- Thomazini, A.; Mendonça, E.; Souza, J.; Cardoso, I. Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome. Sci. Hortic. 2015, 182, 145–155. [Google Scholar] [CrossRef]
- Kaninda Tshikala, S.; Esendugue; Fonsah, G.; Boyhan, G.; Little, E.; Gaskin, J. Crop rotation systems for high-value, cool-season vegetables in the southern United States. J. Food Distrib. Res. 2018, 49, 30–38. [Google Scholar]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, Á.; Fernández, J.A. Does the use of cowpea in rotation with a vegetable crop improve soil quality and crop yield and quality? A field study in SE Spain. Eur. J Agron. 2019, 107, 10–17. [Google Scholar] [CrossRef]
- Larkin, R.P. Effects of cover crops, rotation, and biological control products on soil properties and productivity in organic vegetable production in the North-Eastern US. Org. Agric. 2019, 10, 171–186. [Google Scholar] [CrossRef]
- Brennan, E.B. Can we grow organic or conventional vegetables sustainably without cover crops? Horttechnology 2017, 27, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Zhang, H.; Zebib, B.; Zhang, W.; Dai, Z.; Li, J.; Mao, W.; Yu, F.; Ma, J.; Wang, S.; et al. Comparative Analysis of the Effects of Plastic Mulch Films on Soil Nutrient, Yields and Soil Microbiome in Three Vegetable Fields. Agronomy 2022, 12, 506. [Google Scholar] [CrossRef]
- Yan, W.; Jiang, J.; Zhu, L.; Zhang, L.; Li, H. Straw Mulching Improves Soil Fertility and Productivity of Water Spinach (Ipomoea Aquatica Forsk.) under Plastic Tunnel. Commun. Soil Sci. Plant Anal. 2021, 52, 2958–2970. [Google Scholar] [CrossRef]
- Adekaldu, E.; Amponsah, W.; Tuffour, H.O.; Adu, M.O.; Agyare, W.A. Response of chilli pepper to different irrigation schedules and mulching technologies in semi-arid environments. J. Agric. Food. Res. 2021, 6, 100222. [Google Scholar] [CrossRef]
- Grassbaugh, E.M.; Regnier, E.E.; Bennett, M.A. Comparison of organic and inorganic mulches for heirloom tomato production. Acta Hortic. 2004, 638, 171–176. [Google Scholar] [CrossRef]
- Han, Q. China’s Dilemma of Genetically Modified Crops Industrialization. Ph.D. Thesis, Tufts University, Medford, MA, USA, 2022. [Google Scholar]
- Spendrup, S.; Eriksson, D.; Fernqvist, F. Swedish consumers’ attitudes and values to genetic modification and conventional plant breeding–The case of fruit and vegetables. GM Crop. Food. 2021, 12, 342–360. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Tilahun, S.; Worqlul, A. Experimental evaluation of conservation agriculture with drip irrigation for water productivity in sub-Saharan Africa. Water 2019, 11, 530. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.; Godfrey, S.; Divon, S.; Aamodt, J. Micro-Investment by Tanzanian Smallholders in Drip Irrigation Kits for Vegetable Production to Improve Livelihoods: Lessons Learned and a Way Forward. Agriculture 2022, 12, 1732. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, S.K.; Singh, S. Vegetable crops as most efficient and economical intercrops: A brief review. Plant Arch. 2018, 18, 923–929. [Google Scholar]
- Lepse, L.; Dane, S.; Zeipiņa, S.; Domínguez-Perles, R.; Rosa, E.A.S. Evaluation of vegetable–faba bean (Vicia faba L.) intercropping under Latvian agro-ecological conditions. J. Sci. Food Agric. 2017, 97, 4334–4342. [Google Scholar] [CrossRef] [PubMed]
- Sulifoa, S.; Cox, L. Introduced conservation agriculture programs in Samoa: The role of participatory action research. In Participatory Research and Planning in Practice; Springer: Cham, Switzerland, 2020; Volume 3, pp. 133–145. [Google Scholar]
- Lubell, M.; McRoberts, N. Closing the extension gap: Information and communication technology in sustainable agriculture. Calif. Agric. 2018, 72, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.; King, A.E.H.; Lancaster, P.; Larson, R.; Campbell, A.; King, A.E.H. Choosing Sustainability: Decision Making and Sustainable Practice Adoption with Examples from US Great Plains Cattle Grazing Systems. Animals 2022, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Mahashin, M.; Roy, R. Mapping practices and technologies of climate-smart agriculture in Bangladesh. J. Environ. Sci. Nat. Resour. 2017, 10, 29–37. [Google Scholar] [CrossRef]
- Giaffreda, R.; Antonelli, F.; Spada, P. Promoting Sustainable Agricultural Practices Through Incentives. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2019—Proceedings, Portici, Italy, 24–26 October 2019; pp. 242–246. [Google Scholar]
- Scheba, A. Conservation agriculture and sustainable development in Africa: Insights from Tanzania. Nat. Resour. Forum. 2017, 41, 209–219. [Google Scholar] [CrossRef]
- Baudron, F.; Thierfelder, C.; Nyagumbo, I.; Gérard, B. Where to target conservation agriculture for African smallholders? How to overcome challenges associated with its implementation? Experience from Eastern and Southern Africa. Environments 2009, 2, 338–357. [Google Scholar] [CrossRef]
