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Abstract: Global institutional changes (GICs), having influenced energy prices, led to a steady
upward trend in carbon prices on the EU ETS. The aim of the article is to assess the changes in the
relationship between carbon prices and energy prices under GICs. The Bai–Perron tests for structural
breaks identified two dates as the breakpoint, 21 April 2016 and 21 September 2020. We test the
hypothesis that powerful external factors (GIC) are changing the trend pattern of the carbon price
time series. New pricing rules of the carbon price are being formed after the breakpoint. We use
daily observations from 4 January 2010 to 1 September 2022. We use GARCH models with multiple
stationary time series to discover a relationship energy price with the carbon price before and after
the break points. We found that three models for two breakpoints better describe the relationship
between carbon prices and energy prices than two models for one breakpoint, much less one model
for the entire period. We find that the carbon price depends on energy prices, especially on the
price of oil, in a statistically significant way, but the gas price is not statistically significant after
21 September 2020.

Keywords: ETS; greenhouse gases; carbon price; global institutional changes; breakpoints; econometric
analysis

1. Introduction

According to the UN, the 2015 sustainable development goals and the Paris climate
agreement remain at the center of the global political agenda [1]. The emissions trading
system (ETS) is now a key feature of carbon regulation worldwide. ETS is an economic
mechanism to stimulate businesses to reduce GHG emissions into the atmosphere. There
are currently 24 different systems for emissions trading worldwide [2].

The European Union Emissions Trading System (EU ETS) is the largest in volume of
transactions, in terms of the number of participants, with rather a long history of operation.
It was established in 2005, and nowadays is in the 4th phase of development (2021 to
2030). The EU ETS plays a major role in the decarbonization of Europe. Currently, the
EU ETS covers only 19% of global emissions and it is of much importance to ensuring the
development of other emissions trading systems worldwide [2].

National ETSs exist only in China, South Korea and New Zealand in the Asia–Pacific
Region [3]. Numerous studies have proven that ETS contribute to the reduction of carbon
emissions in the industry under certain conditions [4–10]. The achieved success in reducing
emissions in China and other countries could be an example for emerging economies.
Russia’s inclusion in the global sustainable development agenda means that the state faces
the task of developing carbon regulation.

The carbon pricing Is important incentive for the greenhouse gas emission reduction.
We have noticed that, in the period from 4 January 2010 until 1 September 2022, carbon
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prices dynamics have changed significantly. After reaching a breaking point in 2020, it
is showing a steady rising trend. A sharp and steady increase in CO2 prices after the
breakpoint raises the question of its decisive factors.

Numerous studies have argued that breaking points of carbon pricing are typically
associated with structural changes driven by key events. After the breakpoint the EUA
pricing model changes. The cost of LNG largely depends on external factors. First of all,
these are current global institutional changes (GICs); the COVID-19 and global economic
recovery from the pandemic; the climatic anomalies in the EU, Asia and North America; a
transition from long-term contracts to spot prices for gas supply by Russian suppliers; etc.
The rise in the price of fossil fuels leads to an increase in the price of electricity as a form of
GIC [11–15]. Over time, these events and processes change the fundamental characteristics
of the system under study.

The paper aims to assess potential structural changes in the relationship between
carbon prices and energy prices in a GIC period.

In this article, we explore the impact of GIC on carbon price dynamics. We identify
a breaking point, from which the carbon price shows a steady uptrend. We define strong
external shocks such as the GIC and disclose the relevant events underlying it. We test
the following hypothesis: the trend of the time series of carbon prices is characterized by
structural instability in the period under analysis. The samples of carbon price values
obtained under different conditions—before and after the breakpoint—are not homoge-
neous. Powerful externalities (GICs) are altering the trend of the time series of carbon
prices. Therefore, several individual models better describe the dynamics of carbon price.
New CO2 pricing rules are emerging in the context of global institutional changes. We
check the regression results before and after the breakpoint.

The determinants of carbon prices have been explored by many scholars. But there is
no research under the current global institutional changes and regulatory reforms. Using
recent data is important, because the relevance of variables changes over time.

The results of this study may be useful to politicians and practitioners in the formation
of national carbon regulation.

The rest of the paper is organized as follows. In Section 2, we briefly discuss global
institutional changes and their economic implications based on a review of the relevant
literature. In Section 3, we describe data used in the empirical analysis and the research
methodology. Section 4 summarizes the empirical findings. Section 5 presents the discus-
sion of results.

2. Theoretical Foundations and Literature Review

The economic nature of environmental pollution under the influence of the anthro-
pogenic factor is associated with negative external effects (externalities) of the economic
activity of market economy agents. ETS, as a market-based tool for reducing greenhouse
gas emissions, operates on a cap-and-trade basis. The key principle of carbon regulation
is that the polluter pays. The government sets an upper threshold for the total amount of
emissions in one or more sectors of the economy, acceptable for a certain period of time for
a given territory. Companies in selected sectors must have a permit for each unit of their
emissions above the threshold. Polluters receive such permits free of charge or buy from
the state and companies participating in the ETS [16,17].

One of the main conditions for the effective functioning of the ETS is the pricing
mechanism for emission permits. The price of emission permits (or “carbon price”) is
important in the ETS. A low carbon price will not compensate for environmental damage
and will not encourage companies to reduce greenhouse gas emissions, e.g., replace high-
carbon fuels with low-emission fuels. However, the prohibitive price may reduce the
motivation to use ETS.

