Towards Adaptive Governance of Urban Nature-Based Solutions in Europe and Latin America—A Qualitative Exploratory Study
Abstract
1. Introduction
2. Adaptive Governance and Its Role in the Integration of NBS in the Planning Process
3. Materials and Methods
3.1. Data Collection
3.2. Data Analysis and Interpretation
- I.
- Volatile factors, which display strong driving power and very strong dependence;
- II.
- Driving factors, which have very strong driving power and very weak dependence;
- III.
- Autonomous factors, which present very weak driving power and weak dependence;
- IV.
- Dependent factors, which display very low driving power but high dependence.
4. Results
4.1. SWOT Analysis: Main Factors That Influence Urban NBS Adaptive Governance in Europe and Latin America
4.1.1. Strengths and Weaknesses: Positive and Negative Internal Factors of Urban NBS Adaptive Governance
4.1.2. Opportunities and Threats: Positive and Negative External Factors of Urban NBS Adaptive Governance
4.2. Prospective Analysis: Driving Power and Dependence of Influencing Factors of NBS Adaptive Governance
4.2.1. Quadrant I: Volatile Factors
4.2.2. Quadrant II: Driving Factors
4.2.3. Quadrant III: Autonomous Factors
4.2.4. Quadrant IV: Dependent Factors
5. Discussion
5.1. Common Pathways
5.1.1. Legal and Institutional Framework Related Factors
5.1.2. Learning and Experimentation Related Factors
5.1.3. Cooperation and Co-Management Related Factors
5.2. Singular Pathways
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
EU | LA |
---|---|
1. Political agendas: political party agendas; instability of government plans; change of government; differing municipal, regional and national agendas. | 1. Political agendas: political party agendas; instability of government plans; change of government; differing municipal, regional and national agendas. |
2. Public policies: limited integration of the NBS concept and of socio-ecological principles and criteria for their design and implementation. | 2. Public policies: limited integration of the NBS concept and of socio-ecological principles and criteria for their design and implementation. |
3. Inter-institutional coordination: confluence of resources and actors in institutions to implement NBS. | 3. Inter-institutional coordination: confluence of resources and actors in institutions to implement NBS (e.g., housing and environmental management policies). |
4. Relation to global agendas: global agendas addressing the effects of climate variability on the urban environment signalise the need for the identification and implementation of NBS. | 4. Relation to global agendas: global agendas addressing the effects of climate variability on the urban environment signalise the need for the identification and implementation of NBS. |
5. NBS knowledge: facilitate the confluence of actors (people, public administration, academia, and private sector) and their knowledge. | 5. NBS Knowledge: facilitate the confluence of actors (people, public administration, academia and private sector) and their knowledge. |
6. Environmental education: increased knowledge about NBS and their effects on socio-ecological dynamics and urban ecology. | 6. Environmental education: increased knowledge about NBS and their effects on socio-ecological dynamics and urban ecology. |
7. RDI (research, development, and innovation): research to concretise impacts, connection with development and innovation dynamics in design, responses and financing. | 7. RDI (research, development, and innovation): research to concretise impacts, connection with development and innovation dynamics in design, responses and financing. |
8. Citizens participation and agency: deepen citizens’ participation and empowerment. | 8. Citizens participation and agency: deepen citizens’ participation and empowerment. |