- Chinseu, E.; Dougill, A.; Stringer, L. Why do smallholder farmers dis-adopt conservation agriculture? Insights from Malawi. Land Degrad. Dev. 2018, 30, 533–543. [Google Scholar] [CrossRef]
- Cheng, X.; Shuai, C.; Liu, J.; Wang, J.; Liu, Y.; Li, W.; Shuai, J. Modelling environment and poverty factors for sustainable agriculture in the Three Gorges Reservoir Regions of China. Land Degrad. Dev. 2018, 29, 3940–3953. [Google Scholar] [CrossRef]
Sustainable Agricultural Technology (Practice) | Barriers/Challenges to Adoption | References |
---|---|---|
Agroforestry | Increased labor, complexity of work, management costs and administrative burden. | [36] |
Conservation agriculture | Lack of knowledge, information and communication about the practice; lack of enabling policies; lack of subsidies and credit. Crop-related factors include increases in weeds, pests, disease and pressure; crop failure; lack of skills; and low nutrient availability during key crop growth stages and management of weed pressure. | [20,114,115] |
Crop rotation | Climate and soil limitations; low growth; lack of adapted crop varieties; and general market conditions. | [20] |
Green manure | Cost of seeds; increased labor needs; competition with other crops; weed infestation. | [114] |
Mulching | Cost of purchase and installation of equipment; difficulty in harvesting; labor constraints; rapid degradation of mulching and doubts about agronomic performance. | [47] |
Improved seed (and GM seed) | EU policy and online articles questioning the safety of the method (among others). Genetically modified vegetables are thus not commonplace. | [116,117] |
Irrigation | Income-related barriers include: lack of subsidies and access to credits; initial costs; output price; and water challenges, i.e., source of water, water price and its allocation. Other barriers include: farm size; land ownership; type of crops grown; technology complexity; and lack of communication of quality information. | [118,119] |
Intercropping | Hinderance to mechanization and non-applicability to market demands. | [54] |
Organic agriculture | Technical challenges; labor requirements; fear of decreased income and marketing problems; small farm size. | [120] |
Precision agriculture | Income-related barriers include: high initial investment costs; unclear added value; too expensive and complex to use; and small farm size. Technology-related factors include: devices that are not interoperable and not precise enough and are unsuitable and unnecessary for smaller farms; lack of skills/capability required to adopt precision agriculture; reliability issues; knowledge intensity; and lack of perceived benefits. Other factors include: lack of neutral advice; lack of farm demonstrations regarding farmers’ protection from risk and limited returns on investment. The practice is common among vegetable growers, but farm size limits broader implementation. | [121,122] |
Sustainable Agricultural Technology (Practice) | Barriers/Challenges to Adoption | References |
---|---|---|
Agroforestry | Lack of farmer interest; lack of sufficient knowledge; lack of capital; and lack of technical advice. | [123] |
Conservation agriculture | Traditional attitudes; insufficient research and extension; lack of machinery tailored to conditions in China; competing usage of straw/residue; and site specificity. | [65,124] |
Crop rotation | Not much documentation of barriers, since crop rotation is already extensively adopted as a fertility maintenance practice. The incentives provided may also have enhanced wider adoption. | [125,126] |
Green manure | Key barriers include farmer’s income, area of farmland and labor intensity. | [127] |
Mulching | Biodegradability of plastic mulch. | [128] |
Improved seed (and GM seed) | Active breeding programs are underway; the adoption (and barriers) of improved varieties is barely documented. Traditional breeding is prevalent, as is preserving traditional vegetable landraces. | [129] |
China has two genetically modified vegetables (tomato and sweet pepper). There is a lack of reliable information on genetically modified crop technology. | [130] | |
Irrigation | There is a lack of extension services; farm size may be wrong; there is water scarcity; there is a high investment cost; and there are high labor demands. | [44] |
Intercropping | Limitations in mechanization with intercrops and lack of labor (since the practice is labor intensive). | [131] |
Organic agriculture | Fear of risks from reduced yields; extra costs of certification of produce; intensive labor and unavailability of natural inputs in some places. Where adoption occurred, it involved “arm twisting” by local officials. | [132] |