The identification of carbon pricing factors is important. Economic theory distin-
guishes two main groups of product pricing factors—supply and demand. Appended to
the price of emission permits is the supply of and demand for carbon permits. The offer for
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carbon emission permits depends on the results of the implementation of carbon sequestra-
tion projects and technological change projects and the number of quotas distributed by the
state on a free basis or in the form of an auction. Economic entities that emit greenhouse
gases (CO2 and CO2-equivalent) in the course of their production and economic activities
demand for carbon emission permits. A large number of factors affect the level of emissions.
The volume and structure of consumption of fuel and energy resources, etc., determine
it (Figure 1).
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For ETS to function effectively, it is essential to identify price factors and assess
their impact on carbon price. Since the establishment of the EU ETS, there has been
ample scientific literature produced on the factors influencing the price of carbon (the
European Union Allowance (EUA) of the European Union emission trading scheme (EU
ETS)). Scientific literature analysis on the identification for CO2 pricing factors allows us
to allocate climatic and non-climatic factors. Researchers divide non-climatic factors into
energy (prices of fossil fuel sources (oil, gas, coal), switching costs (from coal to gas) and
the price of electricity), economic activity, macroeconomic changes (assessed by the yield of
stock indices) and others [18,19].

In the first two phases of the EU ETS operation, scientists have laid down fundamental
approaches to the analysis of pricing factors and the evaluation of their impact on the
price of carbon. Many studies have focused on the impact of energy variables on CO2
prices [20–26]. Using a variety of econometric methods and techniques, the authors re-
searched different aspects of the influence of carbon pricing factors. The impact of the fossil
energy market on the carbon market has been changing over time. At the beginning of
the EU ETS operation, the coal market and the natural gas market had the greatest impact
on the carbon market. In the second phase of the EU ETS, the impact of the coal market
was the most significant and positive. When the EU ETS had entered the third phase, the
natural gas market showed shock effect, and the direction of the impact changed from
negative to positive [27].

Researchers identify three of the most important factors that determine the price of
carbon. The electricity price and the stock index are positive influence, and the coal price
has a negative impact on the carbon price. In addition, changes in electricity and stock
prices have a short-term impact on carbon prices, whereas coal, oil and gas prices determine
the price of carbon in the medium and long term [28]. Options for fuel change have a strong
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impact on carbon price. The difference between coal and gas prices is likely to remain
an important factor in the future until carbon capture and sequestration become widely
available [29,30]. Up to 90% (on average 65%) of carbon price fluctuations are explained by
fundamental market variables. At the same time, by the end of 2018, the role of economic
activity and natural gas prices in the carbon price variation decreased in favor of oil and
coal. Researchers also emphasize the importance of speculation in the dynamics of the
carbon market [31].

In general, the influence of energy prices on the dynamics of carbon prices is generally
recognized. However, the degree of the impact varies over time and depends on the
sample under consideration. In addition, structural changes are an important feature
of the EUA pricing process. Different causes underlie structural changes. These can be
regulatory announcements, changes in expectations, economic reforms and external shocks
(COVID-19, etc.). Breakpoints in the EUA price are usually associated with major events.
Researchers raised the issue of structural breaks in European carbon prices back in 2008.
They found two structural changes related to the disclosure of information on emissions
(April 2006) and the distribution of EUAs (October 2006), and also proved that the division
into subperiods provides a better idea of institutional and market events that affect the
change in EUA prices.

The carbon market is informationally linked to a wide range of other markets. In
particular, the authors determined that financial market crises (the US subprime mortgage
crisis of 2008, the European sovereign debt crisis of 2011) led to break points of carbon
price volatility [32]. The importance of taking into account structural breaks in data when
analyzing the relationship between the carbon price and its factors is also justified in the
study of ETS pilot projects in China. The authors propose a cointegration model with
structural breaks to better explain the actual relationships [33].

Different methods are used to detect structural breaks in carbon price time series. The
authors used the Bai–Perron test to diagnose the point of structural change in a series of
prices in the carbon market in China and the impulse response function to analyze the
interaction between carbon prices and determinant prices (energy prices, stock price indices,
utilities indices and similar asset prices). These points of structural change are related to
the economic situation. The mechanisms by which factors affect the price of China’s carbon
market change significantly before and after points of structural change [34,35]. Based on
the ICSS algorithm, scientists detected structural breaks in the time series of carbon futures
and put forward several hypotheses about the occurrence of breakpoints associated with a
period of high carbon emissions or, with the 2008 mortgage crisis and the 2011 European
debt crisis [36]. The use of a hybrid prediction model, including a long short-term memory
(LSTM) neural network, allows for the acquisition of up to fifteen control points in the
price of EUA. Compared to other models, this hybrid model provides the best prediction
accuracy [37].

By identifying breakpoints, the authors showed their impact on expected carbon
returns and volatility, which confirmed the effectiveness of successive policy adjustments
in the carbon market [38]. The basis (an object) of empirical research is not only the carbon
market of the European Union, but also the pilot carbon markets in China. The results
show many sharp transitions in the carbon price series in these markets that are closely
linked to major events [39].

