Emergent Research Themes on Sustainability in the Beef Cattle Industry in Brazil: An Integrative Literature Review
Abstract
:1. Introduction
2. The Research Rationale
3. Research Methods
4. Results
4.1. Overview of the Literature Included
4.2. Clustering of the Studied Categories
5. Discussion
5.1. Thematic Synthesis
- (1)
- Implementing integrated systems
- (2)
- Implementing standardized systems
- (3)
- Considering regional singularities
- (4)
- Employing technology and science
- (5)
- Benchmarking and promoting
- (6)
- Embracing new aspects
5.2. A New Framework for the Topic
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IMF. World Economic Outlook: Countering the Cost-of-Living Crisis; International Monetary Fund (IMF): Washington, DC, USA, 2022. [Google Scholar]
- OECD-FAO. Agricultural Outlook 2020–2029; OECD-FAO: Paris, France, 2020; Available online: http://www.fao.org/documents/card/en/c/ca8861en (accessed on 11 June 2021).
- Ruviaro, C.F.; Léis, C.M.; Lampert, V.N.; Barcellos, J.O.J.; Dewes, H. Carbon footprint in different beef production systems on a southern Brazilian farm: A case study. J. Clean. Prod. 2015, 96, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Dick, M.; Silva, M.A.; Dewes, H. Mitigation of environmental impacts of beef cattle production in southern Brazil–Evaluation using farm-based life cycle assessment. J. Clean. Prod. 2015, 87, 58–67. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Nieuwenhuyse, A. Exploring options for sustainable beef cattle ranching in the humid tropics: A case study for the Atlantic Zone of Costa Rica. Agric. Syst. 1999, 59, 145–161. [Google Scholar] [CrossRef]
- Evans, N.; Gaskell, P.; Winter, M. Re-assessing agrarian policy and practice in local environmental management: The case of beef cattle. Land Use Policy 2003, 20, 231–242. [Google Scholar] [CrossRef]
- Almeida, C.M.V.B.; Agostinho, F.; Giannetti, B.F.; Huisingh, D. Integrating cleaner production into sustainability strategies: An introduction to this special volume. J. Clean. Prod. 2015, 96, 1–9. [Google Scholar] [CrossRef]
- Cadeia Produtiva da Carne Bovina: Contexto e Desafios Futuros; Brazilian Agricultural Research Corporation, Embrapa: Brasilia, Brazil, 2021; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/224434/1/DOC-291-Final-em-Alta.pdf (accessed on 15 July 2021).
- Caniglia, G.; Schäpke, N.; Lang, D.J.; Abson, D.J.; Luederitz, C.; Wiek, A.; Laubichler, M.D.; Gralla, F.; von Wehrden, H. Experiments and evidence in sustainability science: A typology. J. Clean. Prod. 2017, 169, 39–47. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks; Makron Books: São Paulo, Brazil, 2001. [Google Scholar]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental consequences of different beef production systems in the EU. J. Clean. Prod. 2010, 18, 756–766. [Google Scholar] [CrossRef]
- Mirek, Z.; Witkowski, Z. Theory and practice in nature conservation–Where to seek sustainability? Pap. Glob. Chang. IGBP 2017, 24, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.R.; Ferreira, J.C.E.; Kumar, V.; Garza-Reyes, J.A.; Cherrafi, A. A lean and cleaner production benchmarking method for sustainability assessment: A study of manufacturing companies in Brazil. J. Clean. Prod. 2018, 177, 218–231. [Google Scholar] [CrossRef]
- Wiśniewska, J. Economic sustainability of agriculture–conceptions and indicators. Acta Sci. Pol. Oecon. 2011, 10, 119–137. [Google Scholar]
- Whelan, T.; Zappa, B.; Zeidan, R.; Fishbein, G. How to Quantify Sustainability’s Impact on Your Bottom Line. Harv. Bus. Rev. 2017. Available online: https://hbr.org/2017/09/how-to-quantify-sustainabilitys-impact-on-your-bottom-line (accessed on 12 January 2023).
