Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. Random Forest (RF) Algorithm Theory
2.3. Theoretical Knowledge of the BP–GA NN
2.4. Construction of the Air Quality–Meteorology Correlation Fusion Model Based on RF + BP + GA
2.5. The Role of Forests in Climate Regulation
2.6. Experimental Software Environment Settings
3. Results and Discussion
3.1. Analysis of the Relationship between Air Quality and Meteorology
3.2. Analysis of the Prediction Results of the Air Quality–Meteorology Correlation Model Based on RF and BP–GA
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, S.; Jiang, Y.; Wang, S. Innovation stages, knowledge spillover, and green economy development: Moderating role of absorptive capacity and environmental regulation. Environ. Sci. Pollut. Res. 2019, 26, 25312–25325. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Henze, D.K.; Zhao, Y.; Lu, X.; Winiwarter, W.; Guo, Y.; Liu, X. Interannual variation of reactive nitrogen emissions and their impacts on PM2.5 air pollution in China during 2005–2015. Environ. Res. Lett. 2021, 16, 125004. [Google Scholar] [CrossRef]
- Chen, D.; Liang, D.; Li, L.; Guo, X.; Lang, J.; Zhou, Y. The temporal and spatial changes of ship-contributed PM2.5 due to the inter-annual meteorological variation in Yangtze river delta, China. Atmosphere 2021, 12, 722. [Google Scholar] [CrossRef]
- Liu, Y.; Failler, P.; Liu, Z. Impact of Environmental Regulations on Energy Efficiency: A Case Study of China’s Air Pollution Prevention and Control Action Plan. Sustainability 2022, 14, 3168. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Feng, Y. Assessment of the Carbon Emission Reduction Effect of the Air Pollution Prevention and Control Action Plan in China. Int. J. Environ. Res. Public Health 2021, 18, 13307. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Gao, D.; Song, D.; Li, Y. Environmental regulation, pollution reduction and green innovation: The case of the Chinese Water Ecological Civilization City Pilot policy. Econ. Syst. 2021, 45, 100911. [Google Scholar] [CrossRef]
- Akinwumiju, A.S.; Ajisafe, T.; Adelodun, A.A. Airborne particulate matter pollution in akure metro city, southwestern Nigeria, west Africa: Attribution and meteorological influence. J. Geovisualization Spat. Anal. 2021, 5, 1–17. [Google Scholar] [CrossRef]
- Li, H.; Deng, J.; Yuan, S.; Feng, P.; Arachchige, D. Monitoring and Identifying Wind Turbine Generator Bearing Faults using Deep Belief Network and EWMA Control Charts. Front. Energy Res. 2021, 9, 799039. [Google Scholar] [CrossRef]
- He, Y.; Kusiak, A. Performance assessment of wind turbines: Data-derived quantitative metrics. IEEE Trans. Sustain. Energy 2017, 9, 65–73. [Google Scholar] [CrossRef]
- Li, H. Short-term Wind Power Prediction via Spatial Temporal Analysis and Deep Residual Networks. Front. Energy Res. 2022, 10, 920407. [Google Scholar] [CrossRef]
- Li, H. SCADA Data based Wind Power Interval Prediction using LUBE-based Deep Residual Networks. Front. Energy Res. 2022, 10, 920837. [Google Scholar] [CrossRef]
- Subudhi, A.; Dash, M.; Sabut, S. Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern. Biomed. Eng. 2020, 40, 277–289. [Google Scholar] [CrossRef]
- Brieuc, M.S.O.; Waters, C.D.; Drinan, D.P.; Naish, K.A. A practical introduction to Random Forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour. 2018, 18, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, B.; Ma, A.; Chen, C.; Liu, B.; Ma, Q. Protein–protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique. Bioinformatics 2019, 35, 2395–2402. [Google Scholar] [CrossRef] [PubMed]
- Lolli, S.; Chen, Y.C.; Wang, S.H.; Vivone, G. Impact of meteorological conditions and air pollution on COVID-19 pandemic transmission in Italy. Sci. Rep. 2020, 10, 16213. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, Z. Insights into the relationship between weather parameters and COVID-19 outbreak in Lombardy, Italy. Int. J. Healthc. Manag. 2021, 14, 255–263. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, X.; Zhang, R. Impact of green finance on economic development and environmental quality: A study based on provincial panel data from China. Environ. Sci. Pollut. Res. 2020, 27, 19915–19932. [Google Scholar] [CrossRef]
- Gan, T.; Yang, H.; Liang, W.; Liao, X. Do economic development and population agglomeration inevitably aggravate haze pollution in China? New evidence from spatial econometric analysis. Environ. Sci. Pollut. Res. 2021, 28, 5063–5079. [Google Scholar] [CrossRef]
