Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Experimental Setup and Operation
2.3. Analytical Methods
2.4. Kinetic Model
- B(t) = methane yield at time t (mLCH4/gVS);
- B∞ = ultimate methane yield (mLCH4/gVS);
- k = first-order rate constant (d−1); and
- t = time (d).
2.5. Statistical Parameters and Analysis
3. Results
3.1. Model Accuracy
3.2. Impact of GO and ISRs on the Kinetic Parameters
3.2.1. Ultimate Methane Yield B∞
3.2.2. First-Order Rate Constant k
3.3. Impact of GO and ISRs on the pH and FOS/TAC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Experimental | Model | |||||
---|---|---|---|---|---|---|
Feed | BMP (mLCH4/gVS) | B∞ (mLCH4/gVS) | k (d−1) | rRSME (%) | R2 | |
I | 357 ± 8 | 372 ± 0.0 | 0.59 ± 0.02 | 6.8 ± 0.5 | 0.97 ± 0.00 | |
II † | 310 ± 7 | 311 ± 7 | 1.39 ± 0.05 | 3.1 ± 0.4 | 0.99 ± 0.00 | |
0–2 | III ‡ | 328 ± 12 | 327 ± 12 | 1.50 ± 0.09 | 2.2 ± 0.1 | 0.99 ± 0.00 |
IV † | 309 ± 5 | 309 ± 3 | 1.30 ± 0.06 | 3.1 ± 0.4 | 0.99 ± 0.00 | |
V * | 341 | 342 | 1.25 | 2.8 | 0.99 | |
I | 343 ± 20 | 365 ± 12 | 0.61 ± 0.07 | 6.9 ± 0.8 | 0.97 ± 0.01 | |
II | 312 ± 37 | 313 ± 34 | 1.54 ± 0.15 | 3.5 ± 0.5 | 0.98 ± 0.00 | |
10–2 | III | 314 ± 10 | 311 ± 9 | 1.54 ± 0.07 | 2.3 ± 0.1 | 0.99 ± 0.00 |
IV † | 309 ± 4 | 309 ± 3 | 1.55 ± 0.04 | 2.7 ± 0.2 | 0.99 ± 0.00 | |
V * | 332 | 322 | 1.09 | 4.6 | 0.96 | |
I | 326 ± 15 | 355 ± 13 | 0.57 ± 0.03 | 6.4 ± 0.2 | 0.98 ± 0.00 | |
II | 296 ± 13 | 298 ± 13 | 1.42 ± 0.09 | 3.4 ± 0.2 | 0.98 ± 0.00 | |
20–2 | III ‡ | 309 ± 6 | 304 ± 6 | 1.44 ± 0.06 | 2.4 ± 0.3 | 0.99 ± 0.00 |
IV † | 322 ± 7 | 322 ± 7 | 1.43 ± 0.08 | 2.7 ± 0.2 | 0.99 ± 0.00 | |
V * | 305 | 302 | 1.39 | 1.9 | 0.99 | |
I † | 358 ± 6 | 372 ± 0 | 0.61 ± 0.01 | 7.0 ± 0.4 | 0.97 ± 0.00 | |
II | 310 ± 7 | 311 ± 7 | 1.45 ± 0.06 | 3.3 ± 0.1 | 0.98 ± 0.00 | |
0–1 | III | 313 ± 11 | 315 ± 9 | 1.43 ± 0.13 | 3.4 ± 0.4 | 0.98 ± 0.00 |
IV ‡ | 312 ± 9 | 348 ± 18 | 0.51 ± 0.05 | 7.0 ± 0.5 | 0.97 ± 0.01 | |
V ‡ | 343 ± 14 | 336 ± 15 | 1.56 ± 0.04 | 2.7 ± 0.4 | 0.98 ± 0.01 | |
I † | 335 ± 4 | 365 ± 6 | 0.57 ± 0.02 | 6.5 ± 0.2 | 0.97 ± 0.00 | |
II | 298 ± 7 | 301 ± 6 | 1.44 ± 0.06 | 3.7 ± 0.1 | 0.98 ± 0.00 | |
10–1 | III | 301 ± 6 | 301 ± 6 | 1.67 ± 0.09 | 2.5 ± 0.2 | 0.99 ± 0.00 |
IV † | 316 ± 7 | 336 ± 8 | 0.64 ± 0.04 | 6.2 ± 0.2 | 0.97 ± 0.00 | |
V ″ | 332 ± 0 | 331 ± 1 | 1.78 ± 0.07 | 1.7 ± 0.0 | 0.99 ± 0.00 | |
I | 326 ± 12 | 358 ± 9 | 0.55 ± 0.03 | 6.5 ± 0.1 | 0.97 ± 0.00 | |
II † | 307 ± 3 | 308 ± 4 | 1.41 ± 0.05 | 3.7 ± 0.0 | 0.98 ± 0.00 | |
20–1 | III † | 310 ± 10 | 308 ± 9 | 1.60 ± 0.04 | 2.3 ± 0.1 | 0.99 ± 0.00 |
IV † | 307 ± 8 | 331 ± 9 | 0.61 ± 0.01 | 6.8 ± 0.1 | 0.96 ± 0.00 | |
V † | 335 ± 9 | 332 ± 8 | 1.76 ± 0.08 | 1.8 ± 0.2 | 0.99 ± 0.00 | |
I | 350 ± 8 | 372 ± 0 | 0.56 ± 0.04 | 6.5 ± 0.5 | 0.98 ± 0.00 | |
II † | 300 ± 9 | 302 ± 7 | 1.42 ± 0.02 | 3.4 ± 0.2 | 0.98 ± 0.00 | |
