Park-Based Physical Activity, Users’ Socioeconomic Profiles, and Parks’ Characteristics: Empirical Evidence from Bangkok
Abstract
:1. Introduction
2. Reviews of Moderate-to-Vigorous Physical Activity and Park Characteristics
3. Materials and Methods
3.1. Study Sites
3.2. Sampling
3.3. Data Collection
3.4. Questionnaire Development and Testing
3.5. Data Analysis
3.5.1. Variables for Measuring the MVPA
3.5.2. Statistical Analysis
4. Results
4.1. Facilities of the Parks
4.2. Park Users’ Socioeconomic Profile and Parks’ Characteristics
4.3. Park Users’ Socioeconomic Profile and Park-Related Factors Associated with MVPA
4.4. Model Estimated Results of Factors Associated with MVPA
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Multi-Collinearity Statistics
Characteristics | VIF |
Age (years) | 1.471 |
Gender | 1.038 |
Marital Status | 1.167 |
Income (THB/month) | 1.124 |
Occupation | 1.261 |
Distance from Residence (miles) | 1.289 |
Travel Mode | 1.400 |
Duration of stay at park (minutes) | 1.148 |
Visiting time | 1.150 |
Park size | 1.343 |
Park facilities | 1.084 |
References
- Shenoy, A.; Buttar, H.S.; Dicholkar, P.; Kaur, G.; Chintamaneni, M. Chapter 39—Role of Nutraceuticals, Functional Foods, and Spices in the Management of Metabolic Syndrome and Related Disorders; Academic Press: Cambridge, MA, USA, 2022; pp. 583–601. [Google Scholar] [CrossRef]
- ICSSPE. Improve Health and Well-Being for All, at All Ages (SDG 3); International Council of Sport Science and Physical Education: Berlin, Germany, 2022; Available online: https://www.icsspe.org/content/improve-health-and-well-being-all-all-ages-sdg-3#:~:text=Evidence%20shows%20that%20participating%20in,substance%20abuse%20(SDG%203.5) (accessed on 28 December 2022).
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Salvo, D.; Schipperijn, J.; Smith, G.; Cain, K.L.; et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.C.; Patel, A.V.; Matthews, C.E.; de Gonzalez, A.B.; Park, Y.; Katki, H.A.; Linet, M.S.; Weiderpass, E.; Visvanathan, K.; Helzlsouer, K.J.; et al. Leisure time physical activity of moderate to vigorous intensity and mortality: A large pooled cohort analysis. PLoS Med. 2012, 9, e1001335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, E.; Durstine, J.L. Physical activity, exercise, and chronic diseases: A brief review. Sport. Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wilhelm Stanis, S.A.; Kaczynski, A.T.; Besenyi, G.M. Perceptions of Neighborhood Park Quality: Associations with Physical Activity and Body Mass Index. Ann. Behav. Med. 2013, 45, S39–S48. [Google Scholar] [CrossRef] [PubMed]
- WHO. Physical Inactivity; World Health Organization: Genewa, Switzerland, 2022; Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3416 (accessed on 3 June 2022).
- SIRC. Global Cost of Physical Activity; Sport Information Resource Centre, House of Sport: Ottawa, ON, Canada, 2021; Available online: https://sirc.ca/knowledge_nuggets/global-cost-of-physical-activity/ (accessed on 8 September 2022).
- WHO. Physical Inactivity: Key Facts World Health Organization: Genewa, Switzerland. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 3 June 2022).
