Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools
Abstract
1. Introduction
2. Conceptual Framework
3. Research Method and Data Collection
3.1. Research Method
3.2. Data Collection
4. Findings
4.1. Descriptive Bibliometric Analysis
4.2. Annual Scientific Production
4.3. Keywords
4.4. Countries/Regions
4.5. Authors and Co-Authorship
4.6. The Most Productive Journals
4.7. The Most Influential Publications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brundtland, G.H. Our common future—Call for action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- United Nations Development Programme. World Energy Assessment: Energy and the Challenge of Sustainability; UNDP: New York, NY, USA, 2000. [Google Scholar]
- Vera, I.; Langlois, L.; Rogner, H.H. Indicators for sustainable energy development. In Energy Indicators for Sustainable Development: Country Studies on Brazil, Cuba, Lithuania Mexico, Russian Federation, Slovakia and Thailand; International Atomic Energy Agency: Vienna, Austria; United Nations: New York, NY, USA, 2007; pp. 5–16. [Google Scholar]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H.; Akrofi, M.M.; Kayal, A. Analyzing actors’ engagement in sustainable energy planning at the local level in Ghana: An empirical study. Energies 2020, 13, 2028. [Google Scholar] [CrossRef]
- Gunnarsdóttir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdóttir, S. Sustainable energy development: History of the concept and emerging themes. Renew. Sustain. Energy Rev. 2021, 141, 110770. [Google Scholar] [CrossRef]
- De Bellis, N. Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics; Scarecrow Press: Lanham, MD, USA, 2009. [Google Scholar]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Lemaire, Glossary of terms in sustainable energy regulation. In Sustainable Energy Regulation Network; University of Warwick: Coventry, UK, 2004; pp. 7–11.
- Sáez-Martínez, F.J.; Lefebvre, G.; Hernández, J.J.; Clark, J.H. Drivers of sustainable cleaner production and sustainable energy options. J. Clean. Prod. 2016, 138, 1–7. [Google Scholar] [CrossRef]
- Rosen, M.A.; Farsi, A. Sustainable Energy Technologies for Seawater Desalination; Academic Press: London, UK, 2022. [Google Scholar]
- Kung, C.C.; McCarl, B.A. Sustainable energy development under climate change. Sustainability 2018, 10, 3269. [Google Scholar] [CrossRef]
- Sgouridis, S.; Csala, D. A framework for defining sustainable energy transitions: Principles, dynamics, and implications. Sustainability 2014, 6, 2601–2622. [Google Scholar] [CrossRef]
- Chen, W.; Huang, Z.; Chua, K.J. Sustainable energy recovery from thermal processes: A review. Energy Sustain. Soc. 2022, 12, 46. [Google Scholar] [CrossRef]
- Wu, Y.; Ghalkhani, M.; Afshar, E.A.; Karimi, F.; Xia, C.; Van Le, Q.; Vasseghian, Y. Recent progress in Biomass-derived nanoelectrocatalysts for the sustainable energy development. Fuel 2022, 323, 124349. [Google Scholar] [CrossRef]
- Köppl, A.; Schleicher, S.P. What will make energy systems sustainable? Sustainability 2018, 10, 2537. [Google Scholar] [CrossRef]
- Schmidt-Scheele, R.; Hauser, W.; Scheel, O.; Minn, F.; Becker, L.; Buchgeister, J.; Hottenroth, H.; Junne, T.; Lehr, U.; Naegler, T.; et al. Sustainability assessments of energy scenarios: Citizens’ preferences for and assessments of sustainability indicators. Energy Sustain. Soc. 2022, 12, 41. [Google Scholar] [CrossRef]
- Mustafa, J.; Almehmadi, F.A.; Alqaed, S.; Sharifpur, M. Building a sustainable energy community: Design and integrate variable renewable energy systems for rural communities. Sustainability 2022, 14, 13792. [Google Scholar] [CrossRef]
- Taylor, P.G.; Abdalla, K.; Quadrelli, R.; Vera, I. Better energy indicators for sustainable development. Nat. Energy 2017, 2, 17117. [Google Scholar] [CrossRef]
- Nieto, N.; Noya, O.; Iturrondobeitia, A.; Sanchez-Fontecoba, P.; Pérez-López, U.; Palomares, V.; Rojo, T. On the road to sustainable energy storage technologies: Synthesis of anodes for na-ion batteries from biowaste. Batteries 2022, 8, 28. [Google Scholar] [CrossRef]
- Unander, F. Energy indicators and sustainable development: The International Energy Agency approach. In Natural Resources Forum; Blackwell Publisher: Oxford, UK, 2005; Volume 29, pp. 377–391. [Google Scholar]
- Shrestha, P. Global Energy Use Projected to Nearly Double by 2050; Energy Live News: London, UK, 2020; Volume 8. [Google Scholar]
- Brodny, J.; Tutak, M. Assessing sustainable energy development in the central and eastern European countries and analyzing its diversity. Sci. Total Environ. 2021, 801, 149745. [Google Scholar] [CrossRef]
