Carbon Pricing in Current Global Institutional Changes
Abstract
1. Introduction
2. Theoretical Foundations and Literature Review
3. Materials and Methods
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- UN Secretary General: Sustainable Development Is Impossible If There Is No Peace. Available online: https://news.un.org/ru/story/2022/09/1431811 (accessed on 18 December 2022).
- World Climate Declaration. There Is No Climate Emergency. Available online: https://clintel.org/world-climate-declaration/ (accessed on 18 December 2022).
- Department of Multilateral Economic Cooperation of the Ministry of Economic Development of Russia. Greenhouse Gas Emissions Trading Systems in the Asia-Pacific Region. Available online: https://www.economy.gov.ru/material/file/d8d7071b90d7af3818ec3a836355244f/ETS_ATP.pdf (accessed on 18 December 2022).
- Abrell, J.; Faye, A.N.; Zachmann, G. Assessing the Impact of the EU ETS Using Firm Level Data. Bruegel Work. Pap. 2011, 8, 1–22. [Google Scholar]
- Laing, T.; Sato, M.; Grubb, M.; Comberti, C. The effects and side-effects of the EU emissions trading scheme. Wiley Interdiscip. Rev. Clim. Change 2014, 5, 509–519. [Google Scholar] [CrossRef]
- Bashmakov, I.A. Efficiency of the European greenhouse gas emissions trading system and its evolution. Ecol. Bull. Russ. 2018, 4, 28–37. [Google Scholar]
- Zhang, H.; Duan, M.; Deng, Z. Have China’s pilot emissions trading schemes promoted carbon emission reductions?—The evidence from industrial sub-sectors at the provincial level. J. Clean. Prod. 2019, 234, 912–924. [Google Scholar] [CrossRef]
- Gao, Y.; Li, M.; Xue, J.; Liu, Y. Evaluation of effectiveness of China’s carbon emissions trading scheme in carbon mitigation. Energy Econ. 2020, 90, 104872. [Google Scholar] [CrossRef]
- Di Maria, C.; Žarković, M.; Hintermann, B. Are Emissions Trading Schemes Cost-Effective? WWZ Working Paper: Basel, Switzerland, 2020; Volume 13. [Google Scholar] [CrossRef]
- Bashmakov, I.A. CBAM and Russian export. Vopr. Ekon. 2022, 1, 90–109. [Google Scholar] [CrossRef]
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Ürge-Vorsatz, D.; et al. Pandemic, War, andGlobalEnergyTransitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Chernova, E.G.; Razmanova, S.V. The Energy Crisis in the EU: Trend in the Seller’s Market. In Proceedings of the International Economic Symposium, St. Petersburg, Russia, 17–19 March 2022; pp. 130–135. Available online: https://events.spbu.ru/eventsContent/events/2022/econsymp/Symposium-2022_published_v2.pdf (accessed on 18 December 2022).
- Uznarodov, I.M. The energy crisis in Europe and the prospects of a low-carbon economy. News Univ. North Cauc. Reg. 2022, 2, 95–101. Available online: https://cyberleninka.ru/article/n/energeticheskiy-krizis-v-evrope-i-perspektivy-nizkouglerodnoy-ekonomiki (accessed on 18 December 2022). [CrossRef]
- Ovakimyan, M.S.; Yusupov, G.I. Energy crisis: Oil and gas trade turnover of Russia in the conditions of sanctions pressure of the West. Russ. Foreign Econ. Bull. 2022, 10, 54–69. [Google Scholar] [CrossRef]
- Cherepovitsyn, A.; Solovyova, V. Prospects for the Development of the Russian Rare-Earth Metal Industry in View of the Global Energy Transition—A Review. Energies 2022, 15, 387. [Google Scholar] [CrossRef]
- Boldyreva, N.B.; Reshetnikova, L.G.; Ovechkin, D.V. Mechanisms of carbon emission in the state regulation of the internalization of climatic externalities. In Proceedings of the International Economic Symposium, St. Petersburg, Russia, 17–19 March 2022; pp. 118–124. Available online: https://events.spbu.ru/eventsContent/events/2022/econsymp/Symposium-2022_published_v2.pdf (accessed on 18 December 2022).