9. Political and public interest: interest of the local population and authorities on reconnecting with nature. | 9. Demand: population’s pressure towards public institutions to obtain resources and support to solve socio-environmental issues. |
10. Instruments for funding: regulatory frameworks for investments to understand and enable fiscal and financial incentives and private funding. | 10. Costs: implementation costs and regulatory frameworks for investments. Fiscal and financial incentives can subsidise implementation and operating costs. |
11. Urban conflict & development approach: NBS possible conflicts with urban infrastructures (e.g., housing, transport, roads) looking at the socio-spatial development of the cities. | 11. Growth and urban development: consider the socio-spatial growth of the city and its management. |
12. Systematic thinking toward development: approach to NBS through three perspectives (social, environmental, and economic). | 12. Equity: unequal access to natural resources and environmental services between individuals or groups constitute a major issue of inequity causing a perception of conflict between NBS and social issues. |
13. NIMBY: trade-offs between NBS implementation and urban lifestyle can hinder NBS development. | 13. Heritage: various forms of tangible and intangible, public and private heritage linked to NBS implementation. |
14. Incorporation of the private sector: understand how to engage the private sector, assessing available funds and partnerships. | 14. Technology: permeates all scales and dimensions of NBS. Its availability and accessibility are fundamental for NBS dissemination and implementation. |
15. Connectivity: create synergies between NBS, other green infrastructures and traditional grey infrastructures of the cities. | 15. Continuity: stable support plans and programmes to maintain NBS and ensure continuity of expected services and functions. |
16. Communication: dissemination of NBS benefits to enable the local population to fulfil a crucial role in decisions affecting their environment. | 16. Credibility in the public sector: growing distrust caused by problems of corruption and clientelism. |
References
- UNEP. Resolution Adopted by the United Nations Environment Assembly on 2 March 2022. Nature-Based Solutions for Supporting Sustainable Development; United Nations Environment Assembly of the United Nations Environment Programme, Fifth Session, Nairobi (hybrid), 22 and 23 February 2021 and 28 February–2 March 2022; UNEP: Washington, DC, USA, 2022. [Google Scholar]
- Albert, C.; Schröter, B.; Haase, D.; Brillinger, M.; Henze, J.; Herrmann, S.; Gottwald, S.; Guerrero, P.; Nicolas, C.; Matzdorf, B. Addressing societal challenges through nature-based solutions: How can landscape planning and governance research contribute? Landsc. Urban Plan. 2019, 182, 12–21. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Biswal, B.K.; Bolan, N.; Zhu, Y.G.; Balasubramanian, R. Nature-based Systems (NbS) for mitigation of storm water and air pollution in urban areas: A review. Resour. Conserv. Recycl. 2022, 186, 106578. [Google Scholar] [CrossRef]
- Al-Dousari, A.M.; Ahmed, M.; Al-Dousari, N.; Al-Awadhi, S. Environmental and economic importance of native plants and green belts in controlling mobile sand and dust hazards. Int. J. Environ. Sci. Technol. 2019, 16, 2415–2426. [Google Scholar] [CrossRef]
- Taleb, H.M.; Kayed, M. Applying porous trees as a windbreak to lower desert dust concentration: Case study of an urban community in Dubai. Urban For. Urban Green. 2021, 57, 126915. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Truong, S.; Gray, T.; Ward, K. Enhancing urban nature and place-making in social housing through community gardening. Urban For. Urban Green. 2022, 72, 127586. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A.; Zgela, M.; Milosevic, D.; Dunjic, J. Lowering the Temperature to Increase Heat Equity: A Multi-Scale Evaluation of Nature-Based Solutions in Toronto, Ontario, Canada. Atmosphere 2022, 13, 1027. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brazel, A.J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build. Environ. 2012, 47, 170–181. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Pataki, D.E.; Pardyjak, E.R.; Bowling, D.R. Effects of vegetation on the spatial and temporal variation of microclimate in the urbanized Salt Lake Valley. Agric. For. Meteorol. 2021, 296, 108211. [Google Scholar] [CrossRef]