- Moniruzzaman, M.; Zaman, M.M.; Islalm, M.S.; Ahasan, H.A.M.N.; Kabir, H.; Yasmin, R. Physical activity levels in Bangladeshi adults: Results from STEPS survey 2010. Public Health 2016, 137, 131–138. [Google Scholar] [CrossRef]
- Padrão, P.; Damasceno, A.; Silva-Matos, C.; Prista, A.; Lunet, N. Physical activity patterns in Mozambique: Urban/rural differences during epidemiological transition. Prev. Med. 2012, 55, 444–449. [Google Scholar] [CrossRef]
- Mengesha, M.M.; Roba, H.S.; Ayele, B.H.; Beyene, A.S. Level of physical activity among urban adults and the socio-demographic correlates: A population-based cross-sectional study using the global physical activity questionnaire. BMC Public Health 2019, 19, 1160. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, A.M.; Goller, J.L.; King, T.; Jolley, D.; Crawford, D.; Turrell, G. Urban area disadvantage and physical activity: A multilevel study in Melbourne, Australia. J. Epidemiol. Community Health 2005, 59, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Pate, R.R.; Pratt, M.; Blair, S.N.; Haskell, W.L.; Macera, C.A.; Bouchard, C.; Buchner, D.; Ettinger, W.; Heath, G.W.; King, A.C.; et al. Physical Activity and Public Health: A Recommendation From the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995, 273, 402–407. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Xu, L.; Han, B. The impact of socio-demographic, environmental, and individual factors on urban park visitation in Beijing, China. J. Clean. Prod. 2017, 163, S181–S188. [Google Scholar] [CrossRef]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.C.; Loos, R.J.F.; Martin, B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Havdal, H.H.; Fosse, E.; Gebremariam, M.K.; Stronks, K.; Andersen, O.K.; Lien, N. Does the socioeconomic positioned neighbourhood matter? Norwegian adolescents’ perceptions of barriers and facilitators for physical activity. Scand. J. Public Health 2022, 10, 14034948211066673. [Google Scholar] [CrossRef]
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sport. Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.-H.; Kweon, B.-S.; Shin, W.-J. The distance effects of environmental variables on older African American women’s physical activity in Texas. Landsc. Urban Plan. 2011, 103, 217–229. [Google Scholar] [CrossRef]
- Noszczyk, T.; Gorzelany, J.; Kukulska-Kozieł, A.; Hernik, J. The impact of the COVID-19 pandemic on the importance of urban green spaces to the public. Land Use Policy 2022, 113, 105925. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, Y.; Yang, L.; Gou, Z.; Liu, Y. Urban greenery cushions the decrease in leisure-time physical activity during the COVID-19 pandemic: A natural experimental study. Urban For. Urban Green. 2021, 62, 127136. [Google Scholar] [CrossRef]
- Keane, L.; Hoare, E.; Richards, J.; Bauman, A.; Bellew, W. Methods for quantifying the social and economic value of sport and active recreation: A critical review. Sport Soc. 2019, 22, 2203–2223. [Google Scholar] [CrossRef]
- Piercy, K.L.; Dorn, J.M.; Fulton, J.E.; Janz, K.F.; Lee, S.M.; McKinnon, R.A.; Pate, R.R.; Pfeiffer, K.A.; Young, D.R.; Troiano, R.P.; et al. Opportunities for public health to increase physical activity among youths. Am. J. Public Health 2015, 105, 421–426. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. New urban models for more sustainable, liveable and healthier cities post covid19; reducing air pollution, noise and heat island effects and increasing green space and physical activity. Environ. Int. 2021, 157, 106850. [Google Scholar] [CrossRef]
- Roberts, D. Barcelona Wants to Build 500 Superblocks. Here’s What It Learned from the First Ones; Vox Media: Barcelona, Spain, 2019; Available online: https://www.vox.com/energy-and-environment/2019/4/9/18273894/barcelona-urban-planning-superblocks-poblenou (accessed on 11 November 2022).
- Mueller, N.; Rojas-Rueda, D.; Khreis, H.; Cirach, M.; Andrés, D.; Ballester, J.; Bartoll, X.; Daher, C.; Deluca, A.; Echave, C.; et al. Changing the urban design of cities for health: The superblock model. Environ. Int. 2020, 134, 105132. [Google Scholar] [CrossRef]
- Jung, C.; Al Qassimi, N.; Arar, M.; Awad, J. The Improvement of User Satisfaction for Two Urban Parks in Dubai, UAE: Bay Avenue Park and Al Ittihad Park. Sustainability 2022, 14, 3460. [Google Scholar] [CrossRef]
- Arifwidodo, S.D.; Chandrasiri, O. Association Between Park Characteristics and Park-Based Physical Activity Using Systematic Observation: Insights from Bangkok, Thailand. Sustainability 2020, 12, 2559. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Urbanization in Thailand is Dominated by the Bangkok Urban Area; World Bank: Washigton, DC, USA, 2015; Available online: https://www.worldbank.org/en/news/feature/2015/01/26/urbanization-in-thailand-is-dominated-by-the-bangkok-urban-area (accessed on 28 October 2022).
