Exploring the Potential of Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residues and Biochar in Minimizing Human Exposure to Antibiotics Contamination in Edible Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibiotics
2.2. Soil Amendments: Co-Application of SL-BC and SL-CMHR-BC
2.3. Greenhouse Pot Experiment
2.4. Extraction and Analytical Methods for Determination of Antibiotic Concentration
2.5. Estimation of Bioaccumulation and Translocation of Antibiotics
2.6. Assessment of Potential Human Exposure to Antibiotics
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of SL-BC and SL-CMHR-BC on Antibiotics Concentration in Soils
3.2. Effect of SL-BC and SL-CMHR-BC on Antibiotics Concentration in Tomato Tissues
3.3. Effect of SL-BC and SL-CMHR-BC on Bioaccumulation and Translocation
3.4. Human Exposure Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, K.; Gupta, S.C.; Chander, Y.; Singh, A.K. Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 2005, 87, 1–54. [Google Scholar] [CrossRef]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- Hanjra, M.A.; Blackwell, J.; Carr, G.; Zhang, F.; Jackson, T.M. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Prosser, R.S.; Sibley, P.K. Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation. Environ. Int. 2015, 75, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Chiou, C.T.; Sheng, G.; Manes, M. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 2001, 35, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Tasho, R.P.; Ryu, S.H.; Cho, J.Y. Effect of sulfadimethoxine, oxytetracycline, and streptomycin antibiotics in three types of crop plants—Root, leafy, and fruit. Appl. Sci. 2020, 10, 1111. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, I.S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef]
- Christou, A.; Kyriacou, M.C.; Georgiadou, E.C.; Papamarkou, R.; Hapeshi, E.; Karaolia, P.; Michael, C.; Fotopoulos, V.; Fatta-Kassinos, D. Uptake and bioaccumulation of three widely prescribed pharmaceutically active compounds in tomato fruits and mediated effects on fruit quality attributes. Sci. Total Environ. 2019, 647, 1169–1178. [Google Scholar] [CrossRef]
- Ben, Y.; Hu, M.; Zhong, F.; Du, E.; Li, Y.; Zhang, H.; Andrews, C.B.; Zheng, C. Human daily dietary intakes of antibiotic residues: Dominant sources and health risks. Environ. Res. 2022, 212, 113387. [Google Scholar] [CrossRef]
- Li, X.W.; Xie, Y.F.; Li, C.L.; Zhao, H.N.; Zhao, H.; Wang, N.; Wang, J.F. Investigation of residual fluoroquinolones in a soil–vegetable system in an intensive vegetable cultivation area in Northern China. Sci. Total Environ. 2014, 468–469, 258–264. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Zaharioiu, A.; Oancea, S.; Bucura, F.; Raboaca, M.S.; Filote, C.; Ionete, R.E.; Niculescu, V.C.; Constantinescu, M. Sewage sludge derived materials for CO2 adsorption. Appl. Sci. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K.; Kumar, A. A review on sewage sludge (biosolids) a resource for sustainable agriculture. Arch. Agric. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Bair, D.A.; Anderson, C.G.; Chung, Y.; Scow, K.M.; Franco, R.B.; Parikh, S.J. Impact of biochar on plant growth and uptake of ciprofloxacin, triclocarban and triclosan from biosolids. J. Environ. Sci. Health Part B 2020, 55, 990–1001. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P.; Różyło, K. Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Sci. Total Environ. 2017, 599, 854–862. [Google Scholar] [CrossRef]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environ. Geochem. Health 2019, 41, 1663–1674. [Google Scholar] [CrossRef]
- Pan, M. Biochar adsorption of antibiotics and its implications to remediation of contaminated soil. Water Air Soil Pollut. 2020, 231, 221. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Vithanage, M.; Lim, J.E.; Ahmed, M.B.M.; Zhang, M.; Lee, S.S.; Ok, Y.S. Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere 2014, 111, 500–504. [Google Scholar] [CrossRef]