- Kouakou, L.M.M.; Yeo, K.; Kone, M.; Ouattara, K.; Kouakou, A.K.; Delsinne, T.; Dekoninck, W. Espaces verts comme une alternative de conservation de la biodiversité en villes: Le cas des fourmis (Hyménoptère: Formicidae) dans le district d’Abidjan (Côte d’Ivoire). J. Appl. Biosci. 2018, 131, 13358. [Google Scholar] [CrossRef]
- Shackleton, C. Do indigenous street trees promote more biodiversity than alien ones? Evidence using mistletoes and birds in South Africa. Forests 2016, 7, 134. [Google Scholar] [CrossRef]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Assessing Potential for and Benefits of Scaling up Nature-Based Solutions in Malmö. In Innovation in Urban and Regional Planning; La Rosa, D., Privitera, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Pereira, P.; Inácio, M.; Karnauskaite, D.; Bogdzevič, K.; Gomes, E.; Kalinauskas, M.; Barcelo, D. Nature-Based Solutions Impact on Urban Environment Chemistry: Air, Soil, and Water. In Nature-Based Solutions for Flood Mitigation. The Handbook of Environmental Chemistry, Vol 107; Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 2002, 6, 291–302. [Google Scholar] [CrossRef]
- Ommer, J.; Bucchignani, E.; Leo, L.S.; Kalas, M.; Vranić, S.; Debele, S.; Kumar, P.; Cloke, H.L.; Di Sabatino, S. Quantifying co-benefits and disbenefits of Nature-based Solutions targeting Disaster Risk Reduction. Int. J. Disaster Risk Res. 2022, 75, 102966. [Google Scholar] [CrossRef]
- Sander, H.; Polasky, S.; Haight, R.G. The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA. Ecol. Econ. 2010, 69, 1646–1656. [Google Scholar] [CrossRef]
- Wolf, K.L. City trees and property values. Arborist News 2007, 16, 34–36. [Google Scholar]
- Astell-Burt, T.; Feng, X. Association of Urban Green Space with Mental Health and General Health among Adults in Australia. JAMA Netw. Open 2019, 2, e198209. [Google Scholar] [CrossRef]
- Johnson, B.S.; Malecki, K.N.; Peppard, P.E.; Beyer, K.M.M. Exposure to neighborhood green space and sleep: Evidence from the Survey of the Health of Wisconsin. Sleep Health 2018, 4, 413–419. [Google Scholar] [CrossRef]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Publ. Health 2014, 35, 207–228. [Google Scholar] [CrossRef]
- Abass, Z.; Tucker, R. Fifty Shades of Green: Tree coverage and neighbourhood attachment in relation to social interaction in Australian suburbs. In Fifty Years Later: Revisiting the Role of Architectural Science in Design and Practice: 50th International Conference of the Architectural Science Association; Zuo, J., Daniel, L., Soebarto, V., Eds.; The Architectural Science Association and The University of Adelaide: Adelaide, Australia, 2016; pp. 259–268. [Google Scholar]
- Holtan, M.T.; Dieterlen, S.L.; Sullivan, W.C. Social Life Under Cover: Tree Canopy and Social Capital in Baltimore, Maryland. Environ. Behav. 2015, 47, 502–525. [Google Scholar] [CrossRef]
- European Commission. Towards an EU Research and Innovation policy agenda for Nature-Based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Amaya-Espinel, J.D.; Hernández-Garcia, J.; Cruz-Suárez, M.A. State of the Art, Good Practices and NBS Typology in European Union and Latin America Cities.Report D2.1, v1.1, 2021; European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 867564. Available online: tinyurl.com/conexus-project (accessed on 22 January 2023).