- Libera, C.; Marote, S.; Horta, A.L. Brazil’s Path to Sustainable Cattle Farming; Bain&Company, Inc.: Boston, MA, USA; The Nature Conservancy: Arlington County, VA, USA, 2020; Available online: https://www.bain.com/insights/brazils-path-to-sustainable-cattle-farming/ (accessed on 12 January 2023).
- Dick, M.; Silva, M.A.; Dewes, H. Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. J. Clean. Prod. 2015, 96, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Ogino, A.; Sommart, K.; Subepang, S.; Mitsumori, M.; Hayashi, K.; Yamashita, T.; Tanaka, Y. Environmental impacts of extensive and intensive beef production systems in Thailand evaluated by life cycle assessment. J. Clean. Prod. 2016, 112, 22–31. [Google Scholar] [CrossRef]
- Figueiredo, E.B.; Jayasundara, S.; Bordonal, R.O.; Berchielli, T.T.; Reis, R.A.; Wagner-Riddle, C.; La Scala Jr., N. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J. Clean. Prod. 2017, 142, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Filho, K.E. Supply chain approach to sustainable beef production from a Brazilian perspective. Livest. Prod. Sci. 2004, 90, 53–61. [Google Scholar] [CrossRef]
- Flysjö, A.; Cederberg, C.; Henriksson, M.; Ledgard, S. The interaction between milk and beef production and emissions from land use change–Critical considerations in life cycle assessment and carbon footprint studies of milk. J. Clean. Prod. 2012, 28, 134–142. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Page, G.; Opie, K.; Huang, J.; Bellotti, W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. J. Clean. Prod. 2014, 73, 24–30. [Google Scholar] [CrossRef]
- Fernandes, E.A.N.; Sarriés, G.A.; Bacchi, M.A.; Mazola, Y.T.; Gonzaga, C.L.; Sarriés, S.R.V. Trace elements and machine learning for Brazilian beef traceability. Food Chem. 2020, 333, 127462. [Google Scholar] [CrossRef]
- Reis, J.C.; Rodrigues, G.S.; Barros, I.; Rodrigues, R.A.R.; Garrett, R.D.; Valentim, J.F.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S.; et al. Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J. Clean. Prod. 2021, 283, 124580. [Google Scholar] [CrossRef]
- Röös, E.; Bajzelj, B.; Weil, C.; Andersson, E.; Bossio, D.; Gordon, L.J. Moving beyond organic–A food system approach to assessing sustainable and resilient farming. Glob. Food Sec. 2021, 28, 100487. [Google Scholar] [CrossRef]
- Picanço Filho, A.F.; Figueiredo, R.S.; Oliveira Neto, O.J. Aplicação da metodologia system dynamics na avaliação da sustentabilidade econômico-financeira da bovinocultura de corte no município de Parintins–Estado do Amazonas. Custos Agronegócio 2009, 5, 33–58. [Google Scholar]
- Arrieta, E.M.; Cabrol, D.A.; Cuchietti, A.; González, A.D. Biomass consumption and environmental footprints of beef cattle production in Argentina. Agric. Syst. 2020, 185, 102944. [Google Scholar] [CrossRef]
- Souza, N.R.D.; Fracarolli, J.A.; Junqueira, T.L.; Chagas, M.F.; Cardoso, T.F.; Watanabe, M.D.B.; Cavalett, O.; Venzke Filho, S.P.; Dale, B.E.; Bonomi, A.; et al. Sugarcane ethanol and beef cattle integration in Brazil. Biomass Bioenergy 2019, 120, 448–457. [Google Scholar] [CrossRef]
- Sobrosa Neto, R.C.; Berchin, I.I.; Magtoto, M.; Berchin, S.; Xavier, W.G.; Guerra, J.B.S.O.A. An integrative approach for the water-energy-food nexus in beef cattle production: A simulation of the proposed model to Brazil. J. Clean. Prod. 2018, 204, 1108–1123. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. Emission factors and carbon emissions of methane from enteric fermentation of cattle produced under different management systems in South Africa. J. Clean. Prod. 2020, 265, 121931. [Google Scholar] [CrossRef]
- Freitas, D.S.; Oliveira, T.E.; Oliveira, J.M. Sustainability in the Brazilian pampa biome: A composite index to integrate beef production, social equity, and ecosystem conservation. Ecol. Indic. 2019, 98, 317–326. [Google Scholar] [CrossRef]