- Moreno. The 15 Minutes-City: For a New Chrono-Urbanism; Panthéon Sorbonne University: Paris, France, 2020; Available online: https://www.moreno-web.net/the-15-minutes-city-for-a-new-chrono-urbanism-pr-carlos-moreno/ (accessed on 28 October 2022).
- Day, K. Physical environment correlates of physical activity in developing countries: A review. J. Phys. Act. Health 2018, 15, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Kitreerawutiwong, N.; Keeratisiroj, O.; Mekrungrongwong, S. Factors That Influence Physical Activity Among Older Adults Living in Rural Community in Wangthong District, Phitsanulok, Thailand. SAGE Open 2021, 11, 21582440211. [Google Scholar] [CrossRef]
- Katewongsa, P.; Yousomboon, C.; Haemathulin, N.; Rasri, N.; Widyastari, D.A. Prevalence of sufficient MVPA among Thai adults: Pooled panel data analysis from Thailand’s surveillance on physical activity 2012–2019. BMC Public Health 2021, 21, 665. [Google Scholar] [CrossRef] [PubMed]
- Rujivanarom, P.; Wancharoen, S. Solving the City’s Lack of Green Space. Bagkok Post. 2022. Available online: https://www.bangkokpost.com/thailand/general/2303294/solving-the-citys-lack-of-green-space (accessed on 25 December 2022).
- Moran, M.R.; Rodríguez, D.A.; Cotinez-O’Ryan, A.; Miranda, J.J. Park use, perceived park proximity, and neighborhood characteristics: Evidence from 11 cities in Latin America. Cities 2020, 105, 102817. [Google Scholar] [CrossRef]
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 2016, 20, 407–418. [Google Scholar] [CrossRef]
- Cohen, D.A.; Han, B.; Nagel, C.J.; Harnik, P.; McKenzie, T.L.; Evenson, K.R.; Marsh, T.; Williamson, S.; Vaughan, C.; Katta, S. The First National Study of Neighborhood Parks: Implications for Physical Activity. Am. J. Prev. Med. 2016, 51, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.; Kellar, I.; Conner, M.; Gidlow, C.; Kelly, B.; Nieuwenhuijsen, M.; McEachan, R. Associations between park features, park satisfaction and park use in a multi-ethnic deprived urban area. Urban For. Urban Green. 2019, 46, 126485. [Google Scholar] [CrossRef]
- Coombes, E.; Jones, A.P.; Hillsdon, M. The relationship of physical activity and overweight to objectively measured green space accessibility and use. Soc. Sci. Med. 2010, 70, 816–822. [Google Scholar] [CrossRef] [Green Version]
- Aliyas, Z.; Jafari, K. Observational physical activity in public open spaces: Environmental determinants of physical activity intensity levels in Iran. Glob. Health Promot. 2019, 27, 131–139. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef]
- Sallis, J.F.; Johnson, M.F.; Calfas, K.J.; Caparosa, S.; Nichols, J.F. Assessing Perceived Physical Environmental Variables that May Influence Physical Activity. Res. Q. Exerc. Sport 1997, 68, 345–351. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Hopker, S.W. The effectiveness of exercise as an intervention in the management of depression: Systematic review and meta-regression analysis of randomised controlled trials. BMJ 2001, 322, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, C.-O.; Dixon, A.W.; Mjelde, J.W.; Draper, J. Valuing visitors’ economic benefits of public beach access points. Ocean Coast. Manag. 2008, 51, 847–853. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Iamtrakul, P.; Padon, A.; Klaylee, J. Analysis of urban sprawl and growth pattern using geospatial technologies in Megacity, Bangkok, Thailand. In Proceedings of the International Conference on Geoinformatics and Data Analysis, Paris, France, 21–23 January; pp. 109–123.