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar] [CrossRef]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban greening through nature-based solutions—Key characteristics of an emerging concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Cassin, J.; Ochoa-Tocachi, B.F. Learning from indigenous and local knowledge: The deep history of nature-based solutions In Nature-Based Solutions and Water Security: An Action Agenda for the 21st Century; Cassin, J., Matthews, J.H., Lopez-Gunn, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 283–335. [Google Scholar]
- Tzoulas, K.; Galan, J.; Venn, S.; Dennis, M.; Pedroli, B.; Mishra, H.; Haase, D.; Pauleit, S.; Niemelä, J.; James, P. A conceptual model of the social–ecological system of nature-based solutions in urban environments. Ambio 2021, 50, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Toxopeus, H.; Polzin, F. Reviewing financing barriers and strategies for urban nature-based solutions. J. Environ. Manag. 2021, 289, 112371. [Google Scholar] [CrossRef] [PubMed]
- Dorst, H.; van der Jagt, A.; Toxopeus, H.; Tozer, L.; Raven, R.; Runhaar, H. What’s behind the barriers? Uncovering structural conditions working against urban nature-based solutions. Landsc. Urban Plan. 2022, 220, 104335. [Google Scholar] [CrossRef]
- Sarabi, S.E.; Han, Q.; Romme, A.G.L.; de Vries, B.; Wendling, L. Key enablers of and barriers to the uptake and implementation of Nature-based Solutions in urban settings: A review. Resources 2019, 8, 121. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; Romme, A.G.L.; de Vries, B.; Valkenburg, R.; den Ouden, E.; Zalokar, S.; Wendling, L. Barriers to the adoption of Urban Living Labs for NBS implementation: A systemic perspective. Sustainability 2021, 13, 13276. [Google Scholar] [CrossRef]
- Grace, M.; Balzan, M.; Collier, M.; Geneletti, D.; Tomaskinova, J.; Abela, R.; Borg, D.; Buhagiar, G.; Camilleri, L.; Cardona, M.; et al. Priority knowledge needs for implementing nature-based solutions in the Mediterranean islands. Environ. Sci. Policy 2021, 116, 56–68. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; McPhearson, T.; Collier, M.J.; Kendal, D.; Bulkeley, H.; Dumitru, A.; Walsh, C.; Noble, K.; van Wyk, E.; Ordóñez, C.; et al. Nature-based solutions for urban climate change adaptation: Linking science, policy, and practice communities for evidence-based decision-making. Bioscience 2019, 69, 455–466. [Google Scholar] [CrossRef]
- Clar, C.; Prutsch, A.; Steurer, R. Barriers and guidelines for public policies on climate change adaptation: A missed opportunity of scientific knowledge-brokerage. Nat. Resour. Forum 2013, 37, 1–18. [Google Scholar] [CrossRef]
- Pasquini, L.; Cowling, R.M. Opportunities and challenges for mainstreaming ecosystem-based adaptation in local government: Evidence from the Western Cape, South Africa. Environ. Dev. Sustain. 2015, 17, 1121–1140. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.; Rusch, G.; Waylen, K.; Delbaere, B.; Haase, D. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Razvan, M.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy. 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Schmalzbauer, A. Barriers and Success Factors for Effectively Cocreating Nature-Based Solutions for Urban Regeneration; Deliverable 1.1.1, CLEVER Cities, H2020 Grant No. 776604; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Martin, J.G.; Scolobig, A.; Linnerooth-Bayer, J.; Liu, W.; Balsiger, J. Catalyzing innovation: Governance enablers of nature-based solutions. Sustainability 2021, 13, 1971. [Google Scholar] [CrossRef]
- Albert, C.; Brillinger, M.; Guerrero, P.; Gottwald, S.; Henze, J.; Schmidt, S.; Ott, E.; Schröter, B. Planning nature-based solutions: Principles, steps, and insights. Ambio 2021, 50, 1446–1461. [Google Scholar] [CrossRef]