Events that destabilize business, economic activity and consumption are causing
breakpoints in carbon prices. The COVID-19 pandemic had a significant impact on the
demand for electricity and oil, both directly and indirectly. By sharply reducing economic
activity, it has short-term and long-term consequences, including the impact on climate
change [40–43]. The COVID-19 pandemic impacted not only energy markets (energy stock
indices, energy futures indices, ETFs, and implied volatility indices), but also the behavior
of investors in a high-risk environment. Indicators of uncertainty caused by COVID-19 have
had a marked impact on the historical volatility of energy markets [44]. The global economy
is in a severe recession due to COVID-19. CO2 emissions are estimated to fall by 3.9–5.6%
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in 5 years compared to a non-pandemic baseline scenario. The reduction in emissions
associated with the pandemic has had a strong impact on price dynamics in the carbon
market [45]. An examination of the factors that influenced carbon price fluctuations in the
EU ETS showed that the price of carbon has undergone significant structural changes as a
result of COVID-19 and the “Green Recovery Plan”. The study confirmed the effectiveness
of the EU’s “Green Recovery Plan” in stabilizing the carbon market during the COVID-19
pandemic [46]. In general, the COVID-19 pandemic, by sharply reducing economic activity
and CO2 emissions, has led to significant structural changes in the carbon market in the EU.

We are considering the transition of a number of EU countries from long-term contracts
to spot prices for gas supplies by a Russian supplier as an element (as an integral part)
of GIC. This issue is also the focus of attention of researchers. Continental European gas
markets are moving inexorably from oil-linked pricing on long-term contracts to hub-based
pricing, accompanied by major changes in the energy markets and, as a result, in the carbon
market [47]. The authors examined the economic risks associated with the dominance
of the Russian seller in the European gas market and analyzed possible EU responses in
relation to the reality of the perceived risks of gas dependence [48]. The benefits of a single
Russian gas price are exaggerated for Russia and Europe, a single gas price reduces the
security of gas supplies to the EU [49,50]. Natural gas is the main driver of electricity prices
in Europe. Since natural gas is mainly imported to Europe, electricity prices are subject to
geopolitical risks associated with gas supplies, as well as economic risks associated with
currency exchange and natural gas price volatility [51,52].

Thus, a review of the relevant literature shows the key role of energy variables in the
behavior of the carbon price, as well as the importance of taking into account structural
changes caused by major events. COVID-19, the recovery of the economy after the pan-
demic, the transition of the Russian gas supplier to spot prices, and other events determine
the GIC in the period up to September 01, 2022, taking into account the inertia of the
economic system. They have a multidirectional and, at the moment, completely unexplored
influence of energy determinants on the dynamics of carbon prices in the context of struc-
tural breaks. Using the latest data is important because the relevance of variables changes
over time, reflecting important external events. We have focused our attention on studies
conducted in recent years on the influence of energy factors and structural changes caused
by GIC on the dynamics of carbon prices for EU ETS. All of the abovementioned confirms
the relevance and novelty of our study, and its practical significance.

Thus, a breakpoint in EU ETS could influence the pricing of European Union CO2
allowances (EUA) and, hence, the optimization of EUA management. Therefore, it is very
important to identify breakpoints in the carbon price for further research the evolution
of EUA prices. In addition, examining the reasons behind the breakpoints is essential to
formulating a coherent market reform policy (public policy response measures).

3. Materials and Methods

We used several econometric models with multiple stationary time series to discover
the relationship between the fundamentals, such as electricity prices, gas, oil and coal
prices, and prices of EUA in the conditions of the GIC.

The stationarity of time series is an important condition for their analysis. We test time
series for stationarity using the Dickey–Fuller test [53]. The series of levels turned out to be
nonstationary. We switched to stationary series using the Hodrick–Prescott filter [54,55].
We examined the correlation between variables (the price of emission permits, the price
of coal, the price of oil, the price of gas, and the price of electricity). Then, we began our
econometric analysis using classical least squares regression model.

The general linear regression model has the following form:

Y = b0 + b1×1 + b2X2 + . . . + bnXn + E , (1)

where X1, X2, . . . , Xn are several independent variables (regressors); Y denotes the depen-
dent variable, i.e., the carbon price in the case under consideration; b0 is a constant; b1, b2,
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. . . , bn are the coefficients of the model and E is a random component (model error).This
makes it possible to analyze the influence of independent variables (energy prices) on the
dependent variable, i.e., the price of emission permits.

The absence of autocorrelation of the residuals and their homoscedasticity are the
conditions for the adequacy of the linear regression model. The Breusch–Godfrey test and
the Breusch–Pagan test indicated the presence of autocorrelation and heteroscedasticity of
the residuals. We also tested the residuals on ARCH processes and found them. Application
of the GARCH model is adequate under these conditions [56]. The GARCH model has had
great success in empirical research on finance in recent decades. GARCH (p, q) is a model
for the general autoregressive conditional heteroscedasticity, where q is the order of the
autoregressive term and p stands for the moving average.

The models used in the analysis are in general of the form:

yt = b0 +
n

∑
i=1

biXi +
m

∑
i=1

aiyt−i (2)

where yt is the value of the price of carbon emissions for the t-th observation, ai are the
coefficients of the model for the lag yt for i periods;

ht = c +
q

∑
i=1

cie2
i +

p

∑
i=1

diht−i (3)

where ht is conditional variance of the series, c is a constant, q is the order of the ARCH
terms e2 and p is the order of the GARCH terms h.

We tested the adequacy of the model specification using the Ramsey test (the RE-
SET test).

We applied the Bai–Perron test to identify the break point [57–59]. We then built
some separate GARCH models describing the carbon price dynamics before and after the
breakpoint using the econometric analysis logic above.