- Ye, M.; Sun, M.; Feng, Y.; Wan, J.; Xie, S.; Tian, D.; Zhao, Y.; Wu, J.; Hu, F.; Li, H.; et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. J. Hazard. Mater. 2016, 309, 219–227. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Z.; Zhu, Y. Changes in abiotic dissipation rates and bound fractions of antibiotics in biochar-amended soil. J. Clean. Prod. 2020, 256, 120314. [Google Scholar] [CrossRef]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour. Technol. 2018, 249, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresour. Technol. 2014, 168, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Wang, K.; Huang, Y.; Wang, H. Re-utilization of Chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. Chemosphere 2021, 283, 131262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste. Bioresour. Technol. 2016, 217, 190–199. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, J.; Wang, X.; Sun, W.; Yin, Y.; Sun, Y.; Guo, A.; Tuo, X. Behavior of antibiotic resistance genes during co-composting of swine manure with Chinese medicinal herbal residues. Bioresour. Technol. 2017, 244, 252–260. [Google Scholar] [CrossRef]
- Mutiyar, P.K.; Mittal, A.K. Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: A case study of emerging pollutant. Desalin. Water Treat. 2013, 51, 6158–6164. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Dong, Y.H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. J. Hazard. Mater. 2008, 151, 833–839. [Google Scholar] [CrossRef]
- Yang, X.; Flowers, R.C.; Weinberg, H.S.; Singer, P.C. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res. 2011, 45, 5218–5228. [Google Scholar] [CrossRef]
- Peng, X.; Tan, J.; Tang, C.; Yu, Y.; Wang, Z. Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environ. Toxicol. Chem. Int. J. 2008, 27, 73–79. [Google Scholar] [CrossRef]
- Xue, Q.; Qi, Y.; Liu, F. Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters. Environ. Sci. Pollut. Res. 2015, 22, 16857–16867. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Yau, P.C.; Lee, K.C.; Zhang, H.; Lee, V.; Lai, C.Y.; Fan, H.J. Nutrient accumulation and environmental risks of biosolids and different fertilizers on horticultural plants. Water Air Soil Pollut. 2021, 232, 480. [Google Scholar] [CrossRef]
- Hamscher, G.; Pawelzick, H.T.; Sczesny, S.; Nau, H.; Hartung, J. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers? Environ. Health Perspect. 2003, 111, 1590–1594. [Google Scholar] [CrossRef]
- Yao, L.; Wang, Y.; Tong, L.; Li, Y.; Deng, Y.; Guo, W.; Gan, Y. Seasonal variation of antibiotics concentration in the aquatic environment: A case study at Jianghan Plain, central China. Sci. Total Environ. 2015, 527–528, 56–64. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Sci. Total Environ. 2018, 624, 145–152. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Exposure Factors Handbook—Chapter 9. Intake of Fruits and Vegetables. Available online: https://www.epa.gov/expobox/exposure-factors-handbook-chapter-9 (accessed on 17 December 2022).
- Zhou, L.J.; Wang, W.X.; Lv, Y.J.; Mao, Z.G.; Chen, C.; Wu, Q.L. Tissue concentrations, trophic transfer and human risks of antibiotics in freshwater food web in Lake Taihu, China. Ecotoxicol. Environ. Saf. 2020, 197, 110626. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organization of the United Nations (FAO). Residues of Some Veterinary Drugs in Foods and Animals. Available online: https://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-vetdrugs/en/ (accessed on 17 December 2022).
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on chloramphenicol in food and feed. EFSA J. 2014, 12, 3907. [Google Scholar] [CrossRef]
- Hanekamp, J.C.; Bast, A. Antibiotics exposure and health risks: Chloramphenicol. Environ. Toxicol. Pharmacol. 2015, 39, 213–220. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total Environ. 2017, 599–600, 500–512. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Wang, J.; Lin, H.; Sun, W.; Xia, Y.; Ma, J.; Fu, J.; Zhang, Z.; Wu, H.; Qian, M. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable–soil systems following manure application. J. Hazard. Mater. 2016, 304, 49–57. [Google Scholar] [CrossRef]
