A Hybrid Large Neighborhood Search Method for Minimizing Makespan on Unrelated Parallel Batch Processing Machines with Incompatible Job Families
Abstract
:1. Introduction
- (i).
- For the first time, we present a MIP model for the unrelated parallel batch processing machines problem with incompatible job families (UPBPMIJF), which can solve small-scale instances optimally;
- (ii).
- A hybrid large neighborhood search (HLNS) approach combined with a tabu and local search strategy is proposed to solve the scheduling problem efficiently;
- (iii).
- To verify the effectiveness of the proposed algorithm, two sets of instances, including incompatible job families and compatible job families, are used to conduct the experiments, and the results obtained by the HLNS are compared with that of a MIP model, a lower bound, and four previously published heuristic methods in [27,28,29,30]. Numerous computational experiments are conducted, which cogently demonstrate the advantages of the HLNS algorithm.
2. Mathematical Model and Lower Bound
2.1. Mathematical Model
Set of jobs, indexed by . | |
Set of machines, indexed by . | |
Set of batches, indexed by . | |
F | Set of job families, index by . |
Size of job , . | |
Ready time of job , . | |
Processing time of job on machine , ,. | |
Capacity of machine ,. | |
Binary variable, if job is in family , otherwise 0. |
Starting time of batch on machine . | |
Processing time of batch on machine . | |
binary variable, if job is in batch , otherwise 0. | |
binary variable, if batch is processed on machine , otherwise 0. | |
binary variable, if batch is in family , otherwise 0. | |
Makespan of the schedule. |
2.2. Lower Bound
3. Hybrid Large Neighborhood Search Algorithm
Algorithm 1: Hybrid large neighborhood search for the UPBPMIJF |
Require: A feasible initial solution 1: Set . Initialize the tabu list 2: while stopping criteria not met do 3: Tabu-based Tardiness-related removal () 4: Greedy insertion () 5: if local search criteria met do 6: Local search () 7: 8: end if 9: if then // denotes the objective value of solution 10: ; //update the current solution 11: if then 12: ; //update the best solution 13: end if 14: else 15: Add the removed jobs to the tabu list with a certain probability 16: if 17: ; //a worse solution is accepted 18: end if 19: end if 20: 21: end while |
3.1. Initialization
3.2. Destroy and Repair Operators
3.2.1. Tabu-Based Tardiness-Related Removal Operator
Algorithm 2: Tabu-based Tardiness-related removal |
Require: Current solution , destruction level and tabu list 1: Remove a random job that are not in the tabu list from , set // represents the set of removed jobs 2: While do 3: Remove job from that is not in the tabu list 4: 5: end while |
3.2.2. Greedy Insertion
3.3. Local Search Procedure
Algorithm 3: Local search |
Require: Current solution 1: Set iteration counter = 0; 2: While iteration counter do 3: Select a random job family 4: Select two random jobs and from different batches of family 5: if exchange condition met do \\ the corresponding machines’ capacities cannot be violated 6: exchange jobs and in solution ; 7: if then 8: ; 9: iteration counter = 0; 10: else 11: iteration counter = iteration counter + 1; 12: end if 13: end if 14: end while 15: Return ; |
3.4. Acceptance Criterion
3.5. Stopping Conditions
4. Numerical Experiments
4.1. Design of Experiments
4.2. Parameter Settings
4.3. Comparison between Gurobi, Lower Bound, and HLNS Methods
4.4. Comparison among CPLEX, 4 Meta-Heuristics, and HLNS
4.5. Discussions of the TALNS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Machine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HLNS | IG | SA | GA | ACO | HLNS | IG | SA | GA | ACO | ||
2 | 90 | 93.3 | 95.3 | 97 | 92.2 | 110.8 | 111.1 | 123.8 | 128.5 | 118.3 | |
98 | 100.2 | 113.2 | 105.3 | 98 | 134.8 | 135 | 146.3 | 146.7 | 140.7 | ||
209 | 209 | 209 | 209 | 209 | 339 | 339 | 339 | 339 | 339 | ||
475 | 475 | 475 | 475 | 475 | 608 | 608 | 608 | 608 | 608 | ||
418 | 418 | 418 | 418 | 418 | 575 | 575 | 575 | 575 | 575 | ||
386 | 386 | 386 | 386 | 397 | 588 | 588 | 588 | 588 | 588 | ||
245 | 245 | 245 | 249 | 245 | 523 | 523 | 523 | 523 | 523 | ||
278 | 278 | 278 | 278 | 278 | 434 | 434 | 434 | 434 | 434 | ||
300 | 303.7 | 306.8 | 310.7 | 320 | 384 | 385.5 | 388.2 | 389 | 391 | ||
3 | 80 | 80 | 85 | 80 | 94 | 99.5 | 98 | 103.5 | 109 | 98 | |
120 | 120 | 120 | 120 | 120 | 170 | 170 | 170 | 170 | 170 | ||