- Shahriar, S.A.; Kayes, I.; Hasan, K.; Hasan, M.; Islam, R.; Awang, N.R.; Hamzah, Z.; Rak, A.E.; Salam, M.A. Potential of Arima-ann, Arima-SVM, dt and catboost for atmospheric PM 2.5 forecasting in bangladesh. Atmosphere 2021, 12, 100. [Google Scholar] [CrossRef]
- Gocheva-Ilieva, S.; Ivanov, A.; Stoimenova-Minova, M. Prediction of daily mean PM10 concentrations using random forest, CART Ensemble and Bagging Stacked by MARS. Sustainability 2022, 14, 798. [Google Scholar] [CrossRef]
- Menéndez García, L.A.; Menéndez Fernández, M.; Sokoła-Szewioła, V.; Álvarez de Prado, L.; Ortiz Marqués, A.; Fernández López, D.; Bernardo Sánchez, A. A Method of Pruning and Random Replacing of Known Values for Comparing Missing Data Imputation Models for Incomplete Air Quality Time Series. Appl. Sci. 2022, 12, 6465. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Q.; Jin, Y.; Li, C. Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector. Sci. Rep. 2021, 11, 3247. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent neural networks based photovoltaic power forecasting approach. Energies 2019, 12, 2538. [Google Scholar] [CrossRef] [Green Version]
- Ogheneovo, E.E.; Nlerum, P.A. Iterative dichotomizer 3 (ID3) decision tree: A machine learning algorithm for data classification and predictive analysis. Int. J. Adv. Eng. Res. Sci. 2020, 7, 514–521. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Balogun, A.L.; Al Madhoun, W. Air pollution hazard assessment using decision tree algorithms and bivariate probability cluster polar function: Evaluating inter-correlation clusters of PM10 and other air pollutants. GIScience Remote Sens. 2020, 57, 207–226. [Google Scholar] [CrossRef]
- Singh, V.; Poonia, R.C.; Kumar, S.; Dass, P.; Agarwal, P.; Bhatnagar, V.; Raja, L. Prediction of COVID-19 corona virus pandemic based on time series data using Support Vector Machine. J. Discret. Math. Sci. Cryptogr. 2020, 23, 1583–1597. [Google Scholar] [CrossRef]
- Eldakhly, N.M.; Aboul-Ela, M.; Abdalla, A. A novel approach of weighted support vector machine with applied chance theory for forecasting air pollution phenomenon in Egypt. Int. J. Comput. Intell. Appl. 2018, 17, 1850001. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, X.; Zhang, Y. Establishment and optimization of sensor fault identification model based on classification and regression tree and particle swarm optimization. Mater. Res. Express 2021, 8, 085703. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. Green supplier development: Analytical evaluation using rough set theory. J. Clean. Prod. 2010, 18, 1200–1210. [Google Scholar] [CrossRef]
- Kalajdjieski, J.; Zdravevski, E.; Corizzo, R.; Lameski, P.; Kalajdziski, S.; Pires, I.M.; Garcia, N.M.; Trajkovik, V. Air pollution prediction with multi-modal data and deep neural networks. Remote Sens. 2020, 12, 4142. [Google Scholar] [CrossRef]
- Shanahan, J.; Wall, T. ‘Fight the reds, support the blue’: Blue Lives Matter and the US counter-subversive tradition. Race Cl. 2021, 63, 70–90. [Google Scholar] [CrossRef]
- Navinya, C.D.; Vinoj, V.; Pandey, S.K. Evaluation of PM2.5 surface concentrations simulated by NASA’s MERRA version 2 aerosol reanalysis over India and its relation to the air quality index. Aerosol Air Qual. Res. 2020, 20, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Guo, Y. Impacts of electricity generation on air pollution: Evidence from data on air quality index and six criteria pollutants. SN Appl. Sci. 2021, 3, 4. [Google Scholar] [CrossRef]
- Song, Z.; Deng, Q.; Ren, Z. Correlation and principal component regression analysis for studying air quality and meteorological elements in Wuhan, China. Environ. Prog. Sustain. Energy 2020, 39, 13278. [Google Scholar] [CrossRef]
- Fu, D.; Shi, X.; Xing, Y.; Wang, P.; Li, H.; Li, B.; Lu, L.; Thapa, S.; Yabo, S.; Qi, H.; et al. Contributions of extremely unfavorable meteorology and coal-heating boiler control to air quality in December 2019 over Harbin, China. Atmos. Pollut. Res. 2021, 12, 101217. [Google Scholar] [CrossRef]
- Jia, Y.; Jin, S.; Savi, P.; Yan, Q.; Li, W. Modeling and theoretical analysis of GNSS-R soil moisture retrieval based on the random forest and support vector machine learning approach. Remote Sens. 2020, 12, 3679. [Google Scholar] [CrossRef]
- Slobbe, L.C.J.; Füssenich, K.; Wong, A. Estimating disease prevalence from drug utilization data using the Random Forest algorithm. Eur. J. Public Health 2019, 29, 615–621. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Qiu, X.; Zhou, J.; Chen, X. Optimization of postblast ore boundary determination using a novel sine cosine algorithm-based random forest technique and Monte Carlo simulation. Eng. Optim. 2021, 53, 1467–1482. [Google Scholar] [CrossRef]