- Santos, S.A.; Lima, H.P.; Massruhá, S.M.F.S.; Abreu, U.G.P.; Tomás, W.M.; Salis, S.M.; Cardoso, E.L.; Oliveira, M.D.; Soares, M.T.S.; Santos Jr, A.; et al. A fuzzy logic-based tool to assess beef cattle ranching sustainability in complex environmental systems. J. Environ. Manag. 2017, 198, 95–106. [Google Scholar] [CrossRef]
- Costa Jr, N.B.; Baldissera, T.C.; Pinto, C.E.; Garagorry, F.C.; Moraes, A.; Carvalho, P.C.F. Public policies for low carbon emission agriculture foster beef cattle production in southern Brazil. Land Use Policy 2019, 80, 269–273. [Google Scholar] [CrossRef]
- Costantini, M.; Vázquez-Rowe, I.; Manzardo, A.; Bacenetti, J. Environmental impact assessment of beef cattle production in semi-intensive systems in Paraguay. Sustain. Prod. Consum. 2020, 27, 269–281. [Google Scholar] [CrossRef]
- Mazzetto, A.M.; Bishop, G.; Styles, D.; Arndt, C.; Brook, R.; Chadwick, D. Comparing the environmental efficiency of milk and beef production through life cycle assessment of interconnected cattle systems. J. Clean. Prod. 2020, 277, 124108. [Google Scholar] [CrossRef]
- Oliveira, P.P.A.; Berndt, A.; Pedroso, A.F.; Alves, T.C.; Pezzopane, J.R.M.; Sakamoto, L.S.; Henrique, F.L.; Rodrigues, P.H.M. Greenhouse gas balance and carbon footprint of pasture-based beef cattle production systems in the tropical region (Atlantic Forest biome). Animal 2020, 14, 427–437. [Google Scholar] [CrossRef]
- Knoll, S.; Padula, A.D.; dos Santosc, M.C.; Pumid, G.; Zhoue, S.; Zhonge, F.; Barcellosf, J.O.J. Information flow in the Sino-Brazilian beef trade. Int. Food Agribus. Man. 2018, 21, 17–37. [Google Scholar] [CrossRef]
- Salvin, H.E.; Lees, A.M.; Cafe, L.M.; Colditz, I.G.; Lee, C. Welfare of beef cattle in Australian feedlots: A review of the risks and measures. Anim. Prod. Sci. 2020, 60, 1569–1590. [Google Scholar] [CrossRef]
- Galuchi, T.P.D.; Rosalesa, F.P.; Batalhac, M.O. Management of socioenvironmental factors of reputational risk in the beef supply chain in the Brazilian Amazon region. Int. Food Agribus. Man. 2019, 22, 155–171. [Google Scholar] [CrossRef]
- Wiśniewska-Paluszak, J.; Paluszak, G. Development of sustainable resource ties in the agri-food industry: The case for the Polish fruit and vegetable industry. Int. Food Agribus. Man. 2021, 24, 293–320. [Google Scholar]
- Herring, A.D. Beef Cattle. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 1–20. [Google Scholar] [CrossRef]
- Sowell, B.F.; Mosley, J.C.; Bowman, J.G.P. Social behavior of grazing beef cattle: Implications for management. In Proceedings of the American Society of Animal Science; Montana State University: Bozeman, MT, USA, 1999. [Google Scholar]
- Grignard, L.; Boissy, A.; Boivin, X.; Garel, J.P.; Le Neindre, P. The social environment influences the behavioural responses of beef cattle to handling. Appl. Anim. Behav. Sci. 2000, 68, 1–11. [Google Scholar] [CrossRef]
- Sulfiar, A.E.T.; Guntoro, B.; Atmoko, B.A.; Budisatria, I.G.S. Sustainability of beef cattle farming production system in South Konawe Regency, Southeast Sulawesi. J. Indones. Trop. Anim. Agric. 2022, 47, 155–156. [Google Scholar] [CrossRef]
- Martinez, C.C.; Maples, J.G.; Benavidez, J. Beef Cattle Markets and COVID-19. Appl. Econ. Perspect. Policy 2021, 43, 304–314. [Google Scholar] [CrossRef]
- Souza, M.T.; Silva, M.D.; Carvalho, R. Integrative review: What is it? How to do it? Einstein 2010, 8, 102–106. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing Integrative Literature Reviews: Guidelines and Examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Patrick Bossuyt, P.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Chifor, C.; Arion, I.D.; Isarie, V.I.; Arion, F.H. A Systematic Literature Review on European Food Quality Schemes in Romania. Sustainability 2022, 14, 16176. [Google Scholar] [CrossRef]
- Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D.P. Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach. Build. Environ. 2018, 140, 90–106. [Google Scholar] [CrossRef]
- Ly, A.; Cornelisse, J. How to Train a Machine Learning Model in Jasp: Clustering. Available online: https://jasp-stats.org/2019/11/19/how-to-train-a-machine-learning-model-in-jasp-clustering/ (accessed on 16 July 2021).