- BMA. Bankok Population Data; Bangkok Metropolitan Administration: Bangkok, Thailand, 2022; Available online: https://main.bangkok.go.th/ (accessed on 21 April 2022).
- NSO. Demography Population and Housing Branch; National Statistical Office: Bangkok, Thailand, 2021; Available online: http://statbbi.nso.go.th/staticreport/page/sector/en/01.aspx?fbclid=IwAR3dVig3vSc82QdUqgUmywu3yqGrjZMsyX4eaOt7MQEIS9aaVdn9JWRFZck (accessed on 21 September 2021).
- Breuste, J.; Qureshi, S.; Li, J. Scaling down the ecosystem services at local level for urban parks of three megacities. Hercynia-Ökologie Und Umw. Mitteleur. 2013, 46, 1–20. [Google Scholar]
- Kaczynski, A.T.; Besenyi, G.M.; Stanis, S.A.W.; Koohsari, M.J.; Oestman, K.B.; Bergstrom, R.; Potwarka, L.R.; Reis, R.S. Are park proximity and park features related to park use and park-based physical activity among adults? Variations by multiple socio-demographic characteristics. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Yaseen, M.; Ahmad, M.M.; Soni, P.; Kuwornu, J.K.M.; Saqib, S.E. Factors influencing farmers’ utilisation of marketing information sources: Some empirical evidence from Pakistan. Dev. Pract. 2021, 33, 3–15. [Google Scholar] [CrossRef]
- Kamal, S.M.C.a.D.S. Introduction to Statistical Theory Part-ii; Ilmi Kitab Khana: Lahore, Pakistan, 2013; p. 447. [Google Scholar]
- Vahedi, S. World Health Organization Quality-of-Life Scale (WHOQOL-BREF): Analyses of Their Item Response Theory Properties Based on the Graded Responses Model. Iran. J. Psychiatry 2010, 5, 140–153. [Google Scholar]
- Zhai, Y.; Li, D.; Wu, C.; Wu, H. Spatial distribution, activity zone preference, and activity intensity of senior park users in a metropolitan area. Urban For. Urban Green. 2022, 79, 127761. [Google Scholar] [CrossRef]
- Moore, J.B.; Cook, A.; Schuller, K.; Lu, Y.; Yuan, Z.; Maddock, J.E. Physical activity and park use of youth in Nanchang, China. Prev. Med. Rep. 2017, 8, 256–260. [Google Scholar] [CrossRef] [PubMed]
- CDC. Measuring Physical Activity Intensity; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022. Available online: https://www.cdc.gov/physicalactivity/basics/measuring/index.html#:~:text=The%20talk%20test%20is%20a,not%20sing%20during%20the%20activity.&text=In%20general%2C%20if%20you’re%20doing%20vigorous%2Dintensity%20activity,without%20pausing%20for%20a%20breath (accessed on 29 December 2022).