- Žičkienė, A.; Morkunas, M.; Volkov, A.; Balezentis, T.; Streimikiene, D.; Siksnelyte-Butkiene, I. Sustainable energy development and climate change mitigation at the local level through the lens of renewable energy: Evidence from Lithuanian case study. Energies 2022, 15, 980. [Google Scholar] [CrossRef]
- Chen, J.; Kong, Y.; Yin, S.; Xia, J. A comparative method for assessment of sustainable energy development across regions: An analysis of 30 Provinces in China. Energies 2022, 15, 5761. [Google Scholar] [CrossRef]
- Razmjoo, A.; Rezaei, M.; Mirjalili, S.; Majidi Nezhad, M.; Piras, G. Development of sustainable energy use with attention to fruitful policy. Sustainability 2021, 13, 13840. [Google Scholar] [CrossRef]
- IRENA. International Renewable Energy Agency Dataset. Available online: https://www.irena.org/publications/2022/Jul/Renewable-Energy-Statistics-2022 (accessed on 9 December 2022).
- Almagtome, A.H.; Al-Yasiri, A.J.; Ali, R.S.; Kadhim, H.L.; Heider, N.B. Circular economy initiatives through energy accounting and sustainable energy performance under integrated reporting framework. Int. J. Math. Eng. Manag. Sci. 2020, 5, 1032. [Google Scholar] [CrossRef]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998. [Google Scholar]
- Ki-Moon, B. Sustainable Energy for All: A Vision Statement; United Nations: New York, NY, USA, 2011; Available online: www.sustainableenergyforall.org (accessed on 5 December 2022).
- Akpınar, A.; Kömürcü, M.İ.; Kankal, M.; Özölçer, İ.H.; Kaygusuz, K. Energy situation and renewables in Turkey and environmental effects of energy use. Renew. Sustain. Energy Rev. 2008, 12, 2013–2039. [Google Scholar] [CrossRef]
- Abdullah, F.B.; Iqbal, R.; Ahmad, S.; El-Affendi, M.A.; Abdullah, M. An empirical analysis of sustainable energy security for energy policy recommendations. Sustainability 2022, 14, 6099. [Google Scholar] [CrossRef]
- Ren, J.; Sovacool, B.K. Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics. Energy 2014, 76, 838–849. [Google Scholar] [CrossRef]
- Su, C.W.; Khan, K.; Umar, M.; Zhang, W. Does renewable energy redefine geopolitical risks? Energy Policy 2021, 158, 112566. [Google Scholar] [CrossRef]
- Overland, I.; Bazilian, M.; Uulu, T.I.; Vakulchuk, R.; Westphal, K. The GeGaLo index: Geopolitical gains and losses after energy transition. Energy Strategy Rev. 2019, 26, 100406. [Google Scholar] [CrossRef]
- Overland, I. The geopolitics of renewable energy: Debunking four emerging myths. Energy Res. Soc. Sci. 2019, 49, 36–40. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Zhang, Z.; Gu, Z.; Zhong, H.; Zha, Q.; Yang, L.; Zhu, C.; Chen, E. A bibliometric analysis using VOSviewer of publications on COVID-19. Ann. Transl. Med. 2020, 8, 816. [Google Scholar] [CrossRef]
- Tarakcioglu, A.A. Global research trends of integrated reporting with network map technique analysis. East. Eur. J. Enterp. Technol. 2022, 5, 117–125. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Z.; Chen, X. Paper Analysis of the Relevance of Place Attachment to Environment-Related Behavior: A Systematic Literature Review. Sustainability 2022, 14, 16073. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Dai, X.; Qi, M.; Liu, B. China’s Policy Environment’s development and path from the perspective of policy sustainability: A visual analysis based on CNKI and WoS. Sustainability 2022, 14, 16435. [Google Scholar] [CrossRef]
- Kuzior, A.; Sira, M. A bibliometric analysis of blockchain technology research using VOSviewer. Sustainability 2022, 14, 8206. [Google Scholar] [CrossRef]
- Kemeç, A. Analysis of smart city global research trends with network map technique. Manag. Res. Pract. 2022, 14, 46–59. [Google Scholar]
- Nandiyanto, A.B.D.; Al Husaeni, D.F. A bibliometric analysis of materials research in Indonesian journal using VOSviewer. J. Eng. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Guleria, D.; Kaur, G. Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989–2019. Libr. Hi Tech 2021, 39, 1001–1024. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Shen, X.; Wang., L. Topic evolution and emerging topic analysis based on open source software. Inf. Sci. 2020, 5, 126–136. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Chen, C. The Citespace Manual; College of Computing and Informatics, Drexel University: Philadelphia, PA, USA, 2014; pp. 1–84. [Google Scholar]
- Web of Science. Web of Science Core Collection. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on 12 December 2022).