Several metrics are used to evaluate the quality of the model in this study. We use
the standard error of regression (SE), the adjusted R-square and the Akaike and Schwartz
information criterions. SE allows for the comparison of models of the same type with a
different number of observations and variables. The quality of the generated models is
better if the standard error is lower, and the adjusted R-square is higher [60]. Information
criteria, which are to be minimized, allow for choosing the best model from a variety
of models.

For regression analysis, we used daily observations from 4 January 2010 to 1 September
2022. We used historical futures prices for European Union Allowance (EUA) on the Euro-
pean Energy Exchange (EEX), which is the largest organized carbon market in the world.
Independent variables are represented by energy variables (future prices for Brent oil, natu-
ral gas, coal, electricity). Based on the research hypothesis, only energy prices that have
undergone significant changes in dynamics were taken into account. Other factors affecting
the carbon price were excluded from the analysis. Data were collected from the financial
platform Investing.com [61], from which the daily closing prices of futures contracts for
emissions permits (Carbon Emissions Futures—CFI), Brent oil (Brent Oil Futures—LCO),
natural gas (Natural Gas Futures—NGX), coal (Rotterdam Coal Futures—ATW) and elec-
tricity (German Power Base load Calendar Month Futures—DBE) were loaded. The entire
dataset, after recovering the missing data, contained a total of 3167 daily values. The gaps
in the price data were restored by repeating the previous values.

4. Results

There are two main tasks in time series analysis: identification and forecasting. Solving
the identification problem involves answering the question, what are the parameters of the
system that generated this time series.
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The analytical part of the article begins with the study of descriptive statistics. The
descriptive statistics of data series in levels are presented in Table 1.

Table 1. Descriptive statistics for data of level series.

Number Minimum Maximum Mean Median Standard Deviation

Carbon emissions 3167 2.700 98.430 19.870 12.760 20.590
Brent oil 3167 17.799 117.460 63.181 60.337 18.343

Natural gas 3167 1.321 9.701 2.824 2.596 1.077
Coal 3167 35.021 402.650 78.498 65.886 56.361

Electricity 3167 15.520 465.180 53.438 38.760 55.037

Correlation analysis of the carbon price and energy prices based on a matrix of paired
correlation coefficients revealed the relationship of variables (Table 2).

Table 2. Correlation matrix of energy variables and carbon emissions prices of level series.

Carbon Emissions Brent Oil Natural Gas Coal Electricity

Carbon emissions 1
Brent oil 0.26 1

Natural gas 0.61 0.52 1
Coal 0.75 0.54 0.85 1

Electricity 0.81 0.45 0.79 0.91 1

An analysis of the matrix of paired correlation coefficients shows the greatest correla-
tion between carbon emissions price and electricity, coal and natural gas prices (0.81, 0.75
and 0.61, respectively). The change in electricity prices is strongly associated with changes
in coal and natural gas prices, 0.91 and 0.79, respectively. The prices of coal and natural gas
as alternative energy sources also show a strong correlation.

For correct modeling, it is necessary to ensure the stationarity of time series. The
Dickey—Fuller test for unit root showed the non-stationarity of the level price data (Table 3).

Table 3. Augmented Dickey–Fuller test for daily prices.

Carbon Emissions Brent Oil Natural Gas Coal Electricity

p-value with a constant 0.9962 0.5327 0.9997 1.000 1.000
p-value with constant and

trend 0.9925 0.8606 1.000 1.000 1.000

Therefore, we transformed the price data using the Hodrick—Prescott filter and
obtained stationary price series as shown in Figures 2 and 3.
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The Dickey—Fuller test showed the stationarity of these data series (Table 4).

Table 4. Augmented Dickey–Fuller test for stationary data series.

Carbon Emissions Brent Oil Natural Gas Coal Electricity

p-value with a constant 0.0000 0.0000 0.0000 0.0000 0.0000
p-value with constant and trend 0.0000 0.0000 0.0000 0.0000 0.0000

The descriptive statistics of stationary data series are presented in Table 5.

Table 5. Descriptive statistics for stationary data series.

Number Minimum Maximum Mean Median Standard Deviation

Carbon emissions 3167 −0.4990 0.4880 0.0000 0.0007 0.1060
Brent oil 3167 −0.7000 0.2880 0.0000 0.0053 0.0923

Natural gas 3167 −0.3280 0.4290 0.0000 0.0032 0.1030
Coal 3167 −0.4860 0.6050 0.0000 0.0033 0.0908

Electricity 3167 −0.5030 0.7270 0.0000 0.0072 0.1160

The transformation of price data into a stationary price series changed the paired
correlation coefficients (Table 6).
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Table 6. Correlation matrix for stationary series of energy variables and carbon emissions prices and
their 5% bilateral significance (correlation coefficient/p-value).

Carbon Emissions Brent Oil Natural Gas Coal Electricity

Carbon emissions 1
Brent oil 0.16/0.00 1

Natural gas −0.02/0.18 0.06/0.00 1
Coal −0.08/0.00 0.24/0.00 0.38/0.00 1

Electricity 0.17/0.00 0.15/0.00 0.02/0.28 0.27/0.00 1

An analysis of the matrix of paired correlation coefficients shows that the carbon
emissions price is positively related to the Brent oil price and the electricity price. The
relationship between the coal price and the natural gas price with the carbon price becomes
weakly negative. The correlation between the coal price and the natural gas price on
stationary price series remains.