- Petrunoff, N.A.; Edney, S.; Yi, N.X.; Dickens, B.L.; Joel, K.R.; Xin, W.N.; Sia, A.; Leong, D.; van Dam, R.M.; Cook, A.R.; et al. Associations of park features with park use and park-based physical activity in an urban environment in Asia: A cross-sectional study. Health Place 2022, 75, 102790. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-S.; Si, F.H.; Marafa, L.M. Indicator development for sustainable urban park management in Hong Kong. Urban For. Urban Green. 2018, 31, 1–14. [Google Scholar] [CrossRef]
- Laverty, A.A.; Webb, E.; Vamos, E.P.; Millett, C. Associations of increases in public transport use with physical activity and adiposity in older adults. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 31. [Google Scholar] [CrossRef]
- Feng, X.; Croteau, K.; Kolt, G.S.; Astell-Burt, T. Does retirement mean more physical activity? A longitudinal study. BMC Public Health 2016, 16, 605. [Google Scholar] [CrossRef] [Green Version]
- Widyastari, D.A.; Saonuam, P.; Rasri, N.; Pongpradit, K.; Katewongsa, P. Prevalence and Trends of Physical Activity in Thai Children and Young People: Pooled Panel Data Analysis from Thailand’s Surveillance on Physical Activity 2012-2020. Int. J. Env. Res. Public Health 2021, 18, 10088. [Google Scholar] [CrossRef]
- Han, B.; Cohen, D.; McKenzie, T.L. Quantifying the contribution of neighborhood parks to physical activity. Prev. Med. 2013, 57, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Van Dyck, D.; Sallis, J.F.; Cardon, G.; Deforche, B.; Adams, M.A.; Geremia, C.; De Bourdeaudhuij, I. Associations of neighborhood characteristics with active park use: An observational study in two cities in the USA and Belgium. Int. J. Health Geogr. 2013, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, M.; Schipperijn, J. Active use of urban park facilities—Expectations versus reality. Urban For. Urban Green. 2015, 14, 909–918. [Google Scholar] [CrossRef]
- Peralta, M.; Martins, J.; Guedes, D.P.; Sarmento, H.; Marques, A. Socio-demographic correlates of physical activity among European older people. Eur. J. Ageing 2018, 15, 5–13. [Google Scholar] [CrossRef] [PubMed]
- McCormack, G.R.; Giles-Corti, B.; Bulsara, M.; Pikora, T.J. Correlates of distances traveled to use recreational facilities for physical activity behaviors. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossiaky, D. Weekend Warriors May Get Same Overall Health Benefits as Regular Exercisers; Healthline: San Francisco, CA, USA, 2022; Available online: https://www.healthline.com/health/body-planes?utm_source=ReadNext (accessed on 10 July 2022).
- BBC. Weekend Exercise Alone ‘Has Significant Health Benefits’; British Broadcasting Corporation: London, UK, 2017. [Google Scholar]
- Gujarathi, D.M. Gujarati: Basic Econometrics; McGraw-hill: New York, NY, USA, 2022. [Google Scholar]
- Do, B.; Kirkland, C.; Besenyi, G.M.; Smock, M.C.; Lanza, K. Youth physical activity and the COVID-19 pandemic: A systematic review. Prev. Med. Rep. 2022, 29, 101959. [Google Scholar] [CrossRef]
- Freedman, V.A.; Martin, L.G.; Schoeni, R.F. Recent trends in disability and functioning among older adults in the United States: A systematic review. Jama 2002, 288, 3137–3146. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Martín, D.; Ubago-Jiménez, J.L.; Ruiz-Tendero, G.; Zurita-Ortega, F.; Melguizo-Ibáñez, E.; Puertas-Molero, P. The Relationships between Physical Activity, Screen Time and Sleep Time According to the Adolescents’ Sex and the Day of the Week. Healthcare 2022, 10, 1955. [Google Scholar] [CrossRef] [PubMed]
- Onose, D.A.; Iojă, I.C.; Niță, M.R.; Vânău, G.O.; Popa, A.M. Too Old for Recreation? How Friendly Are Urban Parks for Elderly People? Sustainability 2020, 12, 790. [Google Scholar] [CrossRef] [Green Version]
- Puciato, D.; Rozpara, M. Physical activity and socio-economic status of single and married urban adults: A cross-sectional study. PeerJ 2021, 9, e12466. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Potwarka, L.R.; Saelens, B.E. Association of park size, distance, and features with physical activity in neighborhood parks. Am. J. Public Health 2008, 98, 1451–1456. [Google Scholar] [CrossRef]
- Cohen, D.A.; Kristin, J.L. How Can Neighborhood Parks Be Used to Increase Physical Activity? RAND Corporation: Santa Monica, CA, USA, 2018. Available online: https://www.rand.org/content/dam/rand/pubs/research_reports/RR2400/RR2490/RAND_RR2490.pdf (accessed on 3 June 2022).