319 | 319 | 319 | 319 | 319 | 431 | 431 | 431 | 431 | 431 | ||
259 | 259 | 259 | 259 | 260.5 | 477 | 477 | 477 | 477 | 499 | ||
308 | 308 | 315.5 | 334.7 | 330.3 | 378 | 378 | 394.3 | 406 | 401.7 | ||
291 | 291 | 291 | 291 | 306 | 624 | 624 | 629.3 | 624 | 634.5 | ||
524 | 524 | 524 | 524 | 524 | 244.5 | 244 | 257.3 | 260 | 258.5 | ||
272 | 272 | 272 | 272 | 342 | 358.4 | 360.3 | 372.7 | 387 | 378.8 | ||
322 | 322 | 322 | 322 | 335 | 533 | 533 | 533 | 533 | 542 |
Machine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HLNS | IG | SA | GA | ACO | HLNS | IG | SA | GA | ACO | ||
2 | 131.3 | 132.1 | 143 | 149.7 | 134.8 | 154.1 | 155.2 | 175.5 | 189.3 | 180.8 | |
161 | 162.8 | 162.8 | 164.3 | 164 | 215.4 | 218.1 | 220.7 | 223.2 | 227.7 | ||
454 | 454 | 454 | 454 | 454 | 541 | 541 | 541 | 541 | 541 | ||
623 | 623 | 625.2 | 626.7 | 638 | 1097 | 1097 | 1097 | 1097 | 1097 | ||
933 | 933 | 933 | 933 | 953 | 1017 | 1017 | 1017 | 1017 | 1017 | ||
737 | 737 | 737 | 737 | 738.2 | 1030 | 1030 | 1030 | 1030 | 1030 | ||
778 | 778 | 778 | 778 | 778 | 590 | 590 | 597 | 610.3 | 590 | ||
514 | 514 | 519 | 524 | 516.2 | 827 | 827 | 827 | 827 | 827 | ||
581 | 581 | 583.5 | 584.2 | 583 | 728 | 728 | 731.2 | 736.5 | 728 | ||
3 | 125 | 127 | 135.5 | 136.2 | 134 | 146 | 146 | 146 | 146 | 148 | |
223 | 223 | 244.5 | 248 | 234.7 | 259 | 259 | 261 | 263 | 263 | ||
604 | 604 | 604 | 604 | 604 | 734 | 734 | 734 | 734 | 734 | ||
457.5 | 457.3 | 469.2 | 480.8 | 477.2 | 1038 | 1038 | 1038 | 1038 | 1038 | ||
522.8 | 521.2 | 538.8 | 533.5 | 600.8 | 701 | 701 | 715.7 | 718.3 | 769 | ||
702.7 | 707.7 | 723.7 | 713.3 | 736.3 | 841 | 841 | 854.8 | 841 | 841 | ||
397 | 397 | 410 | 420.3 | 421 | 586 | 586 | 586 | 586 | 615.5 | ||
550 | 550 | 550 | 550 | 559.2 | 630.8 | 632.8 | 644 | 644 | 674.7 | ||
612 | 612 | 612 | 612 | 612 | 812.6 | 816.2 | 818 | 818 | 829 |
Machine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HLNS | IG | SA | GA | ACO | HLNS | IG | SA | GA | ACO | ||
3 | 291.6 | 309.1 | 328 | 327.8 | 316.8 | 401.1 | 421.2 | 428.6 | 435.4 | 425.4 | |
537 | 537 | 537 | 537 | 537 | 772 | 772 | 782 | 772 | 772 | ||
1503 | 1503 | 1503 | 1503 | 1503 | 2289 | 2289 | 2289 | 2289 | 2289 | ||
1628 | 1628 | 1639.2 | 1651.2 | 1653 | 2022.3 | 2023.3 | 2043.8 | 2061 | 2083.6 | ||
1723 | 1723 | 1739 | 1723 | 1785.4 | 2410 | 2410 | 2420 | 2422.8 | 2442.6 | ||
1918 | 1918 | 1918 | 1918 | 1932 | 2512 | 2512 | 2512 | 2552.8 | 2562 | ||
994.4 | 995 | 1081.4 | 1058.4 | 1072 | 1426.1 | 1436.9 | 1517 | 1508.4 | 1601 | ||
1566 | 1566 | 1566 | 1566 | 1584.4 | 1474.4 | 1490 | 1512.4 | 1566 | 1567.8 | ||
1581 | 1581 | 1581 | 1581 | 1581 | 2347.3 | 2344.4 | 2364.2 | 2381 | 2381 | ||
4 | 346 | 348.4 | 353 | 353.4 | 352.8 | 506 | 506 | 511 | 510 | 511 | |
662 | 662 | 662 | 662 | 662 | 994 | 994 | 994 | 994 | 994 | ||
1935 | 1935 | 1935 | 1935 | 1935 | 2930 | 2930 | 2930 | 2930 | 2930 | ||
1921 | 1922 | 1941.8 | 1927 | 1937 | 3225 | 3225 | 3225 | 3225 | 3348 | ||
1553 | 1553.2 | 1594.8 | 1599 | 1674.4 | 3173 | 3173 | 3173 | 3173 | 3213 | ||
2180 | 2180 | 2180 | 2187.2 | 2207 | 3094.2 | 3094 | 3094 | 3127.4 | 3102 | ||
1028.6 | 1030 | 1056.8 | 1078.4 | 1101.2 | 2335 | 2336 | 2365.6 | 2391.8 | 2397.6 | ||
1297 | 1297 | 1318.4 | 1358.8 | 1468.4 | 2318 | 2318 | 2318 | 2338.2 | 2411 | ||
2026 | 2026 | 2026 | 2048.2 | 2026 | 3088 | 3088 | 3088 | 3102.8 | 3171 | ||
5 | 415 | 415 | 415.4 | 416.2 | 415.8 | 626 | 626 | 626 | 626 | 626 | |
800 | 800 | 800 | 800 | 800 | 1221 | 1221 | 1221 | 1221 | 1221 | ||
2389 | 2389 | 2389 | 2389 | 2389 | 3610 | 3610 | 3610 | 3610 | 3610 | ||
1065.6 | 1058.3 | 1138.4 | 1151 | 1203.4 | 1421.8 | 1420.8 | 1481.6 | 1526 | 1560.2 | ||
971.6 | 953.6 | 1010.4 | 1045.8 | 1031.2 | 1355.1 | 1363 | 1466.2 | 1517.6 | 1517 | ||
2535 | 2535 | 2535 | 2541.4 | 2543 | 3643 | 3643 | 3643 | 3643 | 3643 | ||
708.3 | 714.8 | 785 | 786.4 | 747 | 1205.2 | 1228.3 | 1385.4 | 1394 | 1406.2 | ||
978.8 | 980.5 | 1039.2 | 1120.6 | 1078.2 | 1282.5 | 1256.9 | 1278.4 | 1297.4 | 1299 | ||
2430 | 2430 | 2430 | 2430 | 2430 | 3606 | 3606 | 3606 | 3606 | 3606 |
Machine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HLNS | IG | SA | GA | ACO | HLNS | IG | SA | GA | ACO | ||
3 | 549 | 574.6 | 598.4 | 582 | 599.8 | 663.7 | 692.2 | 696.8 | 703 | 689.2 | |
1024 | 1024 | 1024 | 1025.6 | 1024 | 1265 | 1265.1 | 1265.8 | 1265 | 1265 | ||
2998 | 2998 | 2998 | 2998 | 2998 | 3779 | 3779 | 3779 | 3779 | 3779 | ||