- Duan, M.; Li, H.; Gu, J.; Tuo, X.; Sun, W.; Qian, X.; Wang, X. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ. Pollut. 2017, 224, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Du, R.; Ye, M.; Sun, M.; Feng, Y.; Wan, J.; Zhao, Y.; Zhang, Z.; Huang, D.; Du, D.; et al. Agricultural waste to treasure–Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Environ. Pollut. 2018, 242, 2088–2095. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Papadavid, G.; Dalias, P.; Fotopoulos, V.; Michael, C.; Bayona, J.M.; Piña, B.; Fatta-Kassinos, D. Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. Environ. Res. 2019, 170, 422–432. [Google Scholar] [CrossRef]
- Hussain, S.; Naeem, M.; Chaudhry, M.N.; Iqbal, M.A. Accumulation of residual antibiotics in the vegetables irrigated by pharmaceutical wastewater. Expos. Health 2016, 8, 107–115. [Google Scholar] [CrossRef]
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Chen, J.; Li, Y.; Liu, X.; Feng, Y.; Sun, Y. Source, occurrence and risks of twenty antibiotics in vegetables and soils from facility agriculture through fixed-point monitoring and numerical simulation. J. Environ. Manag. 2022, 319, 115652. [Google Scholar] [CrossRef]
- Keerthanan, S.; Jayasinghe, C.; Bolan, N.; Rinklebe, J.; Vithanage, M. Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil. Chemosphere 2022, 297, 134073. [Google Scholar] [CrossRef]
- Camacho-Arévalo, R.; García-Delgado, C.; Mayans, B.; Antón-Herrero, R.; Cuevas, J.; Segura, M.L.; Eymar, E. Sulfonamides in tomato from commercial greenhouses irrigated with reclaimed wastewater: Uptake, translocation and food safety. Agronomy 2021, 11, 1016. [Google Scholar] [CrossRef]
- Mathews, S.; Reinhold, D. Biosolid-borne tetracyclines and sulfonamides in plants. Environ. Sci. Pollut. Res. 2013, 20, 4327–4338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xue, J.; Cheng, D.; Feng, Y.; Liu, Y.; Aly, H.M.; Li, Z. Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L. Environ. Pollut. 2019, 250, 47–57. [Google Scholar] [CrossRef] [PubMed]
Amoxicillin (AMX) | Tetracycline (TC) | Sulfamethazine (SMZ) | Norfloxacin (NOR) | Erythromycin (ERY) | Chloramphenicol (CAP) | |
---|---|---|---|---|---|---|
Molecular formula | C16H19N3O5S | C22H24N2O8 | C12H14N4O2S | C16H18FN3O3 | C37H67NO13 | C11H12Cl2N2O5 |
Molecular weight | 365.4 | 444.43 | 278.33 | 319.33 | 733.93 | 323.13 |
pKa | 3.2; 7.4 [27] | 3.3; 7.7; 9.7 [28] | 2.8; 7.5 [28] | 3.1; 6.1; 8.6 [29] | 8.9; 12.9 [30] | 5.5 [31]; 9.6 [32] |
Log Kow | 0.87 | −1.3 | 0.76 | −1.03 | not available | 0.92 |
Koc (L/kg) a | 108.4 | 1.37 × 105 | 165 | 7.48 × 104 | 1.63 × 104 | 127.63 |
EDI (ng/kg/day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IW3 | IW30 | ||||||||||
AMX | ERY | CAP | TC | NOR | SMZ | AMX | ERY | CAP | TC | NOR | SMZ |
Carrot root | |||||||||||
0.013 | 0.075 | 0.103 | 0.089 | 0.256 | 0.017 | 0.021 | 0.615 | 0.810 | 0.663 | 1.491 | 0.066 |
0.011 | 0.066 | 0.092 | 0.081 | 0.222 | 0.016 | 0.019 | 0.542 | 0.678 | 0.593 | 1.310 | 0.060 |
0.004 | 0.062 | 0.086 | 0.073 | 0.206 | 0.007 | 0.015 | 0.446 | 0.583 | 0.463 | 1.059 | 0.044 |
0 | 0.049 | 0.074 | 0.068 | 0.189 | 0.004 | 0.007 | 0.433 | 0.554 | 0.469 | 1.016 | 0.043 |
0.010 | 0.063 | 0.082 | 0.072 | 0.197 | 0.013 | 0.017 | 0.475 | 0.621 | 0.497 | 1.133 | 0.053 |
0.009 | 0.051 | 0.069 | 0.064 | 0.172 | 0.012 | 0.015 | 0.424 | 0.566 | 0.478 | 1.017 | 0.046 |
0 | 0.020 | 0.028 | 0.021 | 0.073 | 0 | 0.005 | 0.264 | 0.429 | 0.291 | 0.812 | 0.026 |
Lettuce leaf | |||||||||||
0 | 0.007 | 0.047 | 0.081 | 0.228 | 0 | 0 | 0.081 | 0.209 | 0.485 | 1.720 | 0 |
0 | 0.006 | 0.042 | 0.072 | 0.200 | 0 | 0 | 0.071 | 0.179 | 0.397 | 1.483 | 0 |
0 | 0.005 | 0.032 | 0.061 | 0.171 | 0 | 0 | 0.062 | 0.155 | 0.357 | 1.286 | 0 |
0 | 0.004 | 0.030 | 0.058 | 0.164 | 0 | 0 | 0.060 | 0.153 | 0.346 | 1.251 | 0 |
0 | 0.006 | 0.038 | 0.070 | 0.194 | 0 | 0 | 0.064 | 0.166 | 0.432 | 1.507 | 0 |
0 | 0.005 | 0.034 | 0.064 | 0.181 | 0 | 0 | 0.055 | 0.144 | 0.366 | 1.323 | 0 |