We use the ordinary least squares method and designed the carbon price model (Table 7).

Table 7. The carbon price model Y.

Variable Coefficient Prob.

Constant 0.000 1.000
Brent oil 0.201 0.000

Natural gas 0.032 0.097
Coal −0.212 0.000

Electricity 0.179 0.000

The significance of the multiple regression coefficients is tested using Student’s t-test.
Regression coefficients are statistically significant at the level of 1%, with the exception of
the constant, the natural gas price coefficient is significant at the level of 10%.

We tested the errors of the Y model for the presence of autocorrelation (Breusch–
Godfrey test), heteroskedasticity (Breusch–Pagan test) and ARCH processes. The results
are shown in Table 8.

Table 8. Results of testing model Y errors.

Breusch–Godfrey Test Breusch–Pagan Test ARCH Processes

test statistic 186.782 55.702 1713.910
p-value 0.000 0.000 0.000

Autocorrelation, heteroscedasticity and ARCH processes are present in the errors
of the Y model. To eliminate autocorrelation, we add the first lag of the dependent
variable—AR(1)—and the first error lag—(moving average) MA(1)—to the mean equation.
To eliminate ARCH processes, we conducted ARCH modeling. We tested different GARCH
models to fit the data and decided on the GARCH(1,1) model (model Y1)). The parameters
of this model are shown in Table 9.

An analysis of the residual correlogram shows that one lag in the mean equation
is sufficient to eliminate autocorrelation. The number of lags of squared residuals and
variance was chosen in such a way as to eliminate the presence of ARCH processes. The
Broich–Pagan–Godfrey test shows the absence of heteroscedasticity. The Ramsey test shows
the correctness of the selected specification.

The quality characteristics of the model Y1 are presented in Table 10.
The Y1 model approximates carbon pricing more accurately. The standard error of the

Y1 model is 0.050. The coefficient of determination shows that the model explains 77.7%
of the changes in the dependent variable. In the Y1 model, all coefficients before energy
variables are significant, with the exception of the coefficient before natural gas.

The dynamics of the actual carbon prices and model carbon prices are shown in Figure 4.
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Table 9. The carbon price model Y1.

Variable Coefficient p-Value

Constant 0.013 0.281
Brent oil 0.139 0.000

Natural gas 0.002 0.867
Coal 0.057 0.003

Electricity 0.051 0.000
AR(1) 0.971 0.000
MA(1) −0.063 0.000

RESID(−1)2 0.146 0.000
GARCH(−1) 0.846 0.000

Table 10. Quality of the carbon price model Y1.

Indicator Y1

S.E. of regression 0.050
R-squared 0.777

Adjusted R-squared 0.777
Schwarz criterion −4.270

Akaike info criterion −4.291
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Figure 4. Actual and model carbon prices (model Y1).

We drew attention to the change in the dynamics of carbon prices, which has been
showing a steady upward trend since some time. This may be due to the GIC according to
our hypothesis.

We used different Bai–Perron approaches to testing multiple break points. The results
of the sequential Bai–Perron test at the significance level of 5% are shown in Table 11.

Table 11. Bai–Perron sequential test results.

Break Test Scaled F-Statistic Critical Value * Break Date

0 vs. 1 57.78885 18.23 21 April 2016
1 vs. 2 28.17955 19.91 21 September 2020
2 vs. 3 20.85078 20.99 -

* Bai–Perron (Econometric Journal, 2003) critical values.

The sequential Bai–Perron test reveals two breakpoints: 21 April 2016 and 21 Septem-
ber 2020. The break dates obtained following the repartition procedure do not change.
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The two-break global optimizers are the same as those obtained in the sequential testing
example. As we expected, the GIC caused structural change in the relationship between
carbon prices and energy prices.

Descriptive statistics of data series in levels and stationary data series for two periods
are presented in Tables 12 and 13.

Table 12. Descriptive statistics of data series in levels (before/after 21 September 2020).

Number Minimum Maximum Mean Median Standard
Deviation

Carbon emissions 2678/489 2.70/
23.50

31.30/
98.40 12.50/60.30 8.00/59.10 8.02/

21.40

Brent oil 2678/489 17.80/
32.20 96.50/117.00 62.10/69.40 59.60/63.40 17.1/

23.00

Natural gas 2678/489 1.32/
1.56

4.48/
9.70 2.60/4.05 2.57/3.43 0.55/

2.01

Coal 2678/489 35.00/
42.80 101.00/403.00 64.20/157.00 63.80/122.00 14.5/

111.00

Electricity 2678/489 15.50/
33.30 59.80/465.00 37.90/139.00 37.50/121.00 8.44/

103.00

Table 13. Descriptive statistics for stationary price data series (before/after 21 September 2020).

Number Minimum Maximum Mean Median Standard
Deviation

Carbon emissions 2678/489 −0.4990/−0.3272 0.4880/0.2059 0.0009/−0.0051 0.0037/−0.0081 0.1100/0.0777
Brent oil 2678/489 −0.7000/−0.4855 0.2880/0.6045 0.0000/0.0003 0.0056/0.0036 0.0950/0.0755

Natural gas 2678/489 −0.3100/−0.3277 0.4290/0.3847 −0.0013/0.0070 −0.0040/0.0065 0.0927/0.1469
Coal 2678/489 −0.2100/−0.4855 0.1950/0.6045 −0.0002/0.0011 0.0022/0.0168 0.0626/0.1789

Electricity 2678/489 −0.5030/−0.4651 0.2710/0.7275 −0.0004/0.0020 0.0075/0.0029 0.0941/0.1973

After the breakpoint, descriptive statistics change significantly for data series in levels
and stationary data series.