- Egusquiza, A.; Cortese, M.; Perfido, D. Mapping of innovative governance models to overcome barriers for nature-based urban regeneration. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012081. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.S.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Schaubroeck, T. ‘Nature-based solutions’ is the latest green jargon that means more than you might think. Nature 2017, 541, 133–134. [Google Scholar] [CrossRef]
- Young, O.R. The Institutional Dimensions of Environmental Change: Fit, Interplay, and Scale; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Cumming, G.S.; Cumming, D.H.M.; Redman, C.L. Scale mismatches in social-ecological systems: Causes, consequences, and solutions. Ecol. Soc. 2006, 11, 14. [Google Scholar] [CrossRef]
- FAO. Guidelines on Urban and Peri-Urban Forestry; FAO: Rome, Italy, 2016. [Google Scholar]
- Lemos, M.C.; Agrawal, A. Environmental governance. Annu. Rev. Environ. Resour. 2006, 31, 297–325. [Google Scholar] [CrossRef]
- Brosius, J.P.; Tsing, A.L.; Zerner, C. Communities and Conservation: Histories and Politics of Community-Based Natural Resource Management; Rowman Altamira: Walnut Creek, CA, USA, 2005. [Google Scholar]
- Chaffin, B.C.; Gosnell, H.; Cosens, B.A. A decade of adaptive governance scholarship: Synthesis and future directions. Ecol. Soc. 2014, 19, 56. [Google Scholar] [CrossRef]
- Ansell, C.; Gash, A. Collaborative Governance in Theory and Practice. J. Publ. Adm. Res. Theor. 2007, 18, 543–571. [Google Scholar] [CrossRef]
- Pauleit, S.; Ambrose-Oji, B.; Andersson, E.; Anton, B.; Buijs, A.; Haase, D.; Kronenberg, J.; Mattijssen, T.; Olafsson, A.S.; Rall, E.; et al. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- Hatfield-Dodds, S.; Nelson, R.; Cook, D.C. Adaptive governance: An introduction, an implications for public policy. In Proceedings of the ANZSEE Conference, Noosa, Australia, 4–5 July 2007. [Google Scholar]
- Cleaver, F.; Whaley, L. Understanding process, power, and meaning in adaptive governance: A critical institutional reading. Ecol. Soc. 2018, 23, 49. [Google Scholar] [CrossRef]
- Morris, M.; de Loe, R.C. Cooperative and adaptive transboundary water governance in Canada’s Mackenzie River Basin: Status and prospects. Ecol. Soc. 2016, 21, 26. [Google Scholar] [CrossRef]
- McGinnis, M.D.; Ostrom, E. Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef]
- Huitema, D.; Mostert, E.; Egas, W.; Moellenkamp, S.; Pahl-Wostl, C.; Yalcin, R. Adaptive water governance: Assessing the institutional prescriptions of adaptive (co-)management from a governance perspective and defining a research agenda. Ecol. Soc. 2009, 14, 26. [Google Scholar] [CrossRef]
- Bodin, Ö.; Crona, B.I. The role of social networks in natural resource governance: What relational patterns make a difference? Glob. Environ. Chang. 2009, 19, 366–374. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive Governance of Social-Ecological Systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef]
- Toxopeus, H.; Kotsila, P.; Conde, M.; Katona, A.; van der Jagt, A.P.N.; Polzin, F. How ‘just’ is hybrid governance of urban nature-based solutions? Cities 2020, 105, 102839. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Garmestani, A.S.; Gunderson, L.H.; Benson, M.H.; Angeler, D.G.; Arnold, C.A.; Cosens, B.; Craig, R.K.; Ruhl, J.B.; Allen, C.R. Transformative Environmental Governance. Annu. Rev. Environ. Resour. 2016, 41, 399–423. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.; van der Voort, H. Agile and adaptive governance in crisis response: Lessons from the COVID-19 pandemic. Int. J. Inf. Manag. 2020, 55, 102180. [Google Scholar] [CrossRef]