- Naghizadeh, A.; Metaxas, D.N. Condensed Silhouette: An optimized filtering process for cluster selection in k-means. Procedia Comput. Sci. 2020, 176, 205–214. [Google Scholar] [CrossRef]
- Morissette, L.; Chartier, S. The k’means clustering technique: General considerations and implementation in Mathematica. Tutor Quant Methods Psychol. 2013, 9, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.G.; Abreu, U.G.P.; Mello, J.C.C.B.S.; Carvalho, T.B.; Zen, S. Unitary input DEA model to identify beef cattle production systems typologies. Pesqui. Oper. 2012, 32, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Cerri, C.C.; Moreira, C.S.; Alves, P.A.; Raucci, G.S.; Castigioni, B.A.; Mello, F.F.C.; Cerri, D.G.P.; Cerri, C.E.P. Assessing the carbon footprint of beef cattle in Brazil: A case study with 22 farms in the state of Mato Grosso. J. Clean. Prod. 2016, 112, 2593–2600. [Google Scholar] [CrossRef]
- Florindo, T.J.; Florindo, G.I.B.M.; Talamini, E.; Costa, J.S.; Ruviaro, C.F. Carbon footprint and life cycle costing of beef cattle in the Brazilian midwest. J. Clean. Prod. 2017, 147, 119–129. [Google Scholar] [CrossRef]
- Escribano, A.J.; Gaspar, P.; Mesías, F.J.; Pulido, A.F.; Escribano, M. Evaluación de la sostenibilidad de explotaciones de vacuno de carne ecológicas y convencionales en sistemas agroforestales: Estudio del caso de las dehesas. Inf. Téc. Econ. Agrar. 2014, 110, 343–367. [Google Scholar] [CrossRef]
- Escribano, A.J. Beef cattle farms’ conversion to the organic system. Recommendations for success in the face of future changes in a global context. Sustainability 2016, 8, 572. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, S.C.; Bittman, S.; Donohoe, G.; Flaten, D.; Wittenberg, K.M.; Small, J.A.; Berthiaume, R.; McAllister, T.A.; Beauchemin, K.A.; McKinnon, J.; et al. Beef cattle husbandry practices across Ecoregions of Canada in 2011. Can. J. Anim. Sci. 2015, 95, 305–321. [Google Scholar] [CrossRef]
- Macitelli, F.; Braga, J.S.; Gellatly, D.; Costa, M.J.R.P. Reduced space in outdoor feedlot impacts beef cattle welfare. Animal 2020, 14, 2588–2597. [Google Scholar] [CrossRef]
- Malan, J.-A.C.; Flint, N.; Jackson, E.L.; Irving, A.D.; Swain, D.L. Environmental factors influencing cattle’s water consumption at offstream watering points in rangeland beef cattle. Livest. Sci. 2020, 231, 103868. [Google Scholar] [CrossRef]
- Souza, H.A.; Moraes, E.H.B.K.; Oliveira, A.S.; Batista, E.D.; Santos, K.R.; Sousa, J.N.; Ortelan, J.C.; Lamag, A.; Moraes, K.A.K. Cashew processing product as alternative energy feedstuff for grazing beef cattle under tropical conditions. Livest. Sci. 2020, 236, 104022. [Google Scholar] [CrossRef]
- Rivero, A.R.G.; Daim, T. Technology roadmap: Cattle farming sustainability in Germany. J. Clean. Prod. 2017, 142, 4310–4326. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, C.; Wang, M.; Xiong, X.; Long, X. Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective. Sustainability 2022, 14, 15554. [Google Scholar] [CrossRef]
- Pacheco, J.W. Guia Técnico Ambiental de Frigoríficos: Industrialização de Carnes (Bovina e Suína). Available online: https://cetesb.sp.gov.br/consumosustentavel/wp-content/uploads/sites/20/2013/11/frigorifico.pdf (accessed on 8 March 2021).