0–0.75 | III | 307 ± 15 | 307 ± 13 | 1.44 ± 0.09 | 3.2 ± 0.3 | 0.98 ± 0.00 |
IV ‡ | 337 ± 13 | 358 ± 24 | 0.38 ± 0.07 | 11.6 ± 2.4 | 0.91 ± 0.06 | |
V ″ | 339 ± 5 | 323 ± 9 | 1.68 ± 0.04 | 3.5 ± 0.4 | 0.97 ± 0.01 | |
I † | 332 ± 4 | 364 ± 5 | 0.56 ± 0.02 | 6.4 ± 0.2 | 0.98 ± 0.00 | |
II | 303 ± 6 | 305 ± 6 | 1.47 ± 0.04 | 3.5 ± 0.1 | 0.98 ± 0.00 | |
10–0.75 | III ‡ | 305 ± 5 | 305 ± 4 | 1.66 ± 0.08 | 2.5 ± 0.2 | 0.99 ± 0.00 |
IV ‡ | 325 ± 19 | 372 ± 0 | 0.34 ± 0.02 | 10.7 ± 2.5 | 0.93 ± 0.04 | |
V ″ | 338 ± 43 | 329 ± 37 | 1.43 ± 0.10 | 4.1 ± 0.5 | 0.97 ± 0.01 | |
I | 318 ± 11 | 346 ± 12 | 0.59 ± 0.03 | 6.5 ± 0.1 | 0.97 ± 0.00 | |
II | 297 ± 7 | 299 ± 6 | 1.48 ± 0.05 | 3.9 ± 0.3 | 0.98 ± 0.00 | |
20–0.75 | III † | 296 ± 5 | 297 ± 6 | 1.64 ± 0.07 | 2.5 ± 0.2 | 0.99 ± 0.00 |
IV † | 322 ± 13 | 363 ± 11 | 0.20 ± 0.02 | 8.2 ± 1.2 | 0.96 ± 0.01 | |
V ‡ | 304 ± 14 | 309 ± 15 | 1.31 ± 0.14 | 3.8 ± 0.4 | 0.98 ± 0.00 |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | P-Value | |
---|---|---|---|---|---|
GO | 2 | 3322.94952 | 1661.47476 | 13.52386 | 4.50341 × 10−6 |
ISR | 2 | 1064.13914 | 532.06957 | 4.33087 | 0.01506 |
Feed | 4 | 91,174.36975 | 22,793.59244 | 185.53243 | 0 |
GO × ISR | 4 | 1178.02982 | 294.50745 | 2.39719 | 0.05341 |
GO × ISR | 8 | 1716.566 | 214.57075 | 1.74654 | 0.09335 |
ISR × Feed | 8 | 16,079.85973 | 2009.98247 | 16.3606 | 1.11022 × 10−16 |
GO × ISR × Feed | 16 | 2459.69914 | 153.7312 | 1.25132 | 0.23831 |
Model | 44 | 117,776.90507 | 2676.74784 | 21.78786 | 0 |
Error | 133 | 16,339.71885 | 122.85503 | 0 | 0 |
Corrected Total | 177 | 134,116.62393 | 0 | 0 | 0 |
GO | ISR | Feed | Mean | Groups 1 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | I | 372 | A | |||||||||||||
10 | 0.75 | IV | 372 | A | B | ||||||||||||
0 | 1 | I | 372 | A | B | ||||||||||||
0 | 0.75 | I | 372 | A | |||||||||||||
10 | 2 | I | 365.49403 | A | B | C | |||||||||||
10 | 1 | I | 365.2831 | A | B | C | D | ||||||||||
10 | 0.75 | I | 364.38624 | A | B | C | D | ||||||||||
20 | 0.75 | IV | 362.80431 | A | B | C | D | E | |||||||||
0 | 0.75 | IV | 357.98037 | A | B | C | D | E | F | G | |||||||
20 | 1 | I | 357.80345 | A | B | C | D | E | F | ||||||||
20 | 2 | I | 354.78967 | A | B | C | D | E | F | G | |||||||
0 | 1 | IV | 348.03364 | A | B | C | D | E | F | G | H | I | |||||
20 | 0.75 | I | 346.30224 | B | C | D | E | F | G | H | |||||||
0 | 2 | V | 341.52374 | A | B | C | D | E | F | G | H | I | J | K | L | M | |
10 | 1 | IV | 336.44378 | E | F | G | H | I | J | ||||||||
0 | 1 | V | 336.35243 | C | D | E | F | G | H | I | J | K | |||||
20 | 1 | V | 332.35585 | F | G | H | I | J | K | L | |||||||
10 | 1 | V | 331.35573 | D | E | F | G | H | I | J | K | L | M | ||||
20 | 1 | IV | 330.59132 | G | H | I | J | K | L | M | |||||||
10 | 0.75 | V | 329.48386 | E | F | G | H | I | J | K | L | M | |||||
0 | 2 | III | 327.01213 | G | H | I | J | K | L | M | |||||||