2724.9 | 2732.7 | 2777 | 2794.6 | 2822 | 4000.3 | 4006.7 | 4025.6 | 4026.8 | 4085.2 | ||
2416.4 | 2418.9 | 2490 | 2543.6 | 2591.4 | 3571.4 | 3581.5 | 3621.8 | 3672.2 | 3696.6 | ||
3251.3 | 3230.1 | 3253.8 | 3291.8 | 3334.2 | 4096.7 | 4074.1 | 4089.2 | 4100.2 | 4113 | ||
2128.1 | 2151.1 | 2233.6 | 2247.6 | 2259.8 | 2629.7 | 2660.2 | 2716.4 | 2727.2 | 2768.4 | ||
2339 | 2349.5 | 2368 | 2416.8 | 2439 | 2774.5 | 2797.7 | 2834.6 | 2880.2 | 2953.6 | ||
3114 | 3108.1 | 3116 | 3131.6 | 3142 | 3781 | 3781 | 3781 | 3781 | 3781 | ||
4 | 699.9 | 702.7 | 702.8 | 714 | 712 | 849.1 | 855.3 | 853.4 | 861.6 | 852.8 | |
1303 | 1303 | 1303 | 1303 | 1303 | 1647 | 1647 | 1647 | 1647 | 1647 | ||
3871 | 3871 | 3871 | 3871 | 3871 | 4880 | 4880 | 4880 | 4880 | 4880 | ||
3616 | 3616 | 3616 | 3616 | 3684 | 3889.5 | 3896.6 | 3977.2 | 3959.8 | 4005.8 | ||
4507 | 4507 | 4507 | 4507 | 4517.2 | 4176.5 | 4175.2 | 4215.2 | 4244 | 4381.2 | ||
3935 | 3935 | 3935 | 3935 | 3935 | 4812 | 4812 | 4812 | 4828.8 | 4874 | ||
3184 | 3184 | 3186.2 | 3206.4 | 3305 | 4172 | 4172 | 4172 | 4177.6 | 4172 | ||
2956.5 | 2960.8 | 2971.6 | 3019 | 3082.8 | 3730 | 3731.2 | 3764.6 | 3798.4 | 3852 | ||
3970 | 3970 | 3970 | 3992.8 | 3975.8 | 5031 | 5031 | 5031 | 5043.4 | 5031 | ||
5 | 810 | 810.1 | 810 | 811 | 810.2 | 1008 | 1008 | 1008 | 1008 | 1008 | |
1615 | 1615 | 1615 | 1615 | 1615 | 2022 | 2022 | 2022 | 2022 | 2022 | ||
4804 | 4804 | 4804 | 4804 | 4804 | 5981 | 5981 | 5981 | 5981 | 5981 | ||
2001.2 | 2016.8 | 2108.2 | 2222.8 | 2260.2 | 2639.2 | 2671.9 | 2720.4 | 3025 | 3094.2 | ||
1989 | 1986.7 | 2062.4 | 2227.8 | 2261 | 2244 | 2269.5 | 2448 | 2589.8 | 2512.2 | ||
4775.8 | 4778.4 | 4780.2 | 4819.8 | 4806.4 | 6114 | 6114 | 6114 | 6141 | 6114 | ||
1442.7 | 1480.9 | 1664.6 | 1789.2 | 1718 | 1755.1 | 1788.7 | 2036.2 | 2094.4 | 2016.8 | ||
1636.1 | 1635.4 | 1663 | 1699.2 | 1711.2 | 2152.1 | 2186.8 | 2283.2 | 2380 | 2343 | ||
4854 | 4854 | 4854 | 4854 | 4854 | 6001 | 6001 | 6001 | 6001 | 6001 |
Small-Scale Instances | Large-Scale Instances | |||||||
---|---|---|---|---|---|---|---|---|
20 | 30 | 40 | 50 | 100 | 150 | 200 | 250 | |
0.00 | 1.54 | 1.52 | 0.61 | 2.17 | 3.70 | 4.49 | 6.00 | |
0.00 | 0.20 | 0.00 | 1.38 | 5.66 | 6.31 | 6.65 | 7.42 | |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4.34 | 1.19 | |
0.00 | 0.00 | 0.40 | 0.00 | 0.31 | 2.10 | 1.23 | 1.55 | |
0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.00 | 0.00 | 1.30 | 0.00 | 1.40 | 0.00 | 0.00 | 0.00 | |
0.00 | 0.75 | 0.00 | 0.00 | 4.71 | 5.19 | 7.52 | 5.81 | |
0.00 | 0.24 | 0.00 | 0.92 | 2.44 | 4.78 | 3.79 | 8.83 | |
0.00 | 0.00 | 0.00 | 0.90 | 1.73 | 3.67 | 4.72 | 3.65 |
References
- Lee, C.Y.; Uzsoy, R.; Martin-Vega, L.A. Efficient algorithms for scheduling semiconductor burn-in operations. Oper. Res. 1992, 40, 764–775. [Google Scholar] [CrossRef]
- Uzsoy, R. Scheduling batch processing machines with incompatible job families. Int. J. Prod. Res. 1995, 33, 2685–2708. [Google Scholar] [CrossRef]
- Koh, S.G.; Koo, P.H.; Kim, D.C.; Hur, W.S. Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families. Int. J. Prod. Econ. 2005, 98, 81–96. [Google Scholar] [CrossRef]
- Jolai, F. Minimizing number of tardy jobs on a batch processing machine with incompatible job families. Eur. J. Oper. Res. 2005, 162, 184–190. [Google Scholar] [CrossRef]
- Kashan, A.H.; Karimi, B. Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework. J. Oper. Res. Soc. 2008, 59, 1269–1280. [Google Scholar] [CrossRef]
- Dauzère-Pérès, S.; Mönch, L. Scheduling jobs on a single batch processing machine with incompatible job families and weighted number of tardy jobs objective. Comput. Oper. Res. 2013, 40, 1224–1233. [Google Scholar] [CrossRef]
- Cheng, B.; Cai, J.; Yang, S.; Hu, X. Algorithms for scheduling incompatible job families on single batching machine with limited capacity. Comput. Ind. Eng. 2014, 75, 116–120. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Huang, Y. Heuristics and lower bound for minimizing maximum lateness on a batch processing machine with incompatible job families. Comput. Oper. Res. 2019, 106, 91–101. [Google Scholar] [CrossRef]
- Azizoglu, M.; Webster, S. Scheduling a batch processing machine with incompatible job families. Comput. Ind. Eng. 2001, 39, 325–335. [Google Scholar] [CrossRef]
- Tangudu, S.; Kurz, M.E. A branch and bound algorithm to minimise total weighted tardiness on a single batch processing machine with ready times and incompatible job families. Prod. Plan. Control. 2006, 17, 728–741. [Google Scholar] [CrossRef]