Variables Used in the Study | Measurement | Type | Relevant Literature |
---|---|---|---|
Physical activity | 1 = Moderate to vigorous, 0 = otherwise | Binary | [28] |
Age (years) | 1 = 15–30 Years, 2 = 31–45, 3 = 46–60, and 4 = > 60 | Ordinal | [61,62,63] |
Gender | 1 = Male, 0 = Otherwise | Binary | [38,64,65,66] |
Marital status | 1 = Married, 0 = Otherwise | Binary | [28] |
Income level (THB per month) | 1 = <5000, 2 = 5000–10,000, 3 = 10,000–20,000, 4 = 20,000–30,000, and 5 = >30,000 | Ordinal | [38] |
Job status | 1 = Full time, 2 = Part-time, 3 = Retired, 4 = Jobless | Categorical | [28] |
Distance from residence (meters) | 1 = 0.0–805, 2 = 805–1609, 3 = 1609–3219, 4 = > 3219 | Ordinal | [39,58,67] |
Travel mode | 1 = Walking, 2 = Bicycle, 3 = Motorbike, 4 = Public transport, 5 = Taxi, 6 = Private car | Categorical | [28,60] |
Duration of stay at the park (minutes) | 1 = 1–10, 2 = 10–30, 3 = 30–60, 4 = 60–120, 5 = > 120 | Ordinal | [68] |
Visiting time | 1 = Weekday morning, 2 = Weekday evening, 3 = Weekend morning, 4 = Weekend evening | Categorical | [28,69] |
Park category | 1 = Small, 2 = Medium-sized, 3 = Large | Ordinal | [28,37,39] |
Park facilities | 1 = High-end facilities, 0 = otherwise | Binary | [36,38,59] |
Park Name | Park Level | Total Area (m2) | Public Transport | Available Facilities † |
---|---|---|---|---|
Chatuchak Park | Large 1 | 248,228 | Bus, BTS, MRT | 1, 3, 5, 9, 10, 11, 12, 13 |
SSuan Luang Rama 9 Park | Large 2 | 800,000 | Bus | 11, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13 |
Rommaninat Park | Medium 1 | 47,888 | Bus, MRT | 1, 3, 4, 5, 7, 9, 12, 13 |
Nong Chok Park | Medium 2 | 56,800 | Bus | 1, 3, 4, 5, 9, 10, 12, 13 |
SSuan Luang Rama 8 Park | Small 1 | 38,400 | Bus, MRT | 1, 3, 5, 9, 12, 13 |
Sai Mai Park | Small 2 | 14,344 | Bus | 1, 3, 4, 5, 9, 12, 13 |
Characteristics | Number of Respondents (Persons) | Percentage (%) |
---|---|---|
Physical activity | ||
Sedentary and LPA | 274 | 63.4 |
Moderate to Vigorous | 158 | 36.6 |
Age (years) | ||
15–30 | 99 | 22.9 |
31–45 | 181 | 41.9 |
46–60 | 97 | 22.5 |
>60 | 55 | 12.7 |
Gender | ||
Female | 210 | 48.6 |
Male | 222 | 51.4 |
Marital status | ||
Single | 114 | 26.4 |
Married | 318 | 73.6 |
Income level (THB per month) | ||
<5000 | 47 | 10.9 |
5000–10,000 | 148 | 34.3 |
10,000–20,000 | 157 | 36.3 |
20,000–30,000 | 69 | 16.0 |
>30,000 | 11 | 2.6 |
Occupation | ||
Full-time work | 239 | 55.3 |
Part-time work | 96 | 22.2 |
Retired | 51 | 11.8 |
Jobless | 46 | 10.7 |
Distance from residence (meters) | ||
0.0–805 | 65 | 15.1 |
805–1609 | 70 | 16.2 |
1609–3219 | 149 | 34.5 |
>3219 | 148 | 34.3 |