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, R.; Zhao, Z. Critical Review of English Literature for National Parks Based on Bibliometric Analysis. Chin. Landsc. Archit. 2018, 7, 23–28. [Google Scholar]
- Thelwall, M. Bibliometrics to webometrics. J. Inf. Sci. 2008, 34, 605–621. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commer. Res. 2020, 22, 787–809. [Google Scholar] [CrossRef]
- Perelman, L.J. Speculations on the transition to sustainable energy. In Energy Transitions; Routledge: Oxfordshire, UK, 1980; pp. 185–216. [Google Scholar]
- Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Benato, A.; De Vanna, F.; Stoppato, A. Levelling the photovoltaic power profile with the integrated energy storage system. Energies 2022, 15, 9521. [Google Scholar] [CrossRef]
- Sornek, K.; Papis-Frączek, K. Development and tests of the solar air heater with thermal energy storage. Energies 2022, 15, 6583. [Google Scholar] [CrossRef]
- Jain, J.; Walia, N.; Singh, S.; Jain, E. Mapping the field of behavioural biases: A literature review using bibliometric analysis. Manag. Rev. Q. 2022, 72, 823–855. [Google Scholar] [CrossRef]
- Esfahani, H.; Tavasoli, K.; Jabbarzadeh, A. Big data and social media: A scientometrics analysis. Int. J. Data Netw. Sci. 2019, 3, 145–164. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Q.; Ali, S.; Zhai, X.; Bi, X.; Liu, R. Rehabilitation using virtual reality technology: A bibliometric analysis, 1996–2015. Scientometrics 2016, 109, 1547–1559. [Google Scholar] [CrossRef]
- Chen, W.; Geng, Y.; Zhong, S.; Zhuang, M.; Pan, H. A bibliometric analysis of ecosystem services evaluation from 1997 to 2016. Environ. Sci. Pollut. Res. 2020, 27, 23503–23513. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, C.S. Does natural resources matter for sustainable energy development in China: The role of technological progress. Resour. Policy 2022, 79, 103077. [Google Scholar] [CrossRef]
- Beaver, D.; Rosen, R. Studies in scientific collaboration: Part I. The professional origins of scientific co-authorship. Scientometrics 1978, 1, 65–84. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A holistic review of cement composites reinforced with graphene oxide. Constr. Build. Mater. 2018, 171, 291–302. [Google Scholar] [CrossRef]
- Streimikiene, D.; Baležentis, T.; Kriščiukaitienė, I. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania. Energy Policy 2012, 50, 699–710. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Zhang, Y.; Kumar, A.; Zavadskas, E.; Streimikiene, D. Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth. Sustain. Dev. 2020, 28, 833–843. [Google Scholar] [CrossRef]
- Streimikiene, D. Indicators for sustainable energy development in Lithuania. Nat. Resour. Forum 2005, 29, 322–333. [Google Scholar] [CrossRef]
- Štreimikienė, D. Impact of environmental taxes on sustainable energy development in Baltic States, Czech Republic and Slovakia. Econ. Manag. 2015, 8, 4–23. [Google Scholar] [CrossRef][Green Version]
- Dzikowski, P. A bibliometric analysis of born global firms. J. Bus. Res. 2018, 85, 281–294. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Dunn, S. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 2002, 27, 235–264. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrogen Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.; Brandon, N.P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362. [Google Scholar] [CrossRef]