0 | 0.75 | V | 322.86852 | G | H | I | J | K | L | M | |||||||
20 | 2 | IV | 321.60454 | H | I | J | K | L | M | ||||||||
10 | 2 | V | 321.51135 | D | E | F | G | H | I | J | K | L | M | ||||
0 | 1 | III | 314.63418 | J | K | L | M | ||||||||||
10 | 2 | II | 312.60576 | J | K | L | M | ||||||||||
10 | 2 | III | 311.38966 | J | K | L | M | ||||||||||
0 | 2 | II | 311.22019 | J | K | L | M | ||||||||||
0 | 1 | II | 310.8593 | K | L | M | |||||||||||
0 | 2 | IV | 309.38486 | K | L | M | |||||||||||
10 | 2 | IV | 309.24517 | K | L | M | |||||||||||
20 | 0.75 | V | 308.61859 | J | K | L | M | ||||||||||
20 | 1 | II | 308.43098 | K | L | M | |||||||||||
20 | 1 | III | 307.59806 | K | L | M | N | ||||||||||
0 | 0.75 | III | 307.12533 | K | L | M | N | ||||||||||
10 | 0.75 | III | 305.35254 | L | M | N | |||||||||||
10 | 0.75 | II | 305.2529 | M | N | ||||||||||||
20 | 2 | III | 304.43436 | K | L | M | N | ||||||||||
0 | 0.75 | II | 302.11482 | N | |||||||||||||
20 | 2 | V | 302.09481 | I | J | K | L | M | N | ||||||||
10 | 1 | III | 301.37282 | N | |||||||||||||
10 | 1 | II | 300.9247 | N | |||||||||||||
20 | 0.75 | II | 299.23791 | N | |||||||||||||
20 | 2 | II | 297.96662 | N | |||||||||||||
20 | 0.75 | III | 296.77677 | N |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | P-Value | |
---|---|---|---|---|---|
GO | 2 | 0.0731 | 0.03655 | 8.26117 | 4.15125 × 10−4 |
ISR | 2 | 0.6221 | 0.31105 | 70.30133 | 0 |
Feed | 4 | 29.3895 | 7.34737 | 1660.59201 | 0 |
GO × ISR | 4 | 0.0922 | 0.02305 | 5.20979 | 6.25952 × 10−4 |
GO × ISR | 8 | 0.17166 | 0.02146 | 4.84958 | 2.92017 × 10−5 |
ISR × Feed | 8 | 7.62922 | 0.95365 | 215.53665 | 0 |
GO × ISR × Feed | 16 | 0.52437 | 0.03277 | 7.40709 | 3.95861 × 10−12 |
Model | 44 | 40.45992 | 0.91954 | 207.82758 | 0 |
Error | 133 | 0.58847 | 0.00442 | 0 | 0 |
Corrected Total | 177 | 41.04839 | 0 | 0 | 0 |
GO | ISR | Feed | Mean | Groups 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 1 | V | 1.78214 | A | ||||||||||||
20 | 1 | V | 1.75578 | A | ||||||||||||
0 | 0.75 | V | 1.67514 | A | B | C | D | |||||||||
10 | 1 | III | 1.66651 | A | B | |||||||||||
10 | 0.75 | III | 1.66212 | A | B | C | ||||||||||
20 | 0.75 | III | 1.64238 | A | B | C | ||||||||||
20 | 1 | III | 1.59969 | A | B | C | D | E | ||||||||
0 | 1 | V | 1.55734 | B | C | D | E | F | ||||||||
10 | 2 | IV | 1.55423 | B | C | D | E | F | ||||||||
10 | 2 | II | 1.53805 | B | C | D | E | F | ||||||||
10 | 2 | III | 1.53783 | B | C | D | E | F | ||||||||
0 | 2 | III | 1.5013 | B | C | D | E | F | G | |||||||
20 | 0.75 | II | 1.48066 | D | E | F | G | |||||||||
10 | 0.75 | II | 1.4734 | E | F | G | ||||||||||
0 | 1 | II | 1.4519 | E | F | G | ||||||||||
20 | 2 | III | 1.44388 | E | F | G | H | |||||||||
0 | 0.75 | III | 1.44227 | E | F | G | H | |||||||||
10 | 1 | II | 1.43713 | F | G | H | ||||||||||
20 | 2 | IV | 1.42697 | F | G | H | ||||||||||