- European Court of Auditors. The EU’s Emissions Trading System: Free Allocation of Allowances Needed Better Targeting. Special Report No 18, 2020; Publications Office: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2865/33737 (accessed on 18 December 2022).
- Mansanet-Bataller, M.; Pardo, A.; Valor, E. CO2 prices, energy and weather. Energy J. 2007, 28, 67–86. [Google Scholar] [CrossRef]
- Alberola, E.; Chevallier, J.; Cheze, B. Price drivers and structural breaks in European carbon prices 2005–2007. Energy Policy 2008, 36, 787–797. [Google Scholar] [CrossRef]
- Aatola, P.; Ollikainen, M.; Toppinen, A. Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals. Energy Econ. 2013, 36, 380–395. [Google Scholar] [CrossRef]
- Benz, E.; Trück, S. Modeling the price dynamics of CO2 emission allowances. Energy Econ. 2009, 31, 4–15. [Google Scholar] [CrossRef]
- Chevallier, J. 2009 Carbon futures and macroeconomic risk factors: A view from the EU ETS. Energy Econ. 2009, 31, 614–625. [Google Scholar] [CrossRef]
- Creti, A.; Jouvet, P.A.; Mignon, V. 2012 Carbon price drivers: Phase I versus phase II equilibrium? Energy Econ. 2012, 34, 327–334. [Google Scholar] [CrossRef]
- Hintermann, B. Allowance price drivers in the first phase of the EU ETS. J Environ. Econ Manag. 2010, 59, 43–56. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wei, Y.M. An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect. Appl. Energy 2010, 87, 1804–1814. [Google Scholar] [CrossRef]
- Hintermann, B.; Peterson, S.; Rickels, W. Price and Market Behavior in Phase II of the EU ETS. Rev. Environ. Econ. Policy 2015, 10, 108–128. [Google Scholar] [CrossRef]
- Gong, X.; Shi, R.; Xu, J.; Lin, B. Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective. Appl. Energy 2021, 285, 1163–1184. [Google Scholar] [CrossRef]
- Zhu, B.; Ye, S.; Han, D.; Wang, P.; He, K.; Wei, Y.M.; Xie, R. A multiscale analysis for carbon price drivers. Energy Econ. 2019, 78, 202–216. [Google Scholar] [CrossRef]
- Chung, C.; Jeong, M.; Young, J. The Price Determinants of the EU Allowance in the EU Emissions Trading Scheme. Sustainability 2018, 10, 4009. [Google Scholar] [CrossRef]
- Duan, K.; Ren, X.; Shi, Y.; Mishra, T.; Yan, C. The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach. Energy Econ. 2021, 95, 105131. [Google Scholar] [CrossRef]
- Lovcha, Y.; Perez-Laborda, A.; Sikora, I. The determinants of CO2 prices in the EU emission trading system. Appl. Energy 2022, 305, 117903. [Google Scholar] [CrossRef]
- Tan, X.; Sirichand, K.; Vivian, A.; Wang, X. How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics. Energy Econ. 2020, 90, 104870. [Google Scholar] [CrossRef]
- Zhao, X.; Zou, Y.; Yin, J.; Fan, X. Cointegration relationship between carbon price and its factors: Evidence from structural breaks analysis. Energy Procedia 2017, 142, 2503–2510. [Google Scholar] [CrossRef]
- Hepburn, C.; Stern, N.; Stiglitz, J.E. “Carbon pricing” special issue in the European economic review. Eur. Econ. Rev. 2020, 127, 103440. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X.; Yan, L. Structural Change Features and Influencing Factors of China’s Carbon Price. Emerg. Mark. Financ. Trade 2022. [Google Scholar] [CrossRef]