- Li, T.; Sun, J.; Wang, L. An intelligent optimization method of motion management system based on BP neural network. Neural Comput. Appl. 2021, 33, 707–722. [Google Scholar] [CrossRef]
- Yuan, R.; Lv, Y.; Kong, Q. Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network. Smart Mater. Struct. 2019, 28, 125001. [Google Scholar] [CrossRef]
- Han, J.X.; Ma, M.Y.; Wang, K. Product modeling design based on genetic algorithm and BP neural network. Neural Comput. Appl. 2021, 33, 4111–4117. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Wu, X.; Lv, X. Application of simulated annealing genetic algorithm-optimized back propagation (BP) neural network in fault diagnosis. Int. J. Model. Simul. Sci. Comput. 2019, 10, 1950024. [Google Scholar] [CrossRef]
- Soepangkat, B.O.P.; Pramujati, B.; Effendi, M.K. Multi-objective optimization in drilling kevlar fiber reinforced polymer using grey fuzzy analysis and Backpropagation Neural Network–Genetic Algorithm (BPNN–GA) Approaches. Int. J. Precis. Eng. Manuf. 2019, 20, 593–607. [Google Scholar] [CrossRef]
- Kais, K.; Gołaś, M.; Suchocka, M. Awareness of Air Pollution and Ecosystem Services Provided by Trees: The Case Study of Warsaw City. Sustainability 2021, 13, 10611. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, G.; Shen, Y. An Empirical Mode Decomposition Fuzzy Forecast Model for Air Quality. Entropy 2022, 24, 1803. [Google Scholar] [CrossRef]
- Qiao, D.; Yao, J.; Zhang, J. Short-term air quality forecasting model based on hybrid RF-IACA-BPNN algorithm. Environ. Sci. Pollut. Res. 2022, 29, 39164–39181. [Google Scholar] [CrossRef]
Evaluation Index | Evaluation Scope | Applicable Range |
---|---|---|
AQI | It can quantitatively describe air quality. | AQI (Air Quality Index). Each pollutant is converted into AQI during the evaluation according to different target concentration limits. |
API | It is a quantitative index to evaluate the quality of air. | Status and trends of short-term air quality in cities. |
ORAQI | It mainly evaluates sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), Total Suspended Particle (TSP), and oxidants. | Annual change in air quality in a city or region. |
EVI | It mainly uses SO2, CO, TSP, and oxidants as indicators. | Changes in high-concentration pollution in a day. |
PSI | It mainly evaluates SO2, NO2, CO, TSP, and oxidants. | Changes in urban air pollution. |
Start: | ||
---|---|---|
Input: | Original sample set . | Test sample . |
Sampling: | The original data is sampled with the Bagging algorithm. | Training subset . |
Data set: | Select training subset as the dataset of the th DT. | Data set. |
Calculate all node attributes of information gain: | Select all attributes of the node. | Calculate the information gain index of attributes. |
DT splitting: | Select the attribute with the largest information gain as the classification node. | Obtain DTs. |
Output: | is input into the DT . | Output classification results. |
End: |
Meteorological Conditions | Maximum | Minimum | Mean | The Maximum Value of AQI | The Minimum Value of AQI |
---|---|---|---|---|---|
Temperature | 36 | 25 | 30 | 166 | 46 |
Humidity | 0.77 | 0.27 | 0.41 | 166 | 46 |
Wind | 4.5 | 1 | 2.7 | 166 | 46 |
Predicted Training Model | RF Model | BP + GA Model |
---|---|---|
The maximum value of AQI | 166 | 166 |
The maximum predicted value of AQI | 168.29 | 164.32 |
The minimum value of AQI | 46 | 46 |
The minimum predicted value of AQI | 42.3 | 47.23 |
RF + BP + GA Prediction Training Model | Numerical |
---|---|
The maximum value of AQI | 166 |
The maximum predicted value of AQI | 166.32 |
The minimum value of AQI | 46 |
The minimum predicted value of AQI | 46.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Pang, L.; Yang, Y.; Gao, Y.; Gao, B.; Liu, F.; Wang, L. Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network. Sustainability 2023, 15, 4531. https://doi.org/10.3390/su15054531
Liu R, Pang L, Yang Y, Gao Y, Gao B, Liu F, Wang L. Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network. Sustainability. 2023; 15(5):4531. https://doi.org/10.3390/su15054531
Chicago/Turabian StyleLiu, Ruifang, Lixia Pang, Yidian Yang, Yuxing Gao, Bei Gao, Feng Liu, and Li Wang. 2023. "Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network" Sustainability 15, no. 5: 4531. https://doi.org/10.3390/su15054531
APA StyleLiu, R., Pang, L., Yang, Y., Gao, Y., Gao, B., Liu, F., & Wang, L. (2023). Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network. Sustainability, 15(5), 4531. https://doi.org/10.3390/su15054531