Correlation matrices of data series in levels and stationary data series for two periods
are presented in Tables 14 and 15.

Table 14. Correlation matrix of energy variables and carbon emissions prices of level series (be-
fore/after 21 September 2020).

Carbon Emissions Brent Oil Natural
Gas Coal Electricity

Carbon emissions 1/1
Brent oil −0.13/0.88 1/1

Natural gas −0.17/0.76 0.34/0.86 1/1
Coal 0.07/0.78 0.49/0.94 0.42/0.91 1/1

Electricity 0.37/0.79 0.54/0.79 0.36/0.81 0.78/0.87 1/1

Table 15. Correlation matrix for stationary price series of energy variables and carbon emission prices
(before/after 21 September 2020).

Carbon Emissions Brent Oil Natural
Gas Coal Electricity

Carbon emissions 1/1
Brent oil 0.19/−0.13 1/1

Natural gas 0.07/−0.50 0.05/0.08 1/1
Coal 0.08/−0.55 0.21/0.45 0.36/0.44 1/1

Electricity 0.29/−0.18 0.28/−0.22 0.08/−0.09 0.38/0.18 1/1
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After the breakpoint, the relationship between the variables and the carbon emissions
price changes significantly for data series in levels and stationary data series.

After the breakpoint, the correlation coefficients of the energy variables and the carbon
price change from positive to negative. The strength of the relationship between the carbon
price and variables is increasing, with the exception of Brent oil and Electricity.

Using the above econometric analysis logic, we designed two carbon price models be-
fore 21 September 2020 (Y2) and after 21 September 2020 (Y3). A comparative analysis of the
models shows changes in the relationship of energy variables and carbon price (Table 16).

Table 16. The carbon prices models Y2 and Y3.

Variable Coefficient Y2 p-Value Y2 Coefficient Y3 p-Value Y3

Constant 0.006 0.640 0.030 0.286
Brent oil 0.146 0.000 0.101 0.037

Natural gas 0.013 0.362 −0.035 0.149
Coal 0.044 0.104 0.044 0.099

Electricity 0.048 0.003 0.060 0.006
AR(1) 0.972 0.000 0.962 0.000
MA(1) −0.058 0.002 −0.097 0.055

RESID(−1)2 0.151 0.000 0.138 0.003
GARCH(−1) 0.849 0.000 0.720 0.000

Comparative analysis shows that the main factor in the formation of the carbon price
remains the oil price, although its influence and significance have decreased. The impact
of the natural gas price has changed direction from positive to negative, while remaining
statistically insignificant. The impact of the coal price remained unchanged, while the
significance increased to the level of 10%. The impact of electricity prices increased with a
decrease in statistical significance.

The correlograms of the residuals of these models show the absence of autocorrelation.
The correlograms of the squares of the residuals show the absence of ARCH processes.
The Broich–Pagan–Godfrey test shows the absence of heteroscedasticity. The Ramsey test
shows the correctness of the selected specification.

A comparative analysis shows that the Y3 model is of the highest quality (with a
small error of 0.030, a large determination coefficient of 0.849 and minimized information
criteria) (Table 17).

Table 17. Quality of the carbon price models Y2 and Y3.

Indicator Y2 Y3

S.E. of regression 0.053 0.030
R-squared 0.770 0.849

Adjusted R-squared 0.770 0.847
Schwarz criterion −4.249 −4.283

Akaike info criterion −4.273 −4.386

To study the two breakpoints, we designed two more models: until 21 April 2016
(Y5) and from 21 April 2016 to 21 September 2020 (Y4). Descriptive statistics of data
series in levels and stationary data series for three periods (Y5, Y4, Y3) are presented in
Tables 18 and 19.

After the breakpoints, descriptive statistics change significantly for data series in levels
and stationary data series.

Correlation matrices of data series in levels and stationary data series for three periods
are presented in Tables 20 and 21.
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Table 18. Descriptive statistics of data series in levels for three periods (before 21 April 2016/from 21
April 2016 to 21 September 2020/after 21 September 2020).

Number Minimum Maximum Mean Median Standard
Deviation

Carbon
emissions

1576/
1102/
489

2.70/
3.93/
23.50

25.43/
31.33/
98.40

9.97/
16.09/
60.30

7.42/
17.34/59.10

5.85/
9.24/
21.40

Brent oil
1576/
1102/
489

25.60/
17.80/
32.20

96.48/
75.18/
117.00

69.96/
50.74/
69.40

77.69/
52.47/
63.40

16.53/
10.22/
23.00

Natural
gas

1576/
1102/
489

1.45/
1.32/
1.56

4.48/
4.28/
9.70

2.75/
2.39/
4.05

2.77/
2.41/
3.43

0.55/
0.48/
2.01

Coal
1576/
1102/
489

38.50/
35.02/
42.80

100.51/
88.56/
403.00

65.06/
63.08/
157.00

62.12/
66.19/
122.00

13.77/
15.39/
111.00

Electricity
1576/
1102/
489

24.79/
15.52/
33.30

53.61/
59.75/
465.00

39.28/
35.86/
139.00

40.39/
33.93/
121.00

7.80/
8.92/

103.00

Table 19. Descriptive statistics for stationary price data series (before 21 April 2016/from 21 April
2016 to 21 September 2020/after 21 September 2020).