Precision agriculture | High investment cost, which favors large farms; incompatibility of software and hardware from different PA manufacturers; and knowledge intensity and need for quality technical support. Kendall and collegues [133] comprehensively reviewed general barriers, which are equally applicable to vegetable production. | [133] |
Sustainable Agricultural Technology (Practice) | Barriers/Challenges to Adoption | References |
---|---|---|
Agroforestry | Barriers include: status of land tenure; small land size; limited access to credit; high investment costs; lack of knowledge and extension services; shortage of land; delayed returns on investment; and lack of seeds. | [134,135] |
Conservation agriculture | Barriers include: small farm size; risks and uncertainties; high labor requirements; high initial costs; lack of local relevance; lack of skills; cash constraints; lack of equipment; limited availability and competition for crop residues; relative underperformance of conservation agriculture; low returns on investment and maize subsidies. | [136,137] |
Crop rotation | Barriers include: farmer preference for food (cereal crops) over rotational cash crops; the unavailability of seed; dysfunctional markets for rotational crops; differences in planting techniques; plot size and land limitations. | [92] |
Green manure | Barriers include: limited access to certified seeds; reduced diversity and lack of knowledge on productivity across agro-ecological zones; some inhibitive land tenure systems for long-term crops; high labor demand; lack of access to credit for inputs; lack of other uses for cover crop; cover crops hosting pests; and lack of specialized seed systems. | [138] |
Mulching | Barriers include: lack of contact with extension workers; land tenure and ownership constraints; and labor-intensive practice. | [139,140] |
Improved seed (and GM seed) | Barriers include: lack of awareness; lack of access to affordable seed; legal and political barriers; limited access to extension services; small farm size; and low farmer education. | [141,142] |
Irrigation | Barriers include: a high price of irrigation kits; lack of access to credit; marketing challenges; lack of knowledge about drip irrigation technology; lack of adequate land; increased labor demands; small farm size; and seasonal scarcity of manure. | [143,144] |
Intercropping | There is hinderance to mechanization, which is therefore less frequent on large commercial farms. On small farms, most intercropping involves a maize–bean mix. | [145] |
Organic agriculture | Barriers include: comparatively lower yields; difficulties with produce certification; market barriers; and high farmer educational and research needs. | [146] |
Precision agriculture | Technology is at the experimental stage in most countries. Where it is being tested, farmers decry: the lack of information; high cost of technology; small farm sizes; and low return on investment. | [147,148] |
Sustainable Agricultural Technology (Practice) | Vegetable Taxa | Key Findings | Country | Reference |
---|---|---|---|---|
Agroforestry | Water spinach (Ipomoea aquatica), Malabar spinach (Basella alba) Amaranthus spp., Okra (Abelmoschus esculenta). | Reduction in vegetable yield under tree conditions. However, the yield indicates that the vegetable is still profitable. | Bangladesh | [173] |
Eggplant (Solanum melongena), Tomato (Solanum lycopersicum) and Chinese parsley (Coriandrum sativum). | Variable results. Generally better growth/productivity with increasing distance from tree base. | Bangladesh | [174] | |
Chili (Capsicum annuum), eggplant (Solanum melongena) and Okra (A. esculenta). | Okra gave the highest yield under shade treatment. This was recommended for agroforestry systems. | Bangladesh | [175] | |
Tomato (S. lycopersicum), brinjal (S. melongena), bhendi (A. esculentus), cluster beans (Cyamopsis tetragonoloba) and vegetable cowpeas (Vigna unguiculata). | Solanum melongena (brinjal) performed better under agroforestry with Ailanthus. Overall results for vegetable performance are variable. | India | [176] | |
Irish potato (Solanum tuberosum), cabbage (Brassica oleracea var. capitatata), beans (P. vugaris), peas (Pisum sativum), wild strawberry (Fragaria vesca) and red raspberry (Rubus idaeus). | Import substitution by agroforestry community gardens (AFCGs) as socio-ecologically and culturally sustainable means of enhancing food security is feasible. | Canada | [177] | |
Conservation agriculture (zero tillage) | Tomato (S. lycopersicum) and lettuce (Lactuca sativa). | No difference between tillage and zero tillage in terms of yield (under optimal irrigation and fertilizer). | Australia | [178] |
Mustard (Brassica sp.). | Working technology in reduced-moisture environments. | India | [179] | |
Lentil (Lens culinaris) and garlic (Allium sativum). | Improved energy efficiency in production of both crops. | Nepal | [180] | |