- Westskog, H.; Amundsen, H.; Christiansen, P.; Tønnesen, A. Urban contractual agreements as an adaptive governance strategy: Under what conditions do they work in multi-level cooperation? J. Environ. Policy Plan. 2020, 22, 554–567. [Google Scholar] [CrossRef]
- van der Jagt, A.P.N.; Kiss, B.; Hirose, S.; Takahashi, W. Nature-Based Solutions or Debacles? The Politics of Reflexive Governance for Sustainable and Just Cities. Front. Sustain. Cities 2021, 2, 583833. [Google Scholar] [CrossRef]
- Hodge, G.A.; Greve, C. Public–private partnerships: An international performance review. Public Admin. Rev. 2007, 67, 545–558. [Google Scholar] [CrossRef]
- Hood, J.; Fraser, I.; McGarvey, N. Transparency of risk and reward in U.K. public–private partnerships. Public Budg. Financ. 2006, 26, 40–58. [Google Scholar] [CrossRef]
- Budds, J.; Hinojosa, L. Restructuring and rescaling water governance in mining contexts: The co-production of waterscapes in Peru. Water Altern. 2012, 5, 119–137. [Google Scholar]
- Pahl-Wostl, C.; Knieper, C. The capacity of water governance to deal with the climate change adaptation challenge: Using fuzzy set Qualitative Comparative Analysis to distinguish between polycentric, fragmented and centralized regimes. Glob. Environ. Chang. 2014, 29, 139–154. [Google Scholar] [CrossRef]
- Folke, C. Social–ecological systems and adaptive governance of the commons. Ecol. Res. 2007, 22, 14–15. [Google Scholar] [CrossRef]
- Kittilson, M.C.; Schwindt-Bayer, L. Engaging Citizens: The Role of Power-Sharing Institutions. J. Politics 2010, 72, 990–1002. [Google Scholar] [CrossRef]
- Cohen, A.J. Negotiation, Meet New Governance: Interests, Skills, and Selves. Law Soc. Inq. 2008, 33, 503–562. [Google Scholar] [CrossRef]
- Agrawal, A.; Gibson, C.C. Enchantment and disenchantment: The role of community in natural resource conservation. World Dev. 1999, 27, 629–649. [Google Scholar] [CrossRef]
- Armitage, D. Governance and the commons in a multi-level world. Int. J. Commons 2007, 2, 7–32. [Google Scholar] [CrossRef]
- Armitage, D.; Berkes, F.; Doubleday, N. Adaptive Comanagement: Collaboration, Learning, and Multi-Level Governance; UBC Press: Vancouver, BC, Canada, 2007. [Google Scholar]
- Slocum, N. Participatory Methods Toolkit: A Practitioner’s Manual; UNU/CRIS: Brugge, Belgium, 2003. [Google Scholar]
- McDonald, D.; Bammer, G.; Deane, P. Research Integration Using Dialogue Methods; ANU E Press: Canberra, Australia, 2009. [Google Scholar]
- Reguant Álvarez, M.; Torrado-Fonseca, M. El mètode Delphi. REIRE—Revista d’Innovació I Recerca En Educació 2016, 9, 87–102. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S.; McKenna, H. Research guidelines for the Delphi survey technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar]
- Attri, R.; Dev, N.; Sharma, V. Interpretive Structural Modelling (ISM) approach: An Overview. Res. J. Manag. Sci. 2013, 2, 3–8. [Google Scholar]
- Godet, M. From Anticipation to Action. A Handbook of Strategic Prospective; UNESCO Publishing: Paris, France, 1993. [Google Scholar]
- Godet, M. How to be rigorous with scenario planning. Foresight 2000, 2, 5–9. [Google Scholar] [CrossRef]
- Godet, M. Creating Futures: Scenario Planning as a Strategic Management Tool; Economica: London, UK, 2001. [Google Scholar]
- Cárdenas, M.L.; Wilde, V.; Hagen-Zanker, A.; Seifert-Dähnn, I.; Hutchins, M.G.; Loiselle, S. The circular benefits of participation in nature-based solutions. Sustainability 2021, 13, 4344. [Google Scholar] [CrossRef]