Number Minimum Maximum Mean Median Standard
Deviation

Carbon
emissions 1576/1102/489

−0.50/
−0.36/
−0.33

0.49/
0.27/
0.21

0.00/0.00/−0.01 0.00/0.01/−0.01
0.12/
0.09/
0.08

Brent oil 1576/1102/489
−0.31/
−0.70/
−0.49

0.16/
0.29/
0.60

0.00/0.00/0.00 0.00/0.02/0.00
0.07/
0.12/
0.08

Natural gas 1576/1102/489
−0.31/
−0.26/
−0.33

0.32/
0.38/
0.43

0.00/0.01/0.00 0.00/−0.01/0.01
0.09/
0.09/
0.15

Coal 1576/1102/489
−0.15/
−0.21/
−0.49

0.20/
0.19/
0.60

0.00/0.00/0.00 0.00/0.01/0.02
0.05/
0.08/
0.18

Electricity 1576/1102/489
−0.15/
−0.50/

0.47

0.15/
0.27/
0.73

0.00/0.00/0.00 0.00/0.01/0.00
0.06/
0.13/
0.20

Table 20. Correlation matrix of energy variables and carbon emissions prices of level series (before 21
April 2016/from 21 April 2016 to 21 September 2020/after 21 September 2020).

Carbon
Emissions Brent Oil Natural Gas Coal Electricity

Carbon
emissions 1/1/1

Brent oil
0.01/
0.26/
0.88

1/1/1

Natural gas
0.30/
−0.41/

0.76

0.16/
0.34/
0.86

1/1/1

Coal
0.70/
−0.39/

0.78

0.59/
0.51/
0.94

0.22/
0.73/
0.91

1/1/1
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Table 20. Cont.

Carbon
Emissions Brent Oil Natural Gas Coal Electricity

Electricity
0.77/
0.27/
0.79

0.49/
0.68/
0.79

0.19/
0.51/
0.81

0.91/0.63/0.87 1/1/1

Table 21. Correlation matrix for stationary price series of energy variables and carbon emission prices
(before 21 April 2016/from 21 April 2016 to 21 September 2020/after 21 September 2020).

Carbon
Emissions Brent Oil Natural Gas Coal Electricity

Carbon
emissions 1/1/1

Brent oil
0.03/
0.41/
−0.13

1/1/1

Natural gas
0.17/
−0.10/
−0.50

0.00/
0.10/
0.08

1/1/1

Coal
0.01/
0.17/
−0.55

0.26/
0.18/
0.45

0.43/
0.30/
0.44

1/1/1

Electricity
0.29/
0.38/
−0.18

0.08/
0.36/
−0.22

−0.03/
0.16/
−0.09

0.20/
0.47/
0.18

1/1/1

After the breaking points, the relationship between the variables and the carbon
emissions price changes significantly for data series in levels and stationary data series.

A comparative analysis of the models shows changes in the relationship of energy
variables and carbon price (Table 22).

Table 22. The carbon prices models Y5, Y4 and Y3 (coefficient (p-value)).

Variable Y5 Y4 Y3

Constant 0.013
(0.562)

0.007
(0.581)

0.030
(0.286)

Brent oil 0.114
(0.000)

0.199
(0.000)

0.101
(0.037)

Natural gas 0.015
(0.340)

0.058
(0.018)

−0.035
(0.149)

Coal −0.064
(0.060)

0.167
(0.000)

0.044
(0.099)

Electricity 0.046
(0.192)

0.022
(0.243)

0.060
(0.006)

AR(1) 0.983
(0.000)

0.938
(0.000)

0.962
(0.000)

MA(1) −0.094
(0.000) - −0.097

(0.055)

RESID(-1)ˆ2 0.261
(0.000)

0.100
(0.000)

0.138
(0.003)

GARCH(-1) 0.812
(0.000)

0.857
(0.000)

0.720
(0.000)

A comparative analysis shows that the Y4 model is of the highest quality (with the
smallest error 0.029, the largest coefficient of determination 0.899 and minimized informa-
tion criteria) (Table 23). The Y3 model is also of high quality (error 0.030, determination
coefficient 0.849 and minimized information criteria).
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Table 23. Quality of the carbon price models Y5, Y4 and Y3.

Indicator Y5 Y4 Y3

S.E. of regression 0.064 0.029 0.030
R-squared 0.723 0.899 0.849

Adjusted R-squared 0.722 0.899 0.847
Schwarz criterion −4.196 −4.292 −4.283

Akaike info criterion −4.233 −4.333 −4.386

The dynamics of the actual carbon prices and model carbon prices with two break-
points are shown in Figure 5.
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Figure 5. Actual and model carbon prices with two breakpoints.

Several separate models better describe the dynamics of the carbon price. New carbon
pricing rules are being formed in the context of global institutional changes. The results of
the study are relevant for the development of climate policies.

5. Discussion

In many articles, the authors explore various aspects of the relationship and influence
between the prices of energy variables and the price of carbon in the UE ETS at different
periods of its operation and, therefore, in different conditions. Our article explores this
issue in the conditions of global institutional changes.