- Liang, C.; MacDonald, J.D.; Desjardins, R.L.; McConkey, B.G.; Beauchemin, K.A.; Flemming, C.; Cerkowniak, D.; Blondel, A. Beef cattle production impacts soil organic carbon storage. Sci. Total Environ. 2020, 718, 137273. [Google Scholar] [CrossRef]
- Bilotto, F.; Vibart, R.; Wall, A.; Machado, C.F. Estimation of the inter-annual, arginal value of additional feed and its replacement cost for beef cattle systems in the Flooding Pampas of Argentina. Agric. Syst. 2021, 187, 103010. [Google Scholar] [CrossRef]
- Soares, J.P.G.; Neves, D.L.; Carvalho, J.M. Produção de Carne Bovina em Sistema Orgânico: Desafios e Tecnologias Para um Mercado em Expansão. Available online: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1002261?mode=full (accessed on 22 April 2021).
- Flachowsky, G. Nutrition and feeding of organic cattle. Anim. Feed Sci. Technol. 2011, 169, 288–289. [Google Scholar] [CrossRef]
- Rodríguez-Bermúdez, R.; Herrero-Latorre, C.; López-Alonso, M.; Losada, D.E.; Iglesias, R.; Miranda, M. Organic cattle pro-ducts: Authenticating production origin by analysis of serum mineral content. Food Chem. 2018, 264, 210–217. [Google Scholar] [CrossRef]
- Balbino, L.C.; Barcellos, A.O.; Stone, L.F. Marco Referencial: Integração Lavoura-Pecuária-Floresta; Brazilian Agricultural Research Corporation, Embrapa: Brasília, Brazil, 2011. [Google Scholar]
- Carne Carbono Neutro: Um Novo Conceito Para Carne Sustentável Produzida Nos Trópicos; Brazilian Agricultural Research Corporation, Embrapa: Brasília, Brazil, 2015; Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1056155/carne-carbono-neutro-um-novo-conceito-para-carne-sustentavel-produzida-nos-tropicos (accessed on 23 April 2021).
- Fiore, M.; Spada, A.; Contò, F.; Pellegrini, G. GHG and cattle farming: CO-assessing the emissions and economic performances in Italy. J. Clean. Prod. 2018, 172, 3704–3712. [Google Scholar] [CrossRef]
- Gardini, A.O.; Matias, M.J.A.; Azevedo, D.B. Programas e práticas sustentáveis na bovinocultura de corte de Mato Grosso do Sul: Caminhos para a consolidação de uma bovinocultura sustentável. Rev. Adm. Contab. Sustentabilidade 2014, 4, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; An, C.; Fang, H.; Zhang, Y.; Zhou, Z.; Zhou, Y.; Zhao, S. Assessment of regional greenhouse gas emission from beef cattle production: A case study of Saskatchewan in Canada. J. Environ. Manag. 2020, 264, 110443. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, P.; Weible, C. (Eds.) Theories of the Policy Process; Westview Press: Boulder, CO, USA, 2014. [Google Scholar]
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Herrera-Machuca, M.A.; Lopez-Villalobos, N.; Lopez-Santos, A.; Veliz-Deras, F.G. To beef or not to beef: Unveiling the economic environmental impact generated by the intensive beef cattle industry in an arid region. J. Clean. Prod. 2019, 231, 1027–1035. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Socio-Environmental Monitoring of the Cattle Sector in Brazil. Proforest Responsible Sourcing and Production Briefings, June 2017. Available online: https://www.proforest.net/resources/publications/socio-environmental-monitoring-of-the-cattle-sector-in-brazil-13547/ (accessed on 12 January 2023).