- Gulsrud, N.M.; Hertzog, K.; Shears, I. Innovative urban forestry governance in Melbourne?: Investigating “green placemaking” as a nature-based solution. Environ. Res. 2018, 161, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Sendzimir, J.; Jeffrey, P.; Aerts, J.; Bergkamp, G.; Cross, K. Managing change toward adaptive water management through social learning. Ecol. Soc. 2007, 12, 30. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Staddon, C.; de Vito, L.; Gerlak, A.K.; Ward, S.; Schoeman, Y.; Hart, A.; Booth, G. Challenges of mainstreaming green infrastructure in built environment professions. J. Environ. Plan. Manag. 2019, 63, 710–732. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; Romme, A.G.L.; de Vries, B.; Valkenburg, R.; den Ouden, E. Uptake and implementation of Nature-Based Solutions: An analysis of barriers using Interpretive Structural Modeling. J. Environ. Manag. 2020, 270, 110749. [Google Scholar] [CrossRef]
- Davis, M.; Naumann, S. Making the Case for Sustainable Urban Drainage Systems as a Nature-Based Solution to Urban Flooding. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–137. [Google Scholar]
- Mahmoud, I.; Morello, E. Co-creation Pathway for Urban Nature-Based Solutions: Testing a Shared-Governance Approach in Three Cities and Nine Action Labs. In Smart and Sustainable Planning for Cities and Regions. Green Energy and Technology; Bisello, A., Vettorato, D., Ludlow, D., Baranzelli, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Timboe, I.; Pharr, K. Chapter 7—Nature-based solutions in international policy instruments. In Nature-Based Solutions and Water Security. An Action Agenda for the 21st Century; Cassin, J., Matthews, J.H., Gunn, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–147. [Google Scholar] [CrossRef]
- Kingsley, J.; Egerer, M.; Nuttman, S.; Keniger, L.; Pettitt, P.; Frantzeskaki, N.; Gray, T.; Ossola, A.; Lin, B.; Bailey, A.; et al. Urban agriculture as a nature-based solution to address socio-ecological challenges in Australian cities. Urban For. Urban Green. 2021, 60, 127059. [Google Scholar] [CrossRef]
- Santoro, S.; Pluchinotta, I.; Pagano, A.; Pengal, P.; Cokan, B.; Giordano, R. Assessing stakeholders’ risk perception to promote Nature Based Solutions as flood protection strategies: The case of the Glinščica river (Slovenia). Sci. Total Environ. 2019, 655, 188–201. [Google Scholar] [CrossRef]
- Lupp, G.; Zingraff-Hamed, A.; Huang, J.J.; Oen, A.; Pauleit, S. Living labs—A concept for co-designing nature-base solutions. Sustainability 2021, 13, 188. [Google Scholar] [CrossRef]
- Short, C.; Clarke, L.; Carnelli, F.; Uttley, C.; Smith, B. Capturing the multiple benefits associated with nature-based solutions: Lessons from a natural flood management project in the Cotswolds, UK. Land Degrad. Dev. 2019, 30, 241–252. [Google Scholar] [CrossRef]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. Proc. Inst. Civ. Eng. Marit. Eng. 2016, 169, 29–36. [Google Scholar] [CrossRef]
- Davies, C.; Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 2019, 80, 406–409. [Google Scholar] [CrossRef]
- Chen, W.; He, B.; Nover, D.; Lu, H.; Liu, J.; Sun, W.; Chen, W. Farm ponds in southern China: Challenges and solutions for conserving a neglected wetland ecosystem. Sci. Total Environ. 2019, 659, 1322–1334. [Google Scholar] [CrossRef] [PubMed]
- Arlati, A.; Rödl, A.; Kanjaria-Christian, S.; Knieling, J. Stakeholder Participation in the Planning and Design of Nature-Based Solutions. Insights from CLEVER Cities Project in Hamburg. Sustainability 2021, 13, 2572. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Borgström, S.; Gorissen, L.; Egermann, M.; Ehnert, F. Nature-Based Solutions Accelerating Urban Sustainability Transitions in Cities: Lessons from Dresden, Genk and Stockholm Cities. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 65–88. [Google Scholar]
- Wamsler, C. Mainstreaming ecosystem-based adaptation: Transformation toward sustainability in urban governance and planning. Ecol. Soc. 2015, 20, 30. [Google Scholar] [CrossRef]