Cabbage (B. oleracea) and brinjal (S. melongena). | This system was implemented. It showed that the system improved soil properties. | Brazil | [181] | |
Crop rotation | Kidney beans (P. vulgaris), mustard (Brassica sp.) and cowpeas (V. unguiculata). | Vegetable productivity was attained in some rotation set-ups (not all). | China | [160] |
Onion (Allium cepa) and sweet potatoes (Ipomoea batatas). | Demonstrated benefits of a “sustainable” rotation where potatoes or onions were included. | New Zealand | [42] | |
Onion (A. cepa), lettuce (L. sativa), peas (Pisum sativum) and beans (P. vulgaris). | Onion, lettuce and strawberry were profitable under the cropping system. | USA | [182] | |
Broccoli (B. oleracea var. italica) and cowpeas (V. unguiculata). | Cowpeas in rotation are good for crop diversification, reducing dependency on mineral fertilizers when growing broccoli. | Spain | [183] | |
Green manure and cover crops | Green beans (P. vulgaris), squash (Cucurbita pepo) and peppers (Caspicum annuum). | Cover crops improved soil biological properties and yields. The practice was found to be better for vegetable production, especially for organic farmers. | USA | [184] |
General vegetable assessment. | Cover crops uncommon in vegetable production. | USA | [185] | |
Mulching (as part of conservation agriculture) | Broccoli (B. oleracea var. italica), chili (Capsicum annuum) and garlic (Allium sativum). | Treatments of biodegradable mulch films (BDMs) and polyethylene mulch films (PEMs) effectively increased broccoli, chili pepper and garlic yields. | China | [186] |
Water spinach (I. aquatica). | Production of water spinach was significantly improved with rice straw mulching. | China | [187] | |
Peppers Capsicum chinense and Capsicum frutescens. | Mulching plus reduced irrigation worked in improving yields. Ideal as a water conservation strategy. | Ghana | [188] | |
Tomato (S. lycopersicum). | Mulching improved tomato yield (comparable to when herbicides were used). | USA | [189] | |
Improved seed (and GM seed) | GM tomatoes. | GMO safety certificates. | China | [190] |
Amaranthus sp. | Very high adoption, and the vegetable performance is good. | East Africa | [101] | |
General vegetable assessment. | Genetically modified seed approvals in Europe are mostly pending. Research into most vegetables and fruits has already been conducted. | Sweden | [191] | |
Irrigation | Garlic (A. sativum), onion (A. cepa), tomato (S. lycopersicum), cabbage (B. oleracea) and sweet potato (I. batatas). | Drip irrigation for vegetables in home gardens was found to be a feasible strategy to improve water use efficiency and to intensify crop yield. | Sub-Saharan Africa | [192] |
Chinese cabbage (Brassica rapa), Amaranthus sp., tomato (S. lycopersicum), spinach (Spinacia oleracea), peas (P. sativum) and beans (P. vulgaris). | The strategy has the potential to improve farmers’ resilience to climate change. The study found no evidence of poverty reduction. | Tanzania | [193] | |
Intercropping | Chili (C. annuum), garlic (A. sativum), onion (A. cepa), spinach and other vegetables. | Intercropping systems were developed by farmers and only promoted and spread by government workers. | China | [131] |
General vegetable assessment. | A comprehensive review of some working vegetable intercropping systems. | India | [194] | |
Onion (A. cepa), cabbage (B. oleracea) and carrot (Daucus carota). | Carrot and cabbage can be sustainably grown with faba beans in an intercropping system. Faba beans have a positive influence on soil biological properties. | Latvia | [195] | |
Organic agriculture (organic manure) | Peas (P. sativa), faba beans (Vicia faba), cabbage (Brassica sp.) and radish (Raphanus sativus). | Harvested vegetables and plant remains are part of the green manure. | China | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazibuko, D.M.; Gono, H.; Maskey, S.; Okazawa, H.; Fiwa, L.; Kikuno, H.; Sato, T. The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches. Sustainability 2023, 15, 4747. https://doi.org/10.3390/su15064747
Mazibuko DM, Gono H, Maskey S, Okazawa H, Fiwa L, Kikuno H, Sato T. The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches. Sustainability. 2023; 15(6):4747. https://doi.org/10.3390/su15064747
Chicago/Turabian StyleMazibuko, Dickson Mgangathweni, Hiroko Gono, Sarvesh Maskey, Hiromu Okazawa, Lameck Fiwa, Hidehiko Kikuno, and Tetsu Sato. 2023. "The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches" Sustainability 15, no. 6: 4747. https://doi.org/10.3390/su15064747
APA StyleMazibuko, D. M., Gono, H., Maskey, S., Okazawa, H., Fiwa, L., Kikuno, H., & Sato, T. (2023). The Sustainable Niche for Vegetable Production within the Contentious Sustainable Agriculture Discourse: Barriers, Opportunities and Future Approaches. Sustainability, 15(6), 4747. https://doi.org/10.3390/su15064747