- Porter, M. On Competition; Updated and Expanded Edition; A Harvard Business Review Book; Harvard Business Press: Harvard, MA, USA, 2008. [Google Scholar]
- Amicarelli, V.; Fiore, M.; Bux, C. Hidden flows assessment in the agri-food sector: Evidence from Italian beef system. Br. Food J. 2021, 123, 384–403. [Google Scholar] [CrossRef]
- Malafaia, G.C.; Mores, G.V.; Casagranda, Y.C.; Barcellos, J.O.J.; Costa, F.P. The Brazilian beef cattle supply chain in the next decades. Livest. Sci. 2021, 253, 104704. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Umstätter, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 2020, 14, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A. February 2022 8 Digital Technologies for a New Era of Beef Production. Available online: https://www.agricultureportal.co.za/index.php/agri-index/69-animals/7473-8-digital-technologies-for-a-new-era-of-beef-production (accessed on 12 January 2023).
- Helzer, C. A Roadmap to a Sustainable Beef System. A Collaborative Approach to Achieve Economic and Environmental Benefits for People and Nature; The Nature Conservancy: Arlington, TX, USA, 2020; Available online: https://www.nature.org/content/dam/tnc/nature/en/documents/TNCBeefRoadmap_FINAL_April152020.pdf (accessed on 12 January 2023).
- NSW Government 2023, Department of Primary Industries, Responsible, Sustainable Beef Production. Available online: https://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/husbandry/general-management/production (accessed on 17 February 2023).
- Dick, M.; Silva, M.A.; Silva, R.R.F.; Ferreira, O.G.L.; Maia, M.S.; Lima, S.F.; Paiva Neto, V.B.; Dewes, H. Environmental impacts of Brazilian beef cattle production in the Amazon, Cerrado, Pampa, and Pantanal biomes. J. Clean. Prod. 2021, 311, 127750. [Google Scholar] [CrossRef]
- Berndt, A.; Tomkins, N.W. Measurement and mitigation of methane emissions from beef cattle in tropical grazing systems: A perspective from Australia and Brazil. Animal 2013, 7, 363–372. [Google Scholar] [CrossRef] [Green Version]
System | Characteristics |
---|---|
Cow-calf | Females are bred. Males are sold after weaning (7–9 months of age). Commercialization: weaned heifers and young heifers (1–2 years) for breeding; heifers from 2 to 3 years old, cows and bulls for the slaughterhouse. |
Cow-calf and backgrounding | This system is similar to the cow-calf operation. It differs from the cow-calf operation because males are retained for up to 15–18 months (young bulls) and then sold. |
Cow-calf, backgrounding, and feedlot | This system is a full-cycle activity. It is similar to the previous systems. Its difference from other systems is that males are sold as finished cattle between 15 and 42 months. |
Backgrounding and feedlot | This system encompasses the period of activity between calf weaning and the period in which the finished cattle are sold. |
Feedlot | This system is an isolated activity. Lean cattle are fattened from 24 to 36 months. |
Equation | Formulation of the Equation | Variables of the Equation |
---|---|---|
(1) | x {x1, xk} = elements of a set | |
pi = point of a cluster set | ||
d = distance between points | ||
n = number of elements | ||
(2) | SSE = sum of squares errors | |
Ni = total elements of the set | ||
Xij = element of the set | ||
Ci = centroid | ||
(3) | a(i) = the average distance of data i to all other data in its group | |
b(i) = the minimum distance of data i to all other data that do not belong to its group | ||
S(i) = the average of all data in the group |
Author, Year, Country | The Background | The Method(s) Applied | Key Concepts Discussed | Key Findings |
---|---|---|---|---|
Bouman, B.A.M., Nieuwenhuyse A. 1999 [5] Costa Rica | Economic viability | Linear programming | Options for sustainable beef breeding and fattening production systems | Sustainable beef cattle ranching is best realized by integrated intensification that raises total economic returns, i.e., use of grass legumes or fertilized pastures, high feed supplements and improved herd management techniques. |