- Seyfang, G.; Haxeltine, A. Growing grassroots innovations: Exploring the role of community-based initiatives in governing sustainable energy transitions. Environ. Plan. C Gov. Policy 2012, 30, 381–400. [Google Scholar] [CrossRef]
- Kiss, A.A.; Dimian, A.C.; Rothenberg, G. Solid acid catalysts for biodiesel production- towards sustainable energy. Adv. Synth. Catal. 2006, 348, 75–81. [Google Scholar] [CrossRef]
- Lund, H.; Salgi, G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manag. 2009, 50, 1172–1179. [Google Scholar] [CrossRef]
- Shuit, S.H.; Tan, K.T.; Lee, K.T.; Kamaruddin, A.H. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 2009, 34, 1225–1235. [Google Scholar] [CrossRef]
- Długołȩcki, P.; Gambier, A.; Nijmeijer, K.; Wessling, M. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ. Sci. Technol. 2009, 43, 6888–6894. [Google Scholar] [CrossRef]
- Seyfang, G.; Hielscher, S.; Hargreaves, T.; Martiskainen, M.; Smith, A. A grassroots sustainable energy niche? Reflections on community energy in the UK. Environ. Innov. Soc. Transit. 2014, 13, 21–44. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 1980–2022 |
Sources (Journals) | 636 |
Documents | 1498 |
Document average age | 5.99 |
Years on average since publication | 35.66 |
Per-document average for citations | 21.85 |
References | 64,505 |
Authors | 4466 |
Single-authored documents | 239 |
Multi-authored documents | 1259 |
Collaboration Index 1 | 3.35 |
R * | C * | K * | A * | TLS * | AP * |
---|---|---|---|---|---|
1 | 10 | Renewable energy | 222 | 632 | 2016 |
2 | 3 | Sustainable energy | 344 | 550 | 2017 |
3 | 6 | Sustainability | 151 | 476 | 2018 |
4 | 9 | Sustainable development | 99 | 396 | 2014 |
5 | 5 | Energy | 76 | 340 | 2017 |
6 | 5 | Energy efficiency | 73 | 287 | 2016 |
7 | 7 | Energy transition | 66 | 213 | 2018 |
8 | 4 | Energy policy | 68 | 210 | 2017 |
9 | 2 | Biomass | 60 | 180 | 2015 |
10 | 3 | Climate change | 34 | 159 | 2017 |
CR * | C * | A * | TA * | SCP * | MCP * | F * | MCP_Ratio * |
---|---|---|---|---|---|---|---|
China | 2 | 153 | 3887 | 87 | 66 | 0.102 | 0.431 |
USA | 7 | 147 | 7269 | 112 | 35 | 0.098 | 0.238 |
United Kingdom | 3 | 110 | 3712 | 84 | 26 | 0.073 | 0.236 |
India | 1 | 79 | 877 | 64 | 15 | 0.053 | 0.190 |
Germany | 6 | 72 | 1176 | 58 | 14 | 0.048 | 0.194 |
Italy | 5 | 58 | 1230 | 46 | 12 | 0.039 | 0.207 |
The Netherlands | 1 | 48 | 1682 | 40 | 8 | 0.032 | 0.167 |
Canada | 6 | 42 | 393 | 28 | 14 | 0.028 | 0.333 |
Spain | 2 | 42 | 440 | 31 | 11 | 0.028 | 0.262 |
Turkey | 2 | 41 | 500 | 37 | 4 | 0.027 | 0.098 |
R * | AU * | TA * | CA * | FA * | CR * | H-Index |
---|---|---|---|---|---|---|
1 | Štreimikienė, Dalia | 15 | Lithuanian Institute of Agrarian Economics | 2005 | Lithuania | 41 |
2 | Breyer, Christian | 9 | LUT University | 2017 | Finland | 40 |
3 | Bak, Tadeusz | 8 | Western Sydney University | 2014 | Australia | 13 |
4 | Nowotny, Janusz | 7 | Western Sydney University | 2014 | Australia | 39 |
5 | Atanacio, Armand J. | 6 | Australian Nuclear Science and Technology Organization | 2016 | Australia | 11 |
6 | Kuzemko, Caroline | 6 | University of Warwick | 2016 | England | 14 |
7 | Balezentis, Tomas | 6 | Lithuanian Institute of Agrarian Economics | 2012 | Lithuania | 36 |
8 | Ionescu, Mihail | 6 | Australian Nuclear Science and Technology Organization | 2016 | Australia | 26 |