- Yao, S.; Jiang, Z.; Li, N. A branch and bound algorithm for minimizing total completion time on a single batch machine with incompatible job families and dynamic arrivals. Comput. Oper. Res. 2012, 39, 939–951. [Google Scholar] [CrossRef]
- Balasubramanian, H.; Mönch, L.; Fowler, J.; Pfund, M. Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness. Int. J. Prod. Res. 2004, 42, 1621–1638. [Google Scholar] [CrossRef]
- Mönch, L. H Balasubramanian, JW Fowler, ME Pfund, Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times. Comput. Oper. Res. 2005, 32, 2731–2750. [Google Scholar] [CrossRef]
- Chiang, T.C.; Cheng, H.C.; Fu, L.C. A memetic algorithm for minimizing total weighted tardiness on parallel batch machines with incompatible job families and dynamic job arrival. Comput. Oper. Res. 2010, 37, 2257–2269. [Google Scholar] [CrossRef]
- Almeder, C.; Mönch, L. Metaheuristics for scheduling jobs with incompatible families on parallel batching machines. J. Oper. Res. Soc. 2011, 62, 2083–2096. [Google Scholar] [CrossRef]
- Venkataramana, M.; Srinivasa Raghavan, N. Ant colony-based algorithms for scheduling parallel batch processors with incompatible job families. Int. J. Math. Oper. Res. 2010, 2, 73–98. [Google Scholar] [CrossRef]
- Lausch, S.; Mönch, L. Metaheuristic approaches for scheduling jobs on parallel batch processing machines. In Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling; Springer: Berlin/Heidelberg, Germany, 2016; pp. 187–207. [Google Scholar]
- Cakici, E.; Mason, S.J.; Fowler, J.W.; Geismar, H.N. Batch scheduling on parallel machines with dynamic job arrivals and incompatible job families. Int. J. Prod. Res. 2013, 51, 2462–2477. [Google Scholar] [CrossRef]
- Ham, A.; Fowler, J.W.; Cakici, E. Constraint programming approach for scheduling jobs with release times, non-identical sizes, and incompatible families on parallel batching machines. IEEE Trans. Semicond. Manuf. 2017, 30, 500–507. [Google Scholar] [CrossRef]
- Jiang, W.; Shen, Y.; Liu, L.; Zhao, X.; Shi, L. A new method for a class of parallel batch machine scheduling problem. Flex. Serv. Manuf. J. 2021, 34, 518–550. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, Z.; Shi, L. Minimising total weighted completion time on batch and unary machines with incompatible job families. Int. J. Prod. Res. 2019, 57, 567–581. [Google Scholar] [CrossRef]
- Koh, S.G.; Koo, P.H.; Ha, J.W.; Lee, W.S. Scheduling parallel batch processing machines with arbitrary job sizes and incompatible job families. Int. J. Prod. Res. 2004, 42, 4091–4107. [Google Scholar] [CrossRef]
- Jia, Z.H.; Wang, C.; Leung, J.Y.T. An ACO algorithm for makespan minimization in parallel batch machines with non-identical job sizes and incompatible job families. Appl. Soft Comput. 2016, 38, 395–404. [Google Scholar] [CrossRef]
- Sun, Y.; Qian, X.; Liu, S. Scheduling Deteriorating Jobs and Module Changes with Incompatible Job Families on Parallel Machines Using a Hybrid SADE-AFSA Algorithm. In International Conference on Learning and Intelligent Optimization; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Pfund, M.; Fowler, J.W.; Gupta, J.N. A survey of algorithms for single and multi-objective unrelated parallel-machine deterministic scheduling problems. J. Chin. Inst. Ind. Eng. 2004, 21, 230–241. [Google Scholar] [CrossRef]
- Shaw, P. Using constraint programming and local search methods to solve vehicle routing problems. In International Conference on Principles and Practice of Constraint Programming; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Arroyo, J.E.C.; Leung, J.Y.T. An effective iterated greedy algorithm for scheduling unrelated parallel batch machines with non-identical capacities and unequal ready times. Comput. Ind. Eng. 2017, 105, 84–100. [Google Scholar] [CrossRef]
- Damodaran, P.; Vélez-Gallego, M.C. A simulated annealing algorithm to minimize makespan of parallel batch processing machines with unequal job ready times. Expert Syst. Appl. 2012, 39, 1451–1458. [Google Scholar] [CrossRef]
- Wang, H.M.; Chou, F.D. Solving the parallel batch-processing machines with different release times, job sizes, and capacity limits by metaheuristics. Expert Syst. Appl. 2010, 37, 1510–1521. [Google Scholar] [CrossRef]