Economic and econometric studies to identify changes in the relationship between the
price of emission permits and the main energy variables are carried out in the article. We
tested the hypothesis that the GIC influences on the price of emission allowances. In the
conditions of the global institutional changes new CO2 pricing rules are being formed.

We assessed how the structural changes driven by the GIC affect the relationship
between carbon prices and energy prices. We define GIC as a combination of strong external
shocks (key events): the growth in the cost of liquefied natural gas in the countries of the
Asia–Pacific region; COVID-19 and the recovery of the global economy after the pandemic;
climate anomalies in the EU, Asia and North America; the transition of a number of EU
countries from long-term contracts to spot prices for gas supplies by a Russian supplier;
etc. These events, considered in aggregate, affected the prices of energy factors and led to
a change in the dynamics of the carbon price—the emergence of a stable upward trend,
starting from a certain point in time. The Bai–Perron test results revealed two structural
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breaks in the relationship between emission allowance prices and energy prices over the
period 2010–2022. 21 September 2020–a breakpoint, after which a steady increase in carbon
prices began. Another structural change in this relationship took place on 21 April 2016.

The GARCH model for the entire analyzed period did not show a statistically signifi-
cant impact of gas prices on carbon prices. All other energy variables have a statistically
significant positive effect on CO2 prices, with the regression coefficient of the oil price being
the highest. Samples of carbon price values obtained under different conditions—before
and after the breakpoint—are not homogeneous in the regression sense. Therefore, several
separate models better describe the dynamics of the carbon price. We built GARCH models
describing the carbon price dynamics before 21 September 2020 and after this date, as well
as GARCH models for two breakpoints on 21 April 2016 and 21 September 2020.

Looking at one breakpoint on 21 September 2020 shows that the GIC has made a
difference. From January 2010 to 21 September 2020, apart from gas, the price of coal
was statistically insignificant (p-value 0.1038). The price of oil has the greatest statistically
significant positive impact on CO2 prices. After the breakpoint, the gas price remains
statistically insignificant, but the p-value is more than halved. At the same time, the sign of
the regression coefficient of the gas price became negative. Among other energy variables,
the price of oil has the greatest statistically significant positive effect. The quality of the
GARCH model improved after the break point on 21 September 2020.

The situation changed more significantly when considering two breakpoints on
21 April 2016 and 21 September 2020. In the period from January 2010 to 21 April 2016,
prices for gas (p-value 0.34) and electricity (p-value 0.19) behaved statistically insignificantly.
The price of oil had the greatest statistically significant positive effect, while the price of coal
had a statistically significant negative effect on CO2 prices (at the level of 10%, p-value 0.06).
In the period from 21 April 2016 to 21 September 2020, the picture changed. Only the
price of electricity remained statistically insignificant (p-value 0.24). Among other energy
variables, gas prices (5% significance level) and oil prices (1% significance level) had a
positive effect on CO2 prices, with the price of oil having the largest impact. After oil, the
price of coal was the most influential, while its influence became positive. A comparison
of the model between the period from 21 April 2016 to 21 September 2020 and the model
after 21 September 2020 shows that the changes are associated with the following energy
variables: gas had a negative statistically insignificant effect on CO2 prices, the price of
electricity shows the second most influential statistically significant positive result, oil price
retained its leading positions of influence, but already at a significance level of 5%.

The quality of the model for the period from 21 April 2016 to 21 September 2020
increased compared to the model for the entire period, i.e., the model for the period from
2010 to 21 September 2020 and the model from 2010 to 21 April 2016. At the same time, the
quality of this model is similar to the quality indicators of the model after 21 September
2020. In general, the quality of models for two breakpoints is better than for models built
for one breakpoint.

Because our sample size and data set are different from those of earlier works, we can
only make an indirect comparison of the effects of energy variables on carbon prices under
GIC conditions. The researchers substantiated that in general, the COVID-19 pandemic
is an integral element of the GIC, and by sharply reducing economic activity and CO2
emissions, it has led to significant structural changes in the carbon market in the EU.
The transition of continental European gas markets from oil-linked pricing on long-term
contracts to hub-based pricing (also considered by us as an integral part of the GIC) is
accompanied by major changes in energy markets and, as a result, in the carbon market.

We confirmed that in the current post-GIC environment, energy factors are the main
determinants of the price of CO2, as argued in earlier studies. The impact of the fossil
energy market on the carbon market changes over time. After September 2020, the role
of natural gas prices in the carbon price variation decreased in favor of oil. In addition,
structural changes are an important feature of the EUA pricing process. Breakpoints in
the EUA price are usually associated with major events. Breaking down into subperiods
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provides a better representation of the institutional and market events that affect EUA
prices. The mechanisms by which factors affect the price of the carbon market change
before and after points of structural change are significant. This confirms the effectiveness
of successive policy adjustments in the carbon market.

Thus, GIC, taking into account the inertia of the economic system, led to structural
changes in the relationship between the price of CO2 and the prices of energy variables.
Therefore, several separate models better describe the dynamics of carbon price. New CO2
pricing rules are being formed in the context of global institutional changes. It is worth
noting that further studies conducted for longer time series covering the period after 21
September 2020 are appropriate and may provide different results. We have empirically
shown the impact of global institutional changes on CO2 price behavior. Examining the
reasons behind these breakpoints is important for evaluating the effectiveness of climate
policy. Policymakers can draw conclusions about how reliable and predictable climate
policy is. Analysis of the causes and consequences of GIC is the subject of future research.
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