Evans, N. et al., 2003 [6] UK | Biodiversity | Conceptual review | Agri-environmental policy and local expression of agri-environmental priorities and local agri-environmental management | Agri-environmental policy has to enter a new phase in which local conditions and local solutions become more central to the political economy of agriculture. Agri-environmental policy has functioned almost entirely following macro-level principles, primarily because it has to compete with profitable agriculture. |
Dick, M. et al., 2015 [17] Brazil | Production systems | Life cycle assessment (LCA) | Environmental impacts of beef cattle production in extensive and improved systems | Strategies to mitigate the possible environmental effects of beef cattle production should focus on productive upgrading. |
Picanço Filho, AFP et al., 2009 [26] Brazil | System dynamics | Descriptive | Assessment of economic and financial beef cattle sustainability | The availability of cheap land is a favorable factor for expanding livestock. But there are many challenges to developing beef cattle activities, which has contributed to hampering the sustainability of livestock: (a) farming is carried out on lowland and dry land, most of the times distant from each other; (b) low level of mechanization and technology; (c) high transport costs from the floodplain to the mainland; and (d) the forest code. |
Gomes, E. et al., 2012 [55] Brazil | Production systems | Data envelopment analysis (DEA) | Performance of the beef cattle rancher’s decisions | Knowledge and process management are the most critical factors for improving the efficiency of beef cattle production systems |
Cerri, C. et al., 2016 [56] Brazil | Extensive systems | Case study, descriptive | Evaluation of GHG emissions | Recognition of GHG sources contributes to a greater understanding of environmental impacts and sustainability. |
Florindo T. et al., 2017 [57] Brazil | Production systems | LCA (life cycle assessment) and LCC (life cycle costing) | Reduction of GHG emissions and economic viability | Increasing animal production by reducing emissions is a significant technical, scientific and social challenge due to the constant competitive aspects: economic and environmental. |
Escribano, A. et al., 2014 [58] Spain | Organic farming | Cluster analysis | Sustainability typologies | Three types of beef cattle farms were observed in the scores achieved: ecological, conventional and intermediate farms. All farms must act on active measures regarding managing the agroecosystem, competitiveness, business agility, and economic risk. |
Escribano, A. 2016 [59] Spain | Organic farming | Index analysis | Feasibility of converting to organic systems | Beef cattle farms must carry out adaptations in all areas of activity to overcome the conversion process, especially concerning health management and the agroecosystem (environmental, ecology principle). |
Sheppard, S. et al., 2015 [60] Canada | Management practices | Analysis of variance (ANOVA) | New sustainable technologies | Beef cattle production is key to sustainable food production because it makes productive use of poor-quality land. However, some aspects of beef husbandry affect the impact of beef production on the environment. |
Categories | A | I | RD | C | T | PPP |
---|---|---|---|---|---|---|
(1) Environmental resources | 12.0 | 42.0 | 33.0 | 15.0 | Environmental | Planet |
(2) Emissions | 8.0 | 15.0 | 102.0 | 6.0 | Air pollution | Planet |
(3) Environmental impact | 5.0 | 12.0 | 4.0 | 5.0 | Environmental | Planet |
(4) Carbon footprint | 2.0 | 0.0 | 18.0 | 5.0 | Air pollution | Planet |
(5) Sustainable economy | 1.0 | 2.0 | 2.0 | 1.0 | Economic | Profit |