- Jia, Z.H.; Leung, J.Y.T. A meta-heuristic to minimize makespan for parallel batch machines with arbitrary job sizes. Eur. J. Oper. Res. 2015, 240, 649–665. [Google Scholar] [CrossRef]
- Tang, M.; Ji, B.; Fang, X.; Yu, S.S. Discretization-Strategy-Based Solution for Berth Allocation and Quay Crane Assignment Problem. J. Mar. Sci. Eng. 2022, 10, 495. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, D.; Zhang, Z.; Samson, S.Y.; Van Woensel, T. The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach. Transp. Res. Part E Logist. Transp. Rev. 2022, 168, 102935. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Dai, H.-L.; Ewees, A.A.; Shiri, J.; Kisi, O.; Zounemat-Kermani, M. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Rep. 2022, 8, 12063–12080. [Google Scholar] [CrossRef]
Factor | Levels |
---|---|
20, 30, 40, 50 (small-scale instances); 100, 150, 200, 250 (large-scale instances) | |
2, 3 (); 3, 4, 5(100,150,200,250}) | |
();; | |
(represented by , respectively) | |
(represented by , respectively) |
Parameter | Meaning | Value |
---|---|---|
Number of iterations forbidden to remove | 20 | |
Probability of removals resulting in worst solutions being added to the tabu list | 0.5 | |
Initial temperature | 0.1 | |
Cooling rate | 0.995 | |
Number of iterations to decide whether to conduct a local search | 100 |
Machine | Gurobi | HLNS | Gurobi | HLNS | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Value | Gap (%) | Best | Avg | SD | Value | Gap (%) | Best | Avg | SD | ||
2 | 113 | 39.23 | 113 | 113 | 0.00 | 133 | 54.14 | 133 | 133.2 | 0.60 | |
132 | 3.79 | 132 | 132.1 | 0.30 | 166 | 38.55 | 157 | 158.4 | 2.06 | ||
226 | 0.00 | 226 | 226 | 0.00 | 354 | 0.00 | 354 | 354 | 0.00 | ||
475 | 0.00 | 475 | 475 | 0.00 | 608 | 0.82 | 608 | 608 | 0.00 | ||
418 | 0.00 | 418 | 418 | 0.00 | 575 | 0.00 | 575 | 575 | 0.00 | ||
386 | 0.00 | 386 | 386 | 0.00 | 588 | 0.00 | 588 | 588 | 0.00 | ||
253 | 3.95 | 253 | 253 | 0.00 | 523 | 0.00 | 523 | 523 | 0.00 | ||
278 | 0.00 | 278 | 278 | 0.00 | 434 | 6.01 | 434 | 434 | 0.00 | ||
307 | 23.61 | 307 | 307 | 0.00 | 387 | 15.76 | 387 | 387 | 0.00 | ||
3 | 101 | 7.00 | 101 | 101 | 0.00 | 114 | 0.00 | 114 | 114 | 0.00 | |
135 | 0.00 | 135 | 135 | 0.00 | 193 | 0.00 | 193 | 193.1 | 0.30 | ||
319 | 0.00 | 319 | 319 | 0.00 | 431 | 0.00 | 431 | 431 | 0.00 | ||
267 | 41.57 | 267 | 268.1 | 2.47 | 477 | 0.00 | 477 | 477 | 0.00 | ||
308 | 5.84 | 308 | 308 | 0.00 | 384 | 7.16 | 384 | 384 | 0.00 | ||
291 | 0.00 | 291 | 291 | 0.00 | 624 | 0.80 | 624 | 624 | 0.00 | ||
524 | 0.00 | 524 | 524 | 0.00 | 252 | 37.70 | 252 | 253.1 | 3.30 | ||
272 | 0.00 | 272 | 272 | 0.00 | 366 | 18.03 | 365 | 366 | 0.89 | ||
322 | 0.00 | 322 | 322 | 0.00 | 533 | 0.00 | 533 | 533 | 0.00 |
Machine | Gurobi | HLNS | Gurobi | HLNS | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Value | Gap (%) | Best | Avg | SD | Value | Gap (%) | Best | Avg | SD | ||
2 | 151 | 94.70 | 151 | 153.9 | 4.44 | 198 | 100.00 | 190 | 196.7 | 3.03 | |
192 | 66.67 | 192 | 196 | 3.90 | 240 | 100.00 | 240 | 241.5 | 0.67 | ||
454 | 0.00 | 454 | 454 | 0.00 | 543 | 0.00 | 543 | 543 | 0.00 | ||
624 | 56.55 | 624 | 624 | 0.00 | 1097 | 87.97 | 1097 | 1097 | 0.00 | ||
933 | 0.00 | 933 | 933 | 0.00 | 1017 | 77.19 | 1017 | 1017 | 0.00 | ||
737 | 0.00 | 737 | 737 | 0.00 | 1030 | 44.47 | 1030 | 1030 | 0.00 | ||
778 | 2.60 | 778 | 778 | 0.00 | 590 | 28.51 | 590 | 590 | 0.00 | ||
514 | 0.59 | 514 | 514 | 0.00 | 827 | 13.02 | 827 | 827 | 0.00 | ||
581 | 10.60 | 581 | 581 | 0.00 | 728 | 23.49 | 728 | 728 | 0.00 | ||
3 | 148 | 80.27 | 148 | 148.5 | 1.50 | 167 | 17.96 | 167 | 168.2 | 2.40 | |
250 | 14.80 | 250 | 250.3 | 0.90 | 273 | 6.59 | 273 | 274.2 | 0.98 | ||
607 | 0.00 | 607 | 607 | 0.00 | 734 | 0.00 | 734 | 734 | 0.00 | ||
466 | 16.34 | 464 | 465.7 | 2.19 | 1038 | 0.00 | 1038 | 1038 | 0.00 | ||
521 | 10.75 | 521 | 522.4 | 0.92 | 701 | 5.99 | 701 | 701 | 0.00 | ||
712 | 8.85 | 706 | 707.5 | 1.69 | 841 | 9.04 | 841 | 841 | 0.00 | ||
397 | 33.75 | 397 | 397.3 | 0.90 | 586 | 4.44 | 586 | 586 | 0.00 | ||
550 | 5.64 | 550 | 550 | 0.00 | 628 | 2.87 | 628 | 638.7 | 4.88 | ||
612 | 0.00 | 612 | 612 | 0.00 | 822 | 3.89 | 812 | 813.6 | 2.50 |
Machine | Lower Bound | HLNS | Lower Bound | HLNS | |||||
---|---|---|---|---|---|---|---|---|---|
Best | Avg | SD | Best | Avg | SD | ||||
3 | 272 | 332 | 337.1 | 3.21 | 399 | 440 | 443.6 | 3.95 | |
526 | 564 | 564 | 0.00 | 770 | 799 | 799.4 | 1.20 | ||
1503 | 1503 | 1503 | 0.00 | 2289 | 2289 | 2289 | 0.00 | ||