0 | 0.001 | 0.023 | 0.028 | 0.113 | 0 | 0 | 0.027 | 0.088 | 0.232 | 0.954 | 0 |
Tomato fruit | |||||||||||
0 | 0.104 | 0.220 | 1.204 | 0 | 0 | 0 | 0 | 0.182 | 1.342 | 4.231 | 0 |
0 | 0.095 | 0.192 | 1.088 | 0 | 0 | 0 | 0 | 0.170 | 1.179 | 3.698 | 0 |
0 | 0.085 | 0.164 | 0.949 | 0 | 0 | 0 | 0 | 0.158 | 1.053 | 3.251 | 0 |
0 | 0.075 | 0.157 | 0.844 | 0 | 0 | 0 | 0 | 0.131 | 0.892 | 2.954 | 0 |
0 | 0.080 | 0.166 | 0.897 | 0 | 0 | 0 | 0 | 0.130 | 0.998 | 3.161 | 0 |
0 | 0.068 | 0.149 | 0.799 | 0 | 0 | 0 | 0 | 0.114 | 0.911 | 2.862 | 0 |
0 | 0.019 | 0.050 | 0.652 | 0 | 0 | 0 | 0 | 0.090 | 0.411 | 1.284 | 0 |
HQ | |||||||||||
IW3 | IW30 | ||||||||||
AMX | ERY | CAP | TC | NOR | SMZ | AMX | ERY | CAP | TC | NOR | SMZ |
Carrot root | |||||||||||
<0.001 | <0.001 | 0.048 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.378 | <0.001 | <0.001 | <0.001 |
<0.001 | <0.001 | 0.043 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.316 | <0.001 | <0.001 | <0.001 |
<0.001 | <0.001 | 0.040 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.272 | <0.001 | <0.001 | <0.001 |
<0.001 | <0.001 | 0.034 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.259 | <0.001 | <0.001 | <0.001 |
<0.001 | <0.001 | 0.038 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.290 | <0.001 | <0.001 | <0.001 |
<0.001 | <0.001 | 0.032 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.264 | <0.001 | <0.001 | <0.001 |
0 | <0.001 | 0.013 | <0.001 | <0.001 | 0 | <0.001 | <0.001 | 0.200 | <0.001 | <0.001 | <0.001 |
Lettuce leaf | |||||||||||
0 | <0.001 | 0.022 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.098 | <0.001 | <0.001 | 0 |
0 | <0.001 | 0.019 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.083 | <0.001 | <0.001 | 0 |
0 | <0.001 | 0.015 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.072 | <0.001 | <0.001 | 0 |
0 | <0.001 | 0.014 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.072 | <0.001 | <0.001 | 0 |
0 | <0.001 | 0.018 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.077 | <0.001 | <0.001 | 0 |
0 | <0.001 | 0.016 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.067 | <0.001 | <0.001 | 0 |
0 | <0.001 | 0.011 | <0.001 | <0.001 | 0 | 0 | <0.001 | 0.041 | <0.001 | <0.001 | 0 |
Tomato fruit | |||||||||||
0 | 0 | 0.049 | <0.001 | <0.001 | 0 | 0 | 0 | 0.085 | <0.001 | <0.001 | 0 |
0 | 0 | 0.045 | <0.001 | <0.001 | 0 | 0 | 0 | 0.079 | <0.001 | <0.001 | 0 |
0 | 0 | 0.040 | <0.001 | <0.001 | 0 | 0 | 0 | 0.074 | <0.001 | <0.001 | 0 |
0 | 0 | 0.035 | <0.001 | <0.001 | 0 | 0 | 0 | 0.061 | <0.001 | <0.001 | 0 |
0 | 0 | 0.037 | <0.001 | <0.001 | 0 | 0 | 0 | 0.061 | <0.001 | <0.001 | 0 |
0 | 0 | 0.032 | <0.001 | <0.001 | 0 | 0 | 0 | 0.053 | <0.001 | <0.001 | 0 |
0 | 0 | 0.009 | <0.001 | <0.001 | 0 | 0 | 0 | 0.041 | <0.001 | <0.001 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Zhang, H.; Luo, L.-W.; Yau, P.-C. Exploring the Potential of Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residues and Biochar in Minimizing Human Exposure to Antibiotics Contamination in Edible Crops. Sustainability 2023, 15, 2980. https://doi.org/10.3390/su15042980
Pan M, Zhang H, Luo L-W, Yau P-C. Exploring the Potential of Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residues and Biochar in Minimizing Human Exposure to Antibiotics Contamination in Edible Crops. Sustainability. 2023; 15(4):2980. https://doi.org/10.3390/su15042980
Chicago/Turabian StylePan, Min, Hao Zhang, Li-Wen Luo, and Pui-Ching Yau. 2023. "Exploring the Potential of Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residues and Biochar in Minimizing Human Exposure to Antibiotics Contamination in Edible Crops" Sustainability 15, no. 4: 2980. https://doi.org/10.3390/su15042980
APA StylePan, M., Zhang, H., Luo, L.-W., & Yau, P.-C. (2023). Exploring the Potential of Co-Application of Sewage Sludge, Chinese Medicinal Herbal Residues and Biochar in Minimizing Human Exposure to Antibiotics Contamination in Edible Crops. Sustainability, 15(4), 2980. https://doi.org/10.3390/su15042980