- Zhu, B.; Chevallier, J. Examining the Structural Changes of European Carbon Futures Price 2005–2012. In Pricing and Forecasting Carbon Markets; Springer: Cham, Switzerland, 2017; pp. 33–45. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, C. Forecasting carbon price in the European carbon market: The role of structural changes. Process Saf. Environ. Prot. 2022, 166, 341–354. [Google Scholar] [CrossRef]
- Jia, J.; Wu, H.; Zhu, X.; Li, J.; Fan, Y. Price Break Points and Impact Process Evaluation in the EU ETS. Emerg. Mark. Financ. Trade 2020, 56, 1691–1714. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, H.; Gao, X.; Wang, M.; Vilela, A.L.M.; Tian, L. Identification of Breakpoints in Carbon Market Based on Probability Density Recurrence Network. Energies 2022, 15, 5540. [Google Scholar] [CrossRef]
- Rosenbloom, D.; Markard, J. A COVID-19 recovery for climate. Science 2020, 368, 447. [Google Scholar] [CrossRef]
- Helm, D. The environmental impacts of the coronavirus. Environ. Resour. Econ. 2020, 76, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, N.; Rubens, G.Z.; Choupanpiesheh, S.; Enevoldsen, P. When pandemics impact economies and climate change: Exploring the impacts of COVID-19 on oil and electricity demand in China. Energy Res. SocSci. 2020, 68, 101654. [Google Scholar] [CrossRef] [PubMed]
- Hauser, P.; Anke, C.P.; López, J.G.; Möst, D.; Scharf, H.; Schönheit, D.; Schreiber, S. The Impact of the COVID-19 Crisis on Energy Prices in Comparison to the 2008 Financial Crisis. IAEE Energy Forum/COVID-19 Issue 2020. pp. 100–105. Available online: https://www.iaee.org/en/publications/newsletterdl.aspx?id=899 (accessed on 18 December 2022).
- Shaikh, I. Impact of COVID-19 pandemic on the energy markets. Econ. Change Restruct. 2021, 55, 433–484. [Google Scholar] [CrossRef]
- Shan, Y.; Ou, J.; Wang, D.; Zeng, Z.; Zhang, S.; Guan, D.; Hubacek, K. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Change 2021, 11, 200–206. [Google Scholar] [CrossRef]
- Dong, F.; Gao, Y.; Li, Y.; Zhu, J.; Hu, M.; Zhang, X. Exploring volatility of carbon price in European Union due to COVID-19 pandemic. Environ. Sci. Pollut. Res. 2022, 29, 8269–8280. [Google Scholar] [CrossRef] [PubMed]
- Stern, J. International gas pricing in Europe and Asia: A crisis of fundamentals. Energy Policy 2014, 64, 43–48. [Google Scholar] [CrossRef]
- Finon, D.; Locatelli, C. Russian and European gas interdependence: Could contractual trade channel geopolitics? Energy Policy 2008, 36, 423–442. [Google Scholar] [CrossRef]
- Spanjer, A. Russian gas price reform and the EU–Russia gas relationship: Incentives, consequences and European security of supply. Energy Policy 2007, 35, 2889–2898. [Google Scholar] [CrossRef]
- Chyong, C.-K. Markets and Long-Term Contracts: The Case of Russian Gas Supplies to Europe; EPRG Working Paper 1524; Cambridge Working Paper in Economics 1542, 2015, 76 p. Available online: https://www.researchgate.net/publication/290440777_Markets_and_long-term_contracts_The_case_of_Russian_gas_supplies_to_Europe (accessed on 18 December 2022).