1480 | 1628 | 1628 | 0.00 | 1780 | 2016 | 2025 | 3.63 | ||
1547 | 1723 | 1723 | 0.00 | 2163 | 2410 | 2410 | 0.00 | ||
1532 | 1918 | 1918 | 0.00 | 2269 | 2512 | 2512 | 0.00 | ||
808 | 990 | 997.6 | 4.41 | 1151 | 1429 | 1442.2 | 8.13 | ||
1403 | 1566 | 1566 | 0.00 | 1207 | 1475 | 1487.6 | 5.18 | ||
1528 | 1581 | 1581 | 0.00 | 2289 | 2352 | 2353.3 | 1.95 | ||
4 | 346 | 361 | 363 | 4.10 | 506 | 513 | 515.3 | 6.90 | |
662 | 662 | 662 | 0.00 | 994 | 996 | 996.6 | 1.80 | ||
1935 | 1940 | 1940 | 0.00 | 2930 | 2930 | 2930 | 0.00 | ||
1737 | 1921 | 1921 | 0.00 | 2853 | 3225 | 3225 | 0.00 | ||
1444 | 1545 | 1551.6 | 3.07 | 2836 | 3173 | 3173 | 0.00 | ||
1946 | 2180 | 2180 | 0.00 | 2937 | 3094 | 3094 | 0.00 | ||
891 | 1025 | 1032.4 | 6.23 | 2117 | 2335 | 2335 | 0.00 | ||
1212 | 1297 | 1297 | 0.00 | 2074 | 2318 | 2318 | 0.00 | ||
1953 | 2026 | 2026 | 0.00 | 2928 | 3088 | 3088 | 0.00 | ||
5 | 415 | 442 | 442 | 0.00 | 623 | 643 | 644.3 | 0.78 | |
797 | 800 | 800 | 0.00 | 1221 | 1221 | 1221 | 0.00 | ||
2389 | 2389 | 2389 | 0.00 | 3610 | 3610 | 3610 | 0.00 | ||
673 | 1052 | 1064 | 6.05 | 896 | 1408 | 1424.7 | 9.45 | ||
823 | 963 | 968.7 | 6.00 | 1220 | 1348 | 1371.2 | 17.77 | ||
2422 | 2535 | 2535 | 0.00 | 3628 | 3643 | 3643 | 0.00 | ||
418 | 707 | 724.9 | 11.53 | 650 | 1197 | 1217 | 8.89 | ||
805 | 973 | 991 | 13.48 | 1233 | 1278 | 1291 | 8.22 | ||
2430 | 2430 | 2430 | 0.00 | 3566 | 3606 | 3606 | 0.00 |
Machine | Lower Bound | HLNS | Lower Bound | HLNS | |||||
---|---|---|---|---|---|---|---|---|---|
Best | Avg | SD | Best | Avg | SD | ||||
3 | 522 | 591 | 595.3 | 2.28 | 655 | 688 | 702.6 | 12.40 | |
1024 | 1053 | 1053 | 0.00 | 1256 | 1270 | 1270 | 0.00 | ||
2998 | 2998 | 2998 | 0.00 | 3779 | 3779 | 3779 | 0.00 | ||
2392 | 2734 | 2737.8 | 2.27 | 3587 | 3999 | 4001.1 | 1.64 | ||
1972 | 2410 | 2425.1 | 9.13 | 3133 | 3564 | 3575.5 | 6.14 | ||
3022 | 3236 | 3251.3 | 12.17 | 3791 | 4085 | 4104.5 | 8.49 | ||
1825 | 2130 | 2147.3 | 10.54 | 2347 | 2633 | 2641.1 | 5.15 | ||
2019 | 2340 | 2346.2 | 4.14 | 2422 | 2774 | 2784.3 | 3.77 | ||
3025 | 3114 | 3115.4 | 0.92 | 3768 | 3781 | 3781 | 0.00 | ||
4 | 680 | 723 | 733 | 4.31 | 838 | 873 | 879.5 | 4.98 | |
1303 | 1303 | 1303 | 0.00 | 1647 | 1647 | 1647 | 0.00 | ||
3871 | 3871 | 3871 | 0.00 | 4880 | 4880 | 4880 | 0.00 | ||
3303 | 3616 | 3616 | 0.00 | 3378 | 3885 | 3891.6 | 7.27 | ||
4105 | 4507 | 4507 | 0.00 | 3578 | 4165 | 4175.9 | 5.75 | ||
3909 | 3935 | 3935 | 0.00 | 4812 | 4812 | 4812 | 0.00 | ||
2889 | 3184 | 3184 | 0.00 | 3856 | 4172 | 4172 | 0.00 | ||
2695 | 2955 | 2958.4 | 4.22 | 3403 | 3730 | 3730.2 | 0.60 | ||
3875 | 3970 | 3972.9 | 3.08 | 4866 | 5031 | 5031 | 0.00 | ||
5 | 807 | 819 | 819 | 0.00 | 999 | 1017 | 1017 | 0.00 | |
1615 | 1619 | 1619 | 0.00 | 2022 | 2022 | 2022 | 0.00 | ||
4804 | 4816 | 4816 | 0.00 | 5981 | 5981 | 5981 | 0.00 | ||
1264 | 2009 | 2026.3 | 13.98 | 1554 | 2643 | 2657.1 | 9.84 | ||
1612 | 1978 | 1994.2 | 10.72 | 2011 | 2216 | 2246.3 | 19.24 | ||
4769 | 4777 | 4780.1 | 4.87 | 6009 | 6114 | 6114 | 0.00 | ||
892 | 1437 | 1466.4 | 14.45 | 1013 | 1753 | 1777.5 | 16.04 | ||
1612 | 1633 | 1648.3 | 20.28 | 2013 | 2141 | 2176.6 | 19.14 | ||
4822 | 4854 | 4854 | 0.00 | 6001 | 6001 | 6001 | 0.00 |
Machine | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPLEX | HLNS | IG | SA | GA | ACO | CPLEX | HLNS | IG | SA | GA | ACO | ||
2 | 90 | 90 | 90 | 92 | 97 | 90 | 111 | 110 | 110 | 115 | 119 | 113 | |
98 | 98 | 98 | 110 | 98 | 98 | 134 | 134 | 135 | 139 | 139 | 138 | ||
209 | 209 | 209 | 209 | 209 | 209 | 339 | 339 | 339 | 339 | 339 | 339 | ||
475 | 475 | 475 | 475 | 475 | 475 | 608 | 608 | 608 | 608 | 608 | 608 | ||
418 | 418 | 418 | 418 | 418 | 418 | 575 | 575 | 575 | 575 | 575 | 575 | ||
386 | 386 | 386 | 386 | 386 | 397 | 588 | 588 | 588 | 588 | 588 | 588 | ||
245 | 245 | 245 | 245 | 245 | 245 | 523 | 523 | 523 | 523 | 523 | 523 | ||
278 | 278 | 278 | 278 | 278 | 278 | 434 | 434 | 434 | 434 | 434 | 434 | ||
300 | 300 | 300 | 300 | 307 | 320 | 384 | 384 | 384 | 384 | 389 | 391 | ||
3 | 80 | 80 | 80 | 85 | 80 | 94 | 98 | 98 | 98 | 98 | 109 | 98 | |
120 | 120 | 120 | 120 | 120 | 120 | 170 | 170 | 170 | 170 | 170 | 170 | ||
319 | 319 | 319 | 319 | 319 | 319 | 431 | 431 | 431 | 431 | 431 | 431 | ||
259 | 259 | 259 | 259 | 259 | 259 | 477 | 477 | 477 | 477 | 477 | 499 | ||
308 | 308 | 308 | 308 | 308 | 316 | 378 | 378 | 378 | 378 | 405 | 395 | ||
291 | 291 | 291 | 291 | 291 | 306 | 624 | 624 | 624 | 624 | 624 | 624 | ||