0 | 1 | III | 1.42685 | F | G | H | ||||||||||
10 | 0.75 | V | 1.42535 | E | F | G | H | |||||||||
20 | 2 | II | 1.42017 | F | G | H | ||||||||||
0 | 0.75 | II | 1.41745 | F | G | H | ||||||||||
20 | 1 | II | 1.41093 | F | G | H | ||||||||||
20 | 2 | V | 1.39474 | C | D | E | F | G | H | I | ||||||
0 | 2 | II | 1.39305 | F | G | H | ||||||||||
20 | 0.75 | V | 1.3145 | G | H | I | ||||||||||
0 | 2 | IV | 1.29726 | H | I | |||||||||||
0 | 2 | V | 1.2461 | G | H | I | ||||||||||
10 | 2 | V | 1.08528 | I | ||||||||||||
10 | 1 | IV | 0.6439 | J | ||||||||||||
20 | 1 | IV | 0.61478 | J | ||||||||||||
0 | 1 | I | 0.61027 | J | ||||||||||||
10 | 2 | I | 0.60686 | J | ||||||||||||
20 | 0.75 | I | 0.58751 | J | ||||||||||||
0 | 2 | I | 0.58549 | J | ||||||||||||
10 | 1 | I | 0.57035 | J | ||||||||||||
20 | 2 | I | 0.56792 | J | ||||||||||||
10 | 0.75 | I | 0.56385 | J | K | |||||||||||
0 | 0.75 | I | 0.56294 | J | ||||||||||||
20 | 1 | I | 0.55091 | J | K | |||||||||||
0 | 1 | IV | 0.51446 | J | K | L | ||||||||||
0 | 0.75 | IV | 0.38066 | K | L | M | ||||||||||
10 | 0.75 | IV | 0.33926 | L | M | |||||||||||
20 | 0.75 | IV | 0.19877 | M |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | P-Value | |
---|---|---|---|---|---|
GO | 2 | 0.40782 | 0.20391 | 19.18411 | 2.37029 × 10−6 |
ISR | 2 | 1.87881 | 0.9394 | 88.37931 | 2.08722 × 10−14 |
Feed | 1 | 4.40231 | 4.40231 | 414.17052 | 0 |
GO × ISR | 4 | 0.15565 | 0.03891 | 3.66091 | 0.01359 |
GO × ISR | 2 | 0.07318 | 0.03659 | 3.44241 | 0.04317 |
ISR × Feed | 2 | 1.54419 | 0.7721 | 72.63908 | 3.48499 × 10−13 |
GO × ISR × Feed | 4 | 0.05673 | 0.01418 | 1.33425 | 0.27664 |
Model | 17 | 8.51014 | 0.5006 | 47.09625 | 0 |
Error | 35 | 0.37202 | 0.01063 | 0 | 0 |
Corrected Total | 52 | 8.88216 | 0 | 0 | 0 |
GO | ISR | Feed | Mean | Groups 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | V | 7.56667 | A | |||||||
0 | 2 | V | 7.53333 | A | |||||||
10 | 0.75 | V | 7.53333 | A | |||||||
0 | 2 | IV | 7.477 | A | B | ||||||
20 | 1 | V | 7.46667 | A | B | ||||||
0 | 0.75 | V | 7.46667 | A | B | ||||||
20 | 2 | V | 7.43333 | A | B | ||||||
10 | 2 | V | 7.4 | A | B | ||||||
10 | 2 | IV | 7.366 | A | B | C | |||||
10 | 1 | V | 7.33333 | A | B | C | |||||
20 | 0.75 | V | 7.23333 | B | C | ||||||
20 | 2 | IV | 7.09667 | C | D | ||||||
0 | 1 | IV | 6.9 | D | E | ||||||
10 | 1 | IV | 6.83333 | D | E | F | |||||
20 | 1 | IV | 6.75 | E | F | G | |||||
0 | 0.75 | IV | 6.56667 | F | G | ||||||
10 | 0.75 | IV | 6.53333 | G | |||||||
20 | 0.75 | IV | 6.23333 | H |
Degree of Freedom | Sum of Squares | Mean Square | F-Value | P-Value | |
---|---|---|---|---|---|
GO | 2 | 0.06733 | 0.03367 | 1.2821 | 0.30296 |
ISR | 2 | 4.36054 | 2.18027 | 83.03204 | 1.68535 × 10−9 |
Feed | 1 | 7.04736 | 7.04736 | 268.38742 | 7.58316 × 10−12 |
GO × ISR | 4 | 0.04201 | 0.0105 | 0.39999 | 0.80594 |
GO × ISR | 2 | 0.06296 | 0.03148 | 1.19881 | 0.3258 |