- Zakeri, B.; Staffell, I.; Dodds, P.; Grubb, M.; Ekins, P.; Jääskeläinen, J.; Cross, S.; Helin, K.; Castagneto-Gissey, G. Energy Transitions in Europe—Role of Natural Gas in Electricity Prices (23 July 2022). Available online: https://ssrn.com/abstract=4170906 (accessed on 18 December 2022). [CrossRef]
- Hulshof, D.; van der Maat, J.-P.; Mulder, M. Market Fundamentals, Competition and Natural-Gas Prices. Energy Policy 2016, 94, 480–491. Available online: https://www.sciencedirect.com/science/article/pii/S0301421515302299 (accessed on 18 December 2022). [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Hodrick, R.J.; Prescott, E.S. Postwar US business cycles: An empirical investigation. J. Money Credit. Bank. 1997, 29, 1–16. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroscedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Bai, J.; Perron, P. Estimating and testing linear models with multiple structural changes. Econometrica 1998, 66, 47–78. [Google Scholar] [CrossRef]
- Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Bai, J.; Perron, P. Critical values for multiple structural change tests. Econom. J. 2003, 6, 72–78. [Google Scholar] [CrossRef]
- William, H.G. Econometric Analysis, 7th ed.; Pearson: New York, NY, USA, 2011; pp. 42–44. [Google Scholar]
- Financial Platform and News Website Investing.com. Available online: https://ru.investing.com/commodities/natural-gas (accessed on 18 December 2022).
Number | Minimum | Maximum | Mean | Median | Standard Deviation | |
---|---|---|---|---|---|---|
Carbon emissions | 3167 | 2.700 | 98.430 | 19.870 | 12.760 | 20.590 |
Brent oil | 3167 | 17.799 | 117.460 | 63.181 | 60.337 | 18.343 |
Natural gas | 3167 | 1.321 | 9.701 | 2.824 | 2.596 | 1.077 |
Coal | 3167 | 35.021 | 402.650 | 78.498 | 65.886 | 56.361 |
Electricity | 3167 | 15.520 | 465.180 | 53.438 | 38.760 | 55.037 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
Carbon emissions | 1 | ||||
Brent oil | 0.26 | 1 | |||
Natural gas | 0.61 | 0.52 | 1 | ||
Coal | 0.75 | 0.54 | 0.85 | 1 | |
Electricity | 0.81 | 0.45 | 0.79 | 0.91 | 1 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
p-value with a constant | 0.9962 | 0.5327 | 0.9997 | 1.000 | 1.000 |
p-value with constant and trend | 0.9925 | 0.8606 | 1.000 | 1.000 | 1.000 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
p-value with a constant | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
p-value with constant and trend | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Number | Minimum | Maximum | Mean | Median | Standard Deviation | |
---|---|---|---|---|---|---|
Carbon emissions | 3167 | −0.4990 | 0.4880 | 0.0000 | 0.0007 | 0.1060 |