Travel Mode | ||
Walking | 73 | 16.9 |
Bicycle | 37 | 8.6 |
Motorbike | 94 | 21.8 |
Public transportation | 88 | 20.4 |
Taxi | 20 | 4.6 |
Private car | 120 | 27.8 |
Duration of stay at the park (minutes) | ||
1–10 | 56 | 13.0 |
10–30 | 114 | 26.4 |
30–60 | 145 | 33.6 |
60–120 | 84 | 19.4 |
>120 | 33 | 7.6 |
Visiting time | ||
Weekday morning | 107 | 24.8 |
Weekday evening | 108 | 25.0 |
Weekend morning | 105 | 24.3 |
Weekend evening | 112 | 25.9 |
Park Size Category | ||
Small | 144 | 33.3 |
Medium | 144 | 33.3 |
Large | 144 | 33.3 |
Park Facilities | ||
Low | 168 | 38.9 |
High | 264 | 61.1 |
Characteristics | LPA n (%) | MVPA n (%) | p-Value |
---|---|---|---|
Age (years) | |||
15–30 | 56 (56.6) | 43 (43.4) | † 0.000 *** |
31–45 | 71 (39.2) | 110 (60.8) | |
46–60 | 94 (96.9) | 3 (3.1) | |
>60 | 53 (96.4) | 2 (3.6) | |
Gender | |||
Female | 147 (70.0) | 63 (30.0) | 0.007 *** |
Male | 127 (57.2) | 95 (42.8) | |
Marital status | |||
Single | 46 (40.4) | 68 (59.6) | 0.000 *** |
Married | 228 (71.7) | 90 (28.3) | |
Income level (THB/month) | |||
0–5000 | 32 (68.1) | 15 (31.9) | † 0.896 |
5000-–10,000 | 94 (63.5) | 54 (36.5) | |
10,000–20,000 | 96 (61.1) | 61 (38.9) | |
20,000–30,000 | 44 (63.8) | 25 (36.2) | |
>30,000 | 8 (72.7) | 3 (27.3) | |
Occupation | |||
Full-time work | 129 (54.0) | 110 (46.0) | † 0.000 *** |
Part-time work | 55 (57.3) | 41 (42.7) | |
Retired | 48 (94.1) | 3 (5.9) | |
Jobless | 42 (91.3) | 4 (8.7) | |
Distance from residence (meters) | |||
0.0–805 | 45 (69.2) | 20 (30.8) | 0.398 |
805–1609 | 48 (68.6) | 22 (31.4) | |
1609–3219 | 88 (59.1) | 61 (40.9) | |
>3219 | 93 (62.8) | 55 (37.2) | |
Travel Mode | |||
Walking | 62 (84.9) | 11 (15.1) | 0.000 *** |
Bike | 26 (70.3) | 11 (29.7) | |
Motorbike | 58 (61.7) | 36 (38.3) | |
Public Transport | 55 (62.5) | 33 (37.5) | |
Taxi | 9 (45.0) | 11 (55.0) | |
Private car | 64 (53.3) | 56 (46.7) | |
Duration of stay at the park (minutes) | |||
1–10 | 51 (91.1) | 5 (8.9) | 0.000 *** |
10–30 | 80 (70.2) | 34 (29.8) | |
30–60 | 84 (57.9) | 61 (42.1) | |
60–120 | 41 (48.8) | 43 (51.2) | |
>120 | 18 (54.5) | 15 (45.5) | |
Visiting timing | |||
Weekday morning | 89 (83.2) | 18 (16.8) | 0.000 *** |
Weekday afternoon | 68 (63.0) | 40 (37.0) | |
Weekend morning | 69 (65.7) | 36 (34.3) | |
Weekend evening | 48 (42.9) | 64 (57.1) | |
Park size | |||
Small | 130 (90.3) | 14 (9.7) | 0.000 *** |
Medium | 90 (62.5) | 54 (37.5) | |
Large | 54 (37.5) | 90 (62.5) | |
Park facilities | |||
Low | 123 (73.2) | 45 (26.8) | 0.001 *** |
High | 151 (57.2) | 113 (42.8) |
Characteristics | Coefficient | p-Value | Marginal Effects | p-Value |
---|---|---|---|---|