524 | 524 | 524 | 524 | 524 | 524 | 244 | 244 | 244 | 244 | 260 | 245 | ||
272 | 272 | 272 | 272 | 272 | 342 | 358 | 358 | 358 | 358 | 370 | 370 | ||
322 | 322 | 322 | 322 | 322 | 335 | 533 | 533 | 533 | 533 | 533 | 542 |
Machine | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPLEX | HLNS | IG | SA | GA | ACO | CPLEX | HLNS | IG | SA | GA | ACO | ||
2 | 129 | 129 | 129 | 135 | 146 | 130 | 173 | 152 | 152 | 155 | 176 | 178 | |
161 | 161 | 161 | 161 | 164 | 164 | 233 | 212 | 212 | 216 | 220 | 226 | ||
454 | 454 | 454 | 454 | 454 | 454 | 541 | 541 | 541 | 541 | 541 | 541 | ||
623 | 623 | 623 | 623 | 626 | 628 | 1097 | 1097 | 1097 | 1097 | 1097 | 1097 | ||
933 | 933 | 933 | 933 | 933 | 953 | 1017 | 1017 | 1017 | 1017 | 1017 | 1017 | ||
737 | 737 | 737 | 737 | 737 | 737 | 1066 | 1030 | 1030 | 1030 | 1030 | 1030 | ||
778 | 778 | 778 | 778 | 778 | 778 | 590 | 590 | 590 | 590 | 604 | 590 | ||
514 | 514 | 514 | 514 | 514 | 514 | 827 | 827 | 827 | 827 | 827 | 827 | ||
581 | 581 | 581 | 581 | 581 | 583 | 732 | 728 | 728 | 728 | 728 | 728 | ||
3 | 131 | 125 | 125 | 130 | 130 | 130 | 146 | 146 | 146 | 146 | 146 | 148 | |
223 | 223 | 223 | 241 | 248 | 223 | 259 | 259 | 259 | 259 | 263 | 263 | ||
604 | 604 | 604 | 604 | 604 | 604 | 734 | 734 | 734 | 734 | 734 | 734 | ||
489 | 457 | 457 | 458 | 473 | 473 | 1038 | 1038 | 1038 | 1038 | 1038 | 1038 | ||
533 | 521 | 521 | 534 | 523 | 564 | 703 | 701 | 701 | 701 | 710 | 761 | ||
725 | 701 | 701 | 716 | 709 | 733 | 848 | 841 | 841 | 841 | 841 | 841 | ||
397 | 397 | 397 | 397 | 402 | 416 | 586 | 586 | 586 | 586 | 586 | 591 | ||
550 | 550 | 550 | 550 | 550 | 550 | 644 | 628 | 632 | 644 | 644 | 670 | ||
612 | 612 | 612 | 612 | 612 | 612 | 818 | 812 | 812 | 818 | 818 | 829 |
Machine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HLNS | IG | SA | GA | ACO | HLNS | IG | SA | GA | ACO | ||
3 | 291 | 303 | 320 | 320 | 311 | 399 | 412 | 428 | 428 | 421 | |
537 | 537 | 537 | 537 | 537 | 772 | 772 | 782 | 772 | 772 | ||
1503 | 1503 | 1503 | 1503 | 1503 | 2289 | 2289 | 2289 | 2289 | 2289 | ||
1628 | 1628 | 1639 | 1628 | 1653 | 2015 | 2016 | 2030 | 2051 | 2070 | ||
1723 | 1723 | 1723 | 1723 | 1776 | 2410 | 2410 | 2410 | 2410 | 2440 | ||
1918 | 1918 | 1918 | 1918 | 1932 | 2512 | 2512 | 2512 | 2540 | 2562 | ||
989 | 986 | 1093 | 1033 | 1066 | 1414 | 1421 | 1512 | 1485 | 1588 | ||
1566 | 1566 | 1566 | 1566 | 1578 | 1469 | 1474 | 1501 | 1544 | 1555 | ||
1581 | 1581 | 1581 | 1581 | 1581 | 2342 | 2342 | 2364 | 2381 | 2381 | ||
4 | 346 | 346 | 353 | 352 | 352 | 506 | 506 | 511 | 506 | 511 | |
662 | 662 | 662 | 662 | 662 | 994 | 994 | 994 | 994 | 994 | ||
1935 | 1935 | 1935 | 1935 | 1935 | 2930 | 2930 | 2930 | 2930 | 2930 | ||
1921 | 1921 | 1941 | 1921 | 1931 | 3225 | 3225 | 3225 | 3225 | 3348 | ||
1552 | 1552 | 1599 | 1565 | 1664 | 3173 | 3173 | 3173 | 3173 | 3213 | ||
2180 | 2180 | 2180 | 2180 | 2207 | 3094 | 3094 | 3094 | 3094 | 3102 | ||
1016 | 1030 | 1050 | 1049 | 1100 | 2335 | 2335 | 2357 | 2377 | 2387 | ||
1297 | 1297 | 1297 | 1320 | 1422 | 2318 | 2318 | 2318 | 2318 | 2411 | ||
2026 | 2026 | 2026 | 2047 | 2026 | 3088 | 3088 | 3088 | 3088 | 3171 | ||
5 | 415 | 415 | 415 | 416 | 415 | 626 | 626 | 626 | 626 | 626 | |
800 | 800 | 800 | 800 | 800 | 1221 | 1221 | 1221 | 1221 | 1221 | ||
2389 | 2389 | 2389 | 2389 | 2389 | 3610 | 3610 | 3610 | 3610 | 3610 | ||
1057 | 1052 | 1106 | 1120 | 1157 | 1410 | 1407 | 1459 | 1460 | 1529 | ||
956 | 949 | 1010 | 1025 | 1019 | 1333 | 1333 | 1435 | 1483 | 1500 | ||
2535 | 2535 | 2535 | 2535 | 2543 | 3643 | 3643 | 3643 | 3643 | 3643 | ||
693 | 701 | 763 | 767 | 738 | 1197 | 1213 | 1290 | 1355 | 1375 | ||
963 | 963 | 1043 | 1063 | 1050 | 1269 | 1256 | 1256 | 1297 | 1299 | ||
2430 | 2430 | 2430 | 2430 | 2430 | 3606 | 3606 | 3606 | 3606 | 3606 |
Machine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HLNS | IG | SA | GA | ACO | HLNS | IG | SA | GA | ACO | ||
3 | 542 | 565 | 592 | 566 | 594 | 659 | 686 | 681 | 696 | 687 | |
1024 | 1024 | 1024 | 1024 | 1024 | 1265 | 1265 | 1266 | 1265 | 1265 | ||
2998 | 2998 | 2998 | 2998 | 2998 | 3779 | 3779 | 3779 | 3779 | 3779 | ||
2720 | 2723 | 2783 | 2785 | 2808 | 3994 | 3999 | 4026 | 4012 | 4077 | ||
2404 | 2407 | 2431 | 2516 | 2568 | 3570 | 3571 | 3606 | 3659 | 3679 | ||
3236 | 3224 | 3247 | 3285 | 3332 | 4090 | 4073 | 4079 | 4096 | 4113 | ||
2121 | 2135 | 2222 | 2224 | 2247 | 2621 | 2647 | 2716 | 2711 | 2747 | ||