Brent oil | 3167 | −0.7000 | 0.2880 | 0.0000 | 0.0053 | 0.0923 |
Natural gas | 3167 | −0.3280 | 0.4290 | 0.0000 | 0.0032 | 0.1030 |
Coal | 3167 | −0.4860 | 0.6050 | 0.0000 | 0.0033 | 0.0908 |
Electricity | 3167 | −0.5030 | 0.7270 | 0.0000 | 0.0072 | 0.1160 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
Carbon emissions | 1 | ||||
Brent oil | 0.16/0.00 | 1 | |||
Natural gas | −0.02/0.18 | 0.06/0.00 | 1 | ||
Coal | −0.08/0.00 | 0.24/0.00 | 0.38/0.00 | 1 | |
Electricity | 0.17/0.00 | 0.15/0.00 | 0.02/0.28 | 0.27/0.00 | 1 |
Variable | Coefficient | Prob. |
---|---|---|
Constant | 0.000 | 1.000 |
Brent oil | 0.201 | 0.000 |
Natural gas | 0.032 | 0.097 |
Coal | −0.212 | 0.000 |
Electricity | 0.179 | 0.000 |
Breusch–Godfrey Test | Breusch–Pagan Test | ARCH Processes | |
---|---|---|---|
test statistic | 186.782 | 55.702 | 1713.910 |
p-value | 0.000 | 0.000 | 0.000 |
Variable | Coefficient | p-Value |
---|---|---|
Constant | 0.013 | 0.281 |
Brent oil | 0.139 | 0.000 |
Natural gas | 0.002 | 0.867 |
Coal | 0.057 | 0.003 |
Electricity | 0.051 | 0.000 |
AR(1) | 0.971 | 0.000 |
MA(1) | −0.063 | 0.000 |
RESID(−1)2 | 0.146 | 0.000 |
GARCH(−1) | 0.846 | 0.000 |
Indicator | Y1 |
---|---|
S.E. of regression | 0.050 |
R-squared | 0.777 |
Adjusted R-squared | 0.777 |
Schwarz criterion | −4.270 |
Akaike info criterion | −4.291 |
Break Test | Scaled F-Statistic | Critical Value * | Break Date |
---|---|---|---|
0 vs. 1 | 57.78885 | 18.23 | 21 April 2016 |
1 vs. 2 | 28.17955 | 19.91 | 21 September 2020 |
2 vs. 3 | 20.85078 | 20.99 | - |
Number | Minimum | Maximum | Mean | Median | Standard Deviation | |
---|---|---|---|---|---|---|
Carbon emissions | 2678/489 | 2.70/ 23.50 | 31.30/ 98.40 | 12.50/60.30 | 8.00/59.10 | 8.02/ 21.40 |
Brent oil | 2678/489 | 17.80/ 32.20 | 96.50/117.00 | 62.10/69.40 | 59.60/63.40 | 17.1/ 23.00 |
Natural gas | 2678/489 | 1.32/ 1.56 | 4.48/ 9.70 | 2.60/4.05 | 2.57/3.43 | 0.55/ 2.01 |
Coal | 2678/489 | 35.00/ 42.80 | 101.00/403.00 | 64.20/157.00 | 63.80/122.00 | 14.5/ 111.00 |
Electricity | 2678/489 | 15.50/ 33.30 | 59.80/465.00 | 37.90/139.00 | 37.50/121.00 | 8.44/ 103.00 |
Number | Minimum | Maximum | Mean | Median | Standard Deviation | |
---|---|---|---|---|---|---|
Carbon emissions | 2678/489 | −0.4990/−0.3272 | 0.4880/0.2059 | 0.0009/−0.0051 | 0.0037/−0.0081 | 0.1100/0.0777 |
Brent oil | 2678/489 | −0.7000/−0.4855 | 0.2880/0.6045 | 0.0000/0.0003 | 0.0056/0.0036 | 0.0950/0.0755 |
Natural gas | 2678/489 | −0.3100/−0.3277 | 0.4290/0.3847 | −0.0013/0.0070 | −0.0040/0.0065 | 0.0927/0.1469 |
Coal | 2678/489 | −0.2100/−0.4855 | 0.1950/0.6045 | −0.0002/0.0011 | 0.0022/0.0168 | 0.0626/0.1789 |