ISR × Feed | 2 | 2.88591 | 1.44296 | 54.95272 | 3.79519 × 10−8 |
GO × ISR × Feed | 4 | 0.02813 | 0.00703 | 0.26778 | 0.89462 |
Model | 17 | 21.83052 | 1.28415 | 48.90475 | 4.0153 × 10−11 |
Error | 17 | 0.44639 | 0.02626 | 0 | 0 |
Corrected Total | 34 | 22.27691 | 0 | 0 | 0 |
GO | ISR | Feed | Mean | Groups 1 | ||
---|---|---|---|---|---|---|
20 | 0.75 | IV | 2.51326 | A | ||
0 | 0.75 | IV | 2.23356 | A | ||
10 | 0.75 | IV | 2.11869 | A | ||
20 | 1 | IV | 1.39861 | B | ||
0 | 1 | IV | 1.1696 | B | ||
10 | 1 | IV | 1.13837 | B | ||
0 | 2 | IV | 0.58873 | C | ||
20 | 2 | IV | 0.51284 | C | ||
20 | 0.75 | V | 0.45336 | C | ||
10 | 2 | IV | 0.44283 | C | ||
10 | 0.75 | V | 0.42239 | C | ||
0 | 0.75 | V | 0.41849 | C | ||
0 | 2 | V | 0.28229 | C | ||
10 | 1 | V | 0.27758 | C | ||
0 | 1 | V | 0.26984 | C | ||
20 | 2 | V | 0.25132 | C | ||
20 | 1 | V | 0.24618 | C | ||
10 | 2 | V | 0.23531 | C |
References
- Liebetrau, J.; Rensberg, N.; Maguire, D.; Archer, D.; Wall, D. Renewable Gas–discussion on the state of the industry and its future in a decarbonised world. In IEA Bioenergy Task; Murphy, J.D., Ed.; IEA Bioenergy: Paris, France, 2021; Volume 37, ISBN 9781910154922. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Kim, J.; Lee, C. Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Energies 2018, 11, 107. [Google Scholar] [CrossRef]
- Leng, L.; Yang, P.; Singh, S.; Zhuang, H.; Xu, L.; Chen, W.H.; Dolfing, J.; Li, D.; Zhang, Y.; Zeng, H.; et al. A Review on the Bioenergetics of Anaerobic Microbial Metabolism Close to the Thermodynamic Limits and Its Implications for Digestion Applications. Bioresour. Technol. 2018, 247, 1095–1106. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Zhang, L.; Lim, E.Y.; Lee, J.T.E.; Tong, Y.W. Timing of Biochar Dosage for Anaerobic Digestion Treating Municipal Leachate: Altered Conversion Pathways of Volatile Fatty Acids. Bioresour. Technol. 2021, 335, 125283. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Quan, X.; Zhang, Y. Towards Engineering Application: Potential Mechanism for Enhancing Anaerobic Digestion of Complex Organic Waste with Different Types of Conductive Materials. Water Res. 2017, 115, 266–277. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Yuwen, C.; Gong, K.; Sheng, L.; Li, Y.; Xing, Y.; Chen, R. Biochar Triggers Methanogenesis Recovery of a Severely Acidified Anaerobic Digestion System via Hydrogen-Based Syntrophic Pathway Inhibition. Int. J. Hydrogen Energy 2021, 46, 9666–9677. [Google Scholar] [CrossRef]