2333 | 2335 | 2366 | 2386 | 2435 | 2770 | 2785 | 2825 | 2864 | 2915 | ||
3104 | 3104 | 3116 | 3116 | 3142 | 3781 | 3781 | 3781 | 3781 | 3781 | ||
4 | 698 | 701 | 703 | 714 | 706 | 849 | 850 | 851 | 857 | 849 | |
1303 | 1303 | 1303 | 1303 | 1303 | 1647 | 1647 | 1647 | 1647 | 1647 | ||
3871 | 3871 | 3871 | 3871 | 3871 | 4880 | 4880 | 4880 | 4880 | 4880 | ||
3616 | 3616 | 3616 | 3616 | 3684 | 3884 | 3887 | 3915 | 3931 | 3981 | ||
4507 | 4507 | 4507 | 4507 | 4507 | 4169 | 4170 | 4179 | 4199 | 4374 | ||
3935 | 3935 | 3935 | 3935 | 3935 | 4812 | 4812 | 4812 | 4824 | 4874 | ||
3184 | 3184 | 3184 | 3184 | 3265 | 4172 | 4172 | 4172 | 4172 | 4172 | ||
2955 | 2955 | 2968 | 2990 | 3078 | 3730 | 3730 | 3761 | 3761 | 3832 | ||
3970 | 3970 | 3970 | 3991 | 3970 | 5031 | 5031 | 5031 | 5031 | 5031 | ||
5 | 810 | 810 | 810 | 811 | 810 | 1008 | 1008 | 1008 | 1008 | 1008 | |
1615 | 1615 | 1615 | 1615 | 1615 | 2022 | 2022 | 2022 | 2022 | 2022 | ||
4804 | 4804 | 4804 | 4804 | 4804 | 5981 | 5981 | 5981 | 5981 | 5981 | ||
1982 | 1991 | 2099 | 2174 | 2230 | 2627 | 2645 | 2686 | 2910 | 3039 | ||
1970 | 1966 | 2044 | 2167 | 2231 | 2210 | 2226 | 2353 | 2572 | 2488 | ||
4775 | 4775 | 4777 | 4819 | 4801 | 6114 | 6114 | 6114 | 6141 | 6114 | ||
1424 | 1447 | 1609 | 1748 | 1671 | 1735 | 1767 | 2004 | 2047 | 2010 | ||
1633 | 1633 | 1633 | 1693 | 1700 | 2113 | 2150 | 2282 | 2355 | 2331 | ||
4854 | 4854 | 4854 | 4854 | 4854 | 6001 | 6001 | 6001 | 6001 | 6001 |
Job | BestSolution | AvgSolution | SD | AvgTime | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LNS | TLNS | HLNS | LNS | TLNS | HLNS | LNS | TLNS | HLNS | LNS | TLNS | HLNS | ||
20 | 107.0 | 107.0 | 107.0 | 107.7 | 107.0 | 107.0 | 0.9 | 0.0 | 0.0 | 2.7 | 2.9 | 3.1 | |
133.5 | 133.5 | 133.5 | 133.5 | 133.6 | 133.6 | 0.0 | 0.2 | 0.2 | 1.1 | 1.2 | 1.3 | ||
272.5 | 272.5 | 272.5 | 272.5 | 272.5 | 272.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
371.0 | 371.0 | 371.0 | 372.8 | 372.2 | 371.6 | 1.9 | 1.6 | 1.2 | 1.8 | 1.9 | 2.1 | ||
363.0 | 363.0 | 363.0 | 363.0 | 363.0 | 363.0 | 0.0 | 0.0 | 0.0 | 1.9 | 1.9 | 2.1 | ||
338.5 | 338.5 | 338.5 | 338.5 | 338.5 | 338.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
388.5 | 388.5 | 388.5 | 388.5 | 388.5 | 388.5 | 0.0 | 0.0 | 0.0 | 1.7 | 1.8 | 2.0 | ||
275.0 | 275.0 | 275.0 | 275.0 | 275.0 | 275.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||
314.5 | 314.5 | 314.5 | 314.6 | 314.5 | 314.5 | 0.2 | 0.0 | 0.0 | 1.7 | 1.9 | 2.0 | ||
250 | 861.0 | 857.0 | 859.3 | 866.5 | 863.7 | 866.4 | 5.5 | 4.8 | 5.8 | 78.8 | 82.0 | 128.5 | |
1646.3 | 1646.3 | 1646.3 | 1646.3 | 1646.3 | 1646.3 | 0.0 | 0.0 | 0.0 | 25.5 | 27.4 | 41.4 | ||
4880.0 | 4880.0 | 4880.0 | 4880.0 | 4880.0 | 4880.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | ||
3509.0 | 3505.0 | 3509.0 | 3519.8 | 3517.4 | 3516.6 | 6.9 | 7.3 | 6.3 | 258.6 | 264.4 | 379.5 | ||
3321.7 | 3319.0 | 3315.0 | 3343.4 | 3334.9 | 3332.6 | 13.1 | 11.1 | 10.4 | 261.6 | 266.5 | 395.4 | ||
5008.7 | 5008.7 | 5003.7 | 5012.6 | 5011.3 | 5010.2 | 2.0 | 1.8 | 2.8 | 184.9 | 186.0 | 232.7 | ||
2858.0 | 2851.3 | 2852.7 | 2868.7 | 2864.6 | 2863.5 | 6.0 | 8.0 | 7.1 | 201.2 | 207.5 | 380.3 | ||
2884.3 | 2881.7 | 2881.7 | 2900.9 | 2896.0 | 2897.0 | 11.8 | 6.9 | 7.8 | 198.7 | 208.1 | 359.9 | ||
4937.7 | 4937.7 | 4937.7 | 4937.7 | 4937.7 | 4937.7 | 0.0 | 0.0 | 0.0 | 231.4 | 150.8 | 295.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, B.; Xiao, X.; Yu, S.S.; Wu, G. A Hybrid Large Neighborhood Search Method for Minimizing Makespan on Unrelated Parallel Batch Processing Machines with Incompatible Job Families. Sustainability 2023, 15, 3934. https://doi.org/10.3390/su15053934
Ji B, Xiao X, Yu SS, Wu G. A Hybrid Large Neighborhood Search Method for Minimizing Makespan on Unrelated Parallel Batch Processing Machines with Incompatible Job Families. Sustainability. 2023; 15(5):3934. https://doi.org/10.3390/su15053934
Chicago/Turabian StyleJi, Bin, Xin Xiao, Samson S. Yu, and Guohua Wu. 2023. "A Hybrid Large Neighborhood Search Method for Minimizing Makespan on Unrelated Parallel Batch Processing Machines with Incompatible Job Families" Sustainability 15, no. 5: 3934. https://doi.org/10.3390/su15053934
APA StyleJi, B., Xiao, X., Yu, S. S., & Wu, G. (2023). A Hybrid Large Neighborhood Search Method for Minimizing Makespan on Unrelated Parallel Batch Processing Machines with Incompatible Job Families. Sustainability, 15(5), 3934. https://doi.org/10.3390/su15053934