Electricity | 2678/489 | −0.5030/−0.4651 | 0.2710/0.7275 | −0.0004/0.0020 | 0.0075/0.0029 | 0.0941/0.1973 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
Carbon emissions | 1/1 | ||||
Brent oil | −0.13/0.88 | 1/1 | |||
Natural gas | −0.17/0.76 | 0.34/0.86 | 1/1 | ||
Coal | 0.07/0.78 | 0.49/0.94 | 0.42/0.91 | 1/1 | |
Electricity | 0.37/0.79 | 0.54/0.79 | 0.36/0.81 | 0.78/0.87 | 1/1 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
Carbon emissions | 1/1 | ||||
Brent oil | 0.19/−0.13 | 1/1 | |||
Natural gas | 0.07/−0.50 | 0.05/0.08 | 1/1 | ||
Coal | 0.08/−0.55 | 0.21/0.45 | 0.36/0.44 | 1/1 | |
Electricity | 0.29/−0.18 | 0.28/−0.22 | 0.08/−0.09 | 0.38/0.18 | 1/1 |
Variable | Coefficient Y2 | p-Value Y2 | Coefficient Y3 | p-Value Y3 |
---|---|---|---|---|
Constant | 0.006 | 0.640 | 0.030 | 0.286 |
Brent oil | 0.146 | 0.000 | 0.101 | 0.037 |
Natural gas | 0.013 | 0.362 | −0.035 | 0.149 |
Coal | 0.044 | 0.104 | 0.044 | 0.099 |
Electricity | 0.048 | 0.003 | 0.060 | 0.006 |
AR(1) | 0.972 | 0.000 | 0.962 | 0.000 |
MA(1) | −0.058 | 0.002 | −0.097 | 0.055 |
RESID(−1)2 | 0.151 | 0.000 | 0.138 | 0.003 |
GARCH(−1) | 0.849 | 0.000 | 0.720 | 0.000 |
Indicator | Y2 | Y3 |
---|---|---|
S.E. of regression | 0.053 | 0.030 |
R-squared | 0.770 | 0.849 |
Adjusted R-squared | 0.770 | 0.847 |
Schwarz criterion | −4.249 | −4.283 |
Akaike info criterion | −4.273 | −4.386 |
Number | Minimum | Maximum | Mean | Median | Standard Deviation | |
---|---|---|---|---|---|---|
Carbon emissions | 1576/ 1102/ 489 | 2.70/ 3.93/ 23.50 | 25.43/ 31.33/ 98.40 | 9.97/ 16.09/ 60.30 | 7.42/ 17.34/59.10 | 5.85/ 9.24/ 21.40 |
Brent oil | 1576/ 1102/ 489 | 25.60/ 17.80/ 32.20 | 96.48/ 75.18/ 117.00 | 69.96/ 50.74/ 69.40 | 77.69/ 52.47/ 63.40 | 16.53/ 10.22/ 23.00 |
Natural gas | 1576/ 1102/ 489 | 1.45/ 1.32/ 1.56 | 4.48/ 4.28/ 9.70 | 2.75/ 2.39/ 4.05 | 2.77/ 2.41/ 3.43 | 0.55/ 0.48/ 2.01 |
Coal | 1576/ 1102/ 489 | 38.50/ 35.02/ 42.80 | 100.51/ 88.56/ 403.00 | 65.06/ 63.08/ 157.00 | 62.12/ 66.19/ 122.00 | 13.77/ 15.39/ 111.00 |
Electricity | 1576/ 1102/ 489 | 24.79/ 15.52/ 33.30 | 53.61/ 59.75/ 465.00 | 39.28/ 35.86/ 139.00 | 40.39/ 33.93/ 121.00 | 7.80/ 8.92/ 103.00 |
Number | Minimum | Maximum | Mean | Median | Standard Deviation | |
---|---|---|---|---|---|---|
Carbon emissions | 1576/1102/489 | −0.50/ −0.36/ −0.33 | 0.49/ 0.27/ 0.21 | 0.00/0.00/−0.01 | 0.00/0.01/−0.01 | 0.12/ 0.09/ 0.08 |
Brent oil | 1576/1102/489 | −0.31/ −0.70/ −0.49 | 0.16/ 0.29/ 0.60 | 0.00/0.00/0.00 | 0.00/0.02/0.00 | 0.07/ 0.12/ 0.08 |
Natural gas | 1576/1102/489 | −0.31/ −0.26/ −0.33 | 0.32/ 0.38/ 0.43 | 0.00/0.01/0.00 | 0.00/−0.01/0.01 | 0.09/ 0.09/ 0.15 |
Coal | 1576/1102/489 | −0.15/ −0.21/ −0.49 | 0.20/ 0.19/ 0.60 | 0.00/0.00/0.00 | 0.00/0.01/0.02 | 0.05/ 0.08/ 0.18 |