- Droste, N.; Schröter-Schlaack, C.; Hansjürgens, B.; Zimmermann, H. Implementing Nature-Based Solutions in Urban Areas: Financing and Governance Aspects. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 307–321. [Google Scholar]
- Puskás, N.; Abunnasr, Y.; Naalbandian, S. Assessing deeper levels of participation in nature-based solutions in urban landscapes—A literature review of real-world cases. Landsc. Urban Plan. 2021, 210, 104065. [Google Scholar] [CrossRef]
- Vojvodíková, B.; Tichá, I.; Starzewska-Sikorska, A. Implementing Nature-Based Solutions in Urban Spaces in the Context of the Sense of Danger That Citizens May Feel. Land 2022, 11, 1712. [Google Scholar] [CrossRef]
- Van Ham, C.; Klimmek, H. Partnerships for Nature-Based Solutions in Urban Areas—Showcasing Successful Examples. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 275–289. [Google Scholar]
- Mendonça, R.; Roebeling, P.; Fidélis, T.; Saraiva, M. Policy Instruments to Encourage the Adoption of Nature-Based Solutions in Urban Landscapes. Resources 2021, 10, 81. [Google Scholar] [CrossRef]
- Jiao, L.; Dong, T.; Xu, G.; Zhou, Z.; Liu, J.; Liu, Y. Geographic micro-process model: Understanding global urban expansion from a process-oriented view. Comput. Environ. Urban 2021, 87, 101603. [Google Scholar] [CrossRef]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban Sprawl and Fragmentation in Latin America: A comparison with European Cities. The Myth of the Diffuse Latin American City; Working Paper; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2010. [Google Scholar]
- Pérez Rubi, M.; Hack, J. Co-design of experimental nature-based solutions for decentralized dry-weather runoff treatment retrofitted in a densely urbanized area in Central America. Ambio 2021, 50, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Ruíz, A.G.; Hes, E.; Schwartz, K. Shifting Governance Modes in Wetland Management: A Case Study of Two Wetlands in Bogotá, Colombia. Environ. Plan. C 2011, 29, 990–1003. [Google Scholar] [CrossRef]
- Diep, L.; Parikh, P.; Dodman, D.; Alencar, J.; Scarati Martins, J.R. Problematizing infrastructural “fixes”: Critical perspectives on technocratic approaches to Green Infrastructure. Urban Geogr. 2022. [CrossRef]
Europe | Latin America | |
---|---|---|
Delphi Method | 18 | 24 |
Expert Interviews | 9 | 34 |
Total | 27 | 58 |
Level of Influence |
---|
0—No direct influence |
1—Low direct influence |
2—Medium direct influence |
3—High direct influence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kauark-Fontes, B.; Ortiz-Guerrero, C.E.; Marchetti, L.; Hernández-Garcia, J.; Salbitano, F. Towards Adaptive Governance of Urban Nature-Based Solutions in Europe and Latin America—A Qualitative Exploratory Study. Sustainability 2023, 15, 4479. https://doi.org/10.3390/su15054479
Kauark-Fontes B, Ortiz-Guerrero CE, Marchetti L, Hernández-Garcia J, Salbitano F. Towards Adaptive Governance of Urban Nature-Based Solutions in Europe and Latin America—A Qualitative Exploratory Study. Sustainability. 2023; 15(5):4479. https://doi.org/10.3390/su15054479
Chicago/Turabian StyleKauark-Fontes, Beatriz, César E. Ortiz-Guerrero, Livia Marchetti, Jaime Hernández-Garcia, and Fabio Salbitano. 2023. "Towards Adaptive Governance of Urban Nature-Based Solutions in Europe and Latin America—A Qualitative Exploratory Study" Sustainability 15, no. 5: 4479. https://doi.org/10.3390/su15054479
APA StyleKauark-Fontes, B., Ortiz-Guerrero, C. E., Marchetti, L., Hernández-Garcia, J., & Salbitano, F. (2023). Towards Adaptive Governance of Urban Nature-Based Solutions in Europe and Latin America—A Qualitative Exploratory Study. Sustainability, 15(5), 4479. https://doi.org/10.3390/su15054479