9 | Wang, Zhong Lin | 5 | Georgia Institute of Technology | 2010 | USA | 264 |
10 | Rahman, Kazi Akikur | 5 | United States Department of Energy | 2018 | USA | 4 |
R * | J * | I * | P * | CR * | TA * (%) | TC * | H-Index | IF (2021) 1 | FA * | JCI 2 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Energy Policy | SCIE | Elsevier | England | 84 (5.6) | 3904 | 212 | 7.576 | 1997 | 1.64 |
2 | Sustainability | SSCI | MDPI | Switzerland | 65 (4.3) | 530 | 109 | 3.889 | 2009 | 0.65 |
3 | Energies | SCIE | MDPI | Switzerland | 58 (3.8) | 497 | 111 | 3.252 | 2008 | 0.45 |
4 | Journal of Cleaner Production | SCIE | Elsevier | England | 56 (3.7) | 1234 | 232 | 11.072 | 1993 | 1.51 |
5 | Renewable Energy | SCIE | Elsevier | England | 39 (2.6) | 1141 | 337 | 8.634 | 1991 | 1.38 |
6 | Energy | SCIE | Elsevier | England | 35 (2.3) | 1705 | 212 | 8.857 | 1976 | 1.46 |
7 | Applied Energy | SCIE | Elsevier | England | 31 (2.06) | 1130 | 235 | 11.446 | 1997 | 1.67 |
8 | Renewable Sustainable Energy Reviews | SCIE | Elsevier | England | 25 (1.66) | 721 | 337 | 16.799 | 1997 | 1.26 |
9 | Energy Research Social Science | SSCI | Elsevier | The Netherlands | 21 (1.4) | 720 | 76 | 8.514 | 2014 | 1.75 |
10 | Sustainable Energy Technologies and Assessments | SSCI | Elsevier | The Netherlands | 19 (1.26) | 212 | 48 | 7.632 | 2013 | 1.07 |
R * | T * | Y * | TC * | CC * | AC * |
---|---|---|---|---|---|
1 | “The path towards sustainable energy” [72]. | 2017 | 2268 | 6.94% | 378 |
2 | “Hydrogen futures: toward a sustainable energy system” [73]. | 2002 | 1000 | 3.05% | 47.62 |
3 | “The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet” [74]. | 2005 | 679 | 2.07% | 37.72 |
4 | “Hydrogen and fuel cells: Towards a sustainable energy future” [75]. | 2008 | 635 | 1.94% | 42.33 |
5 | “Growing grassroots innovations: exploring the role of community-based initiatives in governing sustainable energy transitions” [76]. | 2012 | 497 | 1.52% | 45.18 |
6 | “Solid acid catalysts for biodiesel production—Towards sustainable energy” [77]. | 2006 | 459 | 1.4% | 27.00 |
7 | “The role of compressed air energy storage (CAES) in future sustainable energy systems” [78]. | 2009 | 362 | 1.1% | 25.86 |
8 | “Oil palm biomass as a sustainable energy source: A Malaysian case study” [79]. | 2009 | 316 | 0.96% | 22.57 |
9 | “Practical Potential of Reverse Electrodialysis as Process for Sustainable Energy Generation” [80]. | 2009 | 249 | 0.76% | 17.79 |
10 | “A grassroots sustainable energy niche? Reflections on community energy in the UK” [81]. | 2014 | 241 | 0.73% | 26.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemeç, A.; Altınay, A.T. Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability 2023, 15, 3618. https://doi.org/10.3390/su15043618
Kemeç A, Altınay AT. Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability. 2023; 15(4):3618. https://doi.org/10.3390/su15043618
Chicago/Turabian StyleKemeç, Abidin, and Ayşenur Tarakcıoglu Altınay. 2023. "Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools" Sustainability 15, no. 4: 3618. https://doi.org/10.3390/su15043618
APA StyleKemeç, A., & Altınay, A. T. (2023). Sustainable Energy Research Trend: A Bibliometric Analysis Using VOSviewer, RStudio Bibliometrix, and CiteSpace Software Tools. Sustainability, 15(4), 3618. https://doi.org/10.3390/su15043618