(6) Renewable resources | 1.0 | 2.0 | 1.0 | 2.0 | Social | Planet |
(7) Impacts mitigation | 1.0 | 1.0 | 1.0 | 2.0 | Air pollution | Planet |
(8) Sustainable production | 1.0 | 1.0 | 1.0 | 1.0 | Sustainable production and consumption | Planet |
(9) Sustainable beef | 1.0 | 0.0 | 1.0 | 1.0 | Sustainable production and consumption | People |
(10) Sustainable development | 0.0 | 2.0 | 4.0 | 1.0 | Social | People |
(11) Sustainable consumption | 0.0 | 1.0 | 2.0 | 1.0 | Sustainable production and consumption | Planet |
(12) Economic impact | 0.0 | 1.0 | 1.0 | 1.0 | Economic | Profit |
(13) Environmental practices | 0.0 | 0.0 | 1.0 | 1.0 | Environmental | Planet |
Clusters | N | R2 | AIC | BIC | Silhouette |
---|---|---|---|---|---|
3 | 13 | 0.62246 | 63.18000 | 73.35000 | 0.26000 |
Cluster | 1 | 2 | 3 |
---|---|---|---|
Size | 6 | 5 | 2 |
Explained proportion within-cluster heterogeneity | 0.42925 | 0.17203 | 0.39872 |
Within the sum of squares | 11.66823 | 4.67634 | 10.83852 |
Silhouette score | 0.19338 | 0.42187 | 0.06663 |
A | −0.35174 | −0.39571 | 2.04450 |
I | −0.24675 | −0.46452 | 1.90155 |
RD | −0.38834 | −0.30207 | 1.92020 |
C | −0.35092 | −0.30913 | 1.82557 |
T | 0.78856 | −0.85165 | −0.23657 |
PPP | 0.38030 | −0.50440 | 0.12010 |
Theme | Main Focus |
---|---|
| Use of resources in integrated production |
Integrating production such as milk and beef | |
| Focus on using standard variables that provide a scenario with comparable results between different systems and regions of the country |
Determine changes to the quantitative calculation of resource use by beef cattle production to create a standard analysis method | |
| Understand the regional diversity related to the measures used to mitigate production impacts |
Determine how environmental production can be implemented considering regional singularities | |
| Lead the sustainability of beef cattle production, considering technique, science and social aspects |
Discuss alternatives that adopt available technologies to improve production processes with less impact | |
| Promote the best existing beef cattle production systems that have lower environmental impacts |
Analyze organic beef cattle livestock good practices and variables that can be sustainable examples to other systems | |
| Evaluate carbon capture possibilities with technique, science and social concerns to achieve sustainability |
Discuss approaches beyond environmental, economic and social aspects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casagranda, Y.G.; Wiśniewska-Paluszak, J.; Paluszak, G.; Mores, G.d.V.; Moro, L.D.; Malafaia, G.C.; Azevedo, D.B.d.; Zhang, D. Emergent Research Themes on Sustainability in the Beef Cattle Industry in Brazil: An Integrative Literature Review. Sustainability 2023, 15, 4670. https://doi.org/10.3390/su15054670
Casagranda YG, Wiśniewska-Paluszak J, Paluszak G, Mores GdV, Moro LD, Malafaia GC, Azevedo DBd, Zhang D. Emergent Research Themes on Sustainability in the Beef Cattle Industry in Brazil: An Integrative Literature Review. Sustainability. 2023; 15(5):4670. https://doi.org/10.3390/su15054670
Chicago/Turabian StyleCasagranda, Yasmin Gomes, Joanna Wiśniewska-Paluszak, Grzegorz Paluszak, Giana de Vargas Mores, Leila Dal Moro, Guilherme Cunha Malafaia, Denise Barros de Azevedo, and Debin Zhang. 2023. "Emergent Research Themes on Sustainability in the Beef Cattle Industry in Brazil: An Integrative Literature Review" Sustainability 15, no. 5: 4670. https://doi.org/10.3390/su15054670
APA StyleCasagranda, Y. G., Wiśniewska-Paluszak, J., Paluszak, G., Mores, G. d. V., Moro, L. D., Malafaia, G. C., Azevedo, D. B. d., & Zhang, D. (2023). Emergent Research Themes on Sustainability in the Beef Cattle Industry in Brazil: An Integrative Literature Review. Sustainability, 15(5), 4670. https://doi.org/10.3390/su15054670