Electricity | 1576/1102/489 | −0.15/ −0.50/ 0.47 | 0.15/ 0.27/ 0.73 | 0.00/0.00/0.00 | 0.00/0.01/0.00 | 0.06/ 0.13/ 0.20 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
Carbon emissions | 1/1/1 | ||||
Brent oil | 0.01/ 0.26/ 0.88 | 1/1/1 | |||
Natural gas | 0.30/ −0.41/ 0.76 | 0.16/ 0.34/ 0.86 | 1/1/1 | ||
Coal | 0.70/ −0.39/ 0.78 | 0.59/ 0.51/ 0.94 | 0.22/ 0.73/ 0.91 | 1/1/1 | |
Electricity | 0.77/ 0.27/ 0.79 | 0.49/ 0.68/ 0.79 | 0.19/ 0.51/ 0.81 | 0.91/0.63/0.87 | 1/1/1 |
Carbon Emissions | Brent Oil | Natural Gas | Coal | Electricity | |
---|---|---|---|---|---|
Carbon emissions | 1/1/1 | ||||
Brent oil | 0.03/ 0.41/ −0.13 | 1/1/1 | |||
Natural gas | 0.17/ −0.10/ −0.50 | 0.00/ 0.10/ 0.08 | 1/1/1 | ||
Coal | 0.01/ 0.17/ −0.55 | 0.26/ 0.18/ 0.45 | 0.43/ 0.30/ 0.44 | 1/1/1 | |
Electricity | 0.29/ 0.38/ −0.18 | 0.08/ 0.36/ −0.22 | −0.03/ 0.16/ −0.09 | 0.20/ 0.47/ 0.18 | 1/1/1 |
Variable | Y5 | Y4 | Y3 |
---|---|---|---|
Constant | 0.013 (0.562) | 0.007 (0.581) | 0.030 (0.286) |
Brent oil | 0.114 (0.000) | 0.199 (0.000) | 0.101 (0.037) |
Natural gas | 0.015 (0.340) | 0.058 (0.018) | −0.035 (0.149) |
Coal | −0.064 (0.060) | 0.167 (0.000) | 0.044 (0.099) |
Electricity | 0.046 (0.192) | 0.022 (0.243) | 0.060 (0.006) |
AR(1) | 0.983 (0.000) | 0.938 (0.000) | 0.962 (0.000) |
MA(1) | −0.094 (0.000) | - | −0.097 (0.055) |
RESID(-1)^2 | 0.261 (0.000) | 0.100 (0.000) | 0.138 (0.003) |
GARCH(-1) | 0.812 (0.000) | 0.857 (0.000) | 0.720 (0.000) |
Indicator | Y5 | Y4 | Y3 |
---|---|---|---|
S.E. of regression | 0.064 | 0.029 | 0.030 |
R-squared | 0.723 | 0.899 | 0.849 |
Adjusted R-squared | 0.722 | 0.899 | 0.847 |
Schwarz criterion | −4.196 | −4.292 | −4.283 |
Akaike info criterion | −4.233 | −4.333 | −4.386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reshetnikova, L.; Boldyreva, N.; Devyatkov, A.; Pisarenko, Z.; Ovechkin, D. Carbon Pricing in Current Global Institutional Changes. Sustainability 2023, 15, 3632. https://doi.org/10.3390/su15043632
Reshetnikova L, Boldyreva N, Devyatkov A, Pisarenko Z, Ovechkin D. Carbon Pricing in Current Global Institutional Changes. Sustainability. 2023; 15(4):3632. https://doi.org/10.3390/su15043632
Chicago/Turabian StyleReshetnikova, Liudmila, Natalia Boldyreva, Anton Devyatkov, Zhanna Pisarenko, and Danila Ovechkin. 2023. "Carbon Pricing in Current Global Institutional Changes" Sustainability 15, no. 4: 3632. https://doi.org/10.3390/su15043632
APA StyleReshetnikova, L., Boldyreva, N., Devyatkov, A., Pisarenko, Z., & Ovechkin, D. (2023). Carbon Pricing in Current Global Institutional Changes. Sustainability, 15(4), 3632. https://doi.org/10.3390/su15043632