- Aramrueang, N.; Zhang, R.; Liu, X. Application of Biochar and Alkalis for Recovery of Sour Anaerobic Digesters. J. Environ. Manag. 2022, 307, 114538. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Zhang, H.; Wang, Z.; Fan, C.; Zang, L. Recent Achievements in Enhancing Anaerobic Digestion with Carbon- Based Functional Materials. Bioresour. Technol. 2018, 266, 555–567. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Peng, X.; Zeng, G.; Zhong, H.; Liang, J.; Ren, M.M. Graphene-Based Materials: Fabrication, Characterization and Application for the Decontamination of Wastewater and Wastegas and Hydrogen Storage/Generation. Adv. Colloid Interface Sci. 2013, 195–196, 19–40. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Salas, E.C.; Sun, Z.; Lüttge, A.; Tour, J.M. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 2010, 4, 4852–4856. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Tang, J.; Zhen, M.; Liu, X. Influence of Graphene Oxide and Biochar on Anaerobic Degradation of Petroleum Hydrocarbons. J. Biosci. Bioeng. 2019, 128, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Basak, B.; Patil, S.M.; Saha, S.; Kurade, M.B.; Ha, G.-S.; Govindwar, S.P.; Lee, S.S.; Chang, S.W.; Chung, W.J.; Jeon, B.-H. Rapid Recovery of Methane Yield in Organic Overloaded-Failed Anaerobic Digesters through Bioaugmentation with Acclimatized Microbial Consortium. Sci. Total Environ. 2021, 764, 144219. [Google Scholar] [CrossRef]
- Ponzelli, M.; Radjenovic, J.; Drewes, J.E.; Koch, K. Enhanced Methane Production Kinetics by Graphene Oxide in Fed-Batch Tests. Bioresour. Technol. 2022, 360, 127642. [Google Scholar] [CrossRef]
- Virdis, B.; Dennis, P.G. The Nanostructure of Microbially-Reduced Graphene Oxide Fosters Thick and Highly-Performing Electrochemically-Active Biofilms. J. Power Sources 2017, 356, 556–565. [Google Scholar] [CrossRef]
- Koch, K.; Hafner, S.; Astals, S.; Weinrich, S. Evaluation of Common Supermarket Products as Positive Controls in Biochemical Methane Potential (BMP) Tests. Water 2020, 12, 1223. [Google Scholar] [CrossRef]
- Gökçek, Ö.B.; Muratçobanoğlu, F.; Muratçobanoğlu, H.; Uçar, D.; Mert, R.A.; Yıldırım, B.; Zan, R.; Demirel, S. The Effect of Reduced Graphene Oxide Addition on Methane Production from Municipal Organic Solid Waste. J. Chem. Technol. Biotechnol. 2021, 96, 2845–2851. [Google Scholar] [CrossRef]
- Rodriguez-Chiang, L.M.; Dahl, O.P. Effect of Inoculum to Substrate Ratio on the Methane Potential of Microcrystalline Cellulose Production Wastewater. BioResources 2015, 10, 898–911. [Google Scholar] [CrossRef]
- Khadka, A.; Parajuli, A.; Dangol, S.; Thapa, B.; Sapkota, L.; Carmona-Martínez, A.A.; Ghimire, A. Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production during the Mesophilic Anaerobic Digestion of Food Waste. Energies 2022, 15, 834. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a Standardization of Biomethane Potential Tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Holliger, C.; Astals, S.; de Laclos, H.F.; Hafner, S.D.; Koch, K.; Weinrich, S. Towards a Standardization of Biomethane Potential Tests: A Commentary. Water Sci. Technol. 2021, 83, 247–250. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Liu, X.; André, L.; Mercier-Huat, M.; Grosmaître, J.M.; Pauss, A.; Ribeiro, T. Accurate Estimation of Bicarbonate and Acetic Acid Concentrations with Wider Ranges in Anaerobic Media Using Classical Fos/Tac Titration Method. Appl. Sci. 2021, 11, 11843. [Google Scholar] [CrossRef]
- Basset, N.; Santos, E.; Dosta, J.; Mata-Álvarez, J. Start-up and Operation of an AnMBR for Winery Wastewater Treatment. Ecol. Eng. 2016, 86, 279–289. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plants Technical Brochure; IEA Bioenergy: Paris, France, 2013; ISBN 978-1-910154-03-8. [Google Scholar]
- Nordmann, W. Die Überwachung der Schlammfaulung. KA-Informationen für das Betriebspersonal. Beil. Zur Korresp. Abwasser 1977, 3, 77. [Google Scholar]
- Linke, B. Kinetic Study of Thermophilic Anaerobic Digestion of Solid Wastes from Potato Processing. Biomass. Bioenerg. 2006, 30, 892–896. [Google Scholar] [CrossRef]
- Veeken, A.; Hamelers, B. Effect of Temperature on Hydrolysis Rates of Selected Biowaste Components. Bioresour. Technol. 1999, 69, 249–254. [Google Scholar] [CrossRef]
- Astals, S.; Batstone, D.J.; Mata-alvarez, J.; Jensen, P.D. Identification of Synergistic Impacts during Anaerobic Co-Digestion of Organic Wastes. Bioresour. Technol. 2014, 169, 421–427. [Google Scholar] [CrossRef]
- Egwu, U.; Oko, E.; Chinenye, M.; Sallis, P. Novel Low-Cost Pre-Treatment Material for Enhancing the Methane Yield during Anaerobic Digestion of Lignocellulosic Biomass Feedstocks: Experimental and Kinetic Study. Renew. Energy 2021, 179, 584–592. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; Van Lier, J.B. Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef]
- Brulé, M.; Oechsner, H.; Jungbluth, T. Exponential Model Describing Methane Production Kinetics in Batch Anaerobic Digestion: A Tool for Evaluation of Biochemical Methane Potential Assays. Bioprocess Biosyst. Eng. 2014, 37, 1759–1770. [Google Scholar] [CrossRef]
- Weinrich, S.; Nelles, M. Basics of Anaerobic Digestion—Biochemical Conversion and Process Modelling; DBFR Deutches Biomasseforschungszentrum gemeinnützige GmbH: Leipzig, Germany, 2021; Volume 40, ISBN 9783946629726. [Google Scholar]
- Ponzelli, M.; Zahedi, S.; Koch, K.; Drewes, J.E.; Radjenovic, J. Rapid Biological Reduction of Graphene Oxide: Impact on Methane Production and Micropollutant Transformation. J. Environ. Chem. Eng. 2022, 10, 108373. [Google Scholar] [CrossRef]
- Bueno-López, J.I.; Nguyen, C.H.; Rangel-Mendez, J.R.; Sierra-Alvarez, R.; Field, J.A.; Cervantes, F.J. Effects of Graphene Oxide and Reduced Graphene Oxide on Acetoclastic, Hydrogenotrophic and Methylotrophic Methanogenesis. Biodegradation 2020, 31, 35–45. [Google Scholar] [CrossRef]
- Yoshida, N.; Miyata, Y.; Doi, K.; Goto, Y.; Nagao, Y.; Tero, R.; Hiraishi, A. Graphene Oxide-Dependent Growth and Self-Aggregation into a Hydrogel Complex of Exoelectrogenic Bacteria. Sci. Rep. 2016, 6, 21867. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, X.; Li, F.; Yang, G. Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS ONE 2014, 9, e97265. [Google Scholar] [CrossRef] [PubMed]
- Tsigkou, K.; Zagklis, D.; Parasoglou, M.; Zafiri, C.; Kornaros, M. Proposed Protocol for Rate-Limiting Step Determination during Anaerobic Digestion of Complex Substrates. Bioresour. Technol. 2022, 361, 127660. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.H.; Joshi, R.K.; Yoshimura, M. Chemical Reduction of Graphene Oxide Using Green Reductants. Carbon 2017, 119, 190–199. [Google Scholar] [CrossRef]
- Agarwal, V.; Zetterlund, P.B. Strategies for Reduction of Graphene Oxide—A Comprehensive Review. Chem. Eng. J. 2021, 405, 127018. [Google Scholar] [CrossRef]
- Agyeman, F.O.; Han, Y.; Tao, W. Elucidating the Kinetics of Ammonia Inhibition to Anaerobic Digestion through Extended Batch Experiments and Stimulation-Inhibition Modeling. Bioresour. Technol. 2021, 340, 125744. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, S.Y.; Li, L.; Zhao, X.; Ma, Y.; Shi, D. Long-Term High-Solids Anaerobic Digestion of Food Waste: Effects of Ammonia on Process Performance and Microbial Community. Bioresour. Technol. 2018, 262, 148–158. [Google Scholar] [CrossRef]
- Shi, X.; Lin, J.; Zuo, J.; Li, P.; Li, X.; Guo, X. Effects of Free Ammonia on Volatile Fatty Acid Accumulation and Process Performance in the Anaerobic Digestion of Two Typical Bio-Wastes. J. Environ. Sci. 2017, 55, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.Y.; Lee, J.T.E.; Zhang, L.; Tian, H.; Ong, K.C.; Tio, Z.K.; Zhang, J.; Tong, Y.W. Abrogating the Inhibitory Effects of Volatile Fatty Acids and Ammonia in Overloaded Food Waste Anaerobic Digesters via the Supplementation of Nano-Zero Valent Iron Modified Biochar. Sci. Total Environ. 2022, 817, 152968. [Google Scholar] [CrossRef] [PubMed]
ISR | |||
---|---|---|---|
GO Concentration (mgGO/gVS) | 2 | 1 | 0.75 |
0 | 0–2 | 0–1 | 0–0.75 |
10 | 10–2 | 10–1 | 10–0.75 |
20 | 20–2 | 20–1 | 20–0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponzelli, M.; Nguyen, H.; Drewes, J.E.; Koch, K. Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide. Sustainability 2023, 15, 2224. https://doi.org/10.3390/su15032224
Ponzelli M, Nguyen H, Drewes JE, Koch K. Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide. Sustainability. 2023; 15(3):2224. https://doi.org/10.3390/su15032224
Chicago/Turabian StylePonzelli, Michele, Hiep Nguyen, Jörg E. Drewes, and Konrad Koch. 2023. "Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide" Sustainability 15, no. 3: 2224. https://doi.org/10.3390/su15032224
APA StylePonzelli, M., Nguyen, H., Drewes, J. E., & Koch, K. (2023). Improved Recovery of Overloaded Anaerobic Batch Reactors by Graphene Oxide. Sustainability, 15(3), 2224. https://doi.org/10.3390/su15032224