Age (years) | ||||
15–30 | Ref. | Ref. | ||
31–45 | 0.565 | 0.115 | 0.080 | 0.113 |
46–60 | −2.347 | 0.001 *** | −0.259 | 0.000 *** |
>60 | −2.596 | 0.017 ** | −0.276 | 0.000 *** |
Gender | ||||
Female | Ref. | Ref. | ||
Male | 1.170 | 0.000 *** | 2.909 | 0.000 *** |
Marital status | ||||
Single | Ref. | Ref. | ||
Married | −1.608 | 0.000 *** | −0.184 | 0.000 *** |
Income level (THB/month) | ||||
0–5000 | Ref. | Ref. | ||
5000–10,000 | 0.056 | 0.917 | 0.006 | 0.914 |
10,000–20,000 | −0.000 | 0.999 | −0.000 | 0.999 |
20,000–30,000 | 0.234 | 0.694 | 0.027 | 0.694 |
>30,000 | −1.647 | 0.157 | −0.179 | 0.113 |
Distance from residence (meters) | ||||
0.0–805 | Ref. | Ref. | ||
805–1609 | −1.543 | 0.022 | −0.166 | 0.013 ** |
1609–32,019 | −1.437 | 0.020 | −0.154 | 0.009 *** |
>32,019 | −1.665 | 0.010 | −0.180 | 0.003 *** |
Occupation | ||||
Full-time work | Ref. | Ref. | ||
Part-time work | −0.349 | 0.332 | −0.041 | 0.329 |
Retired | −1.256 | 0.125 | −0.146 | 0.106 |
Jobless | −1.654 | 0.024 | −0.189 | 0.012 ** |
Travel mode | ||||
Walking | Ref. | Ref. | ||
Bicycle | 0.587 | 0.415 | 0.067 | 0.413 |
Motorbike | 0.567 | 0.360 | 0.065 | 0.353 |
Public transport | 1.180 | 0.073 * | 0.138 | 0.065 * |
Taxi | 1.820 | 0.034 ** | 0.211 | 0.027 ** |
Private car | 1.596 | 0.008 *** | 0.186 | 0.006 *** |
Duration of stay at the park (minutes) | ||||
1–10 | Ref. | Ref. | ||
10–30 | 1.339 | 0.082 * | 0.145 | 0.053* |
30–60 | 1.941 | 0.011 ** | 0.215 | 0.003 *** |
60–120 | 1.952 | 0.014 ** | 0.216 | 0.005 *** |
>120 | 2.041 | 0.021 ** | 0.227 | 0.011 ** |
Visiting time | ||||
Weekday morning | Ref. | Ref. | ||
Weekday afternoon | 0.732 | 0.146 | 0.086 | 0.143 |
Weekend morning | 0.920 | 0.054 * | 0.110 | 0.049 ** |
Weekend evening | 1.818 | 0.000 *** | 0.216 | 0.000 *** |
Park size | ||||
Small | Ref. | Ref. | ||
Medium | 1.313 | 0.01 ** | 0.153 | 0.006 *** |
Large | 1.613 | 0.000 *** | 0.189 | 0.000 *** |
Park facilities | ||||
Low | Ref. | Ref. | ||
High | 0.086 | 0.023 ** | 2.336 | 0.023 ** |
Pseudo R2 = 0.4630, chi2 p-value = 0.0000, Log likelihood = −152.32113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, S.; Sasaki, N.; Tsusaka, T.W.; Winijkul, E. Park-Based Physical Activity, Users’ Socioeconomic Profiles, and Parks’ Characteristics: Empirical Evidence from Bangkok. Sustainability 2023, 15, 2007. https://doi.org/10.3390/su15032007
Miao S, Sasaki N, Tsusaka TW, Winijkul E. Park-Based Physical Activity, Users’ Socioeconomic Profiles, and Parks’ Characteristics: Empirical Evidence from Bangkok. Sustainability. 2023; 15(3):2007. https://doi.org/10.3390/su15032007
Chicago/Turabian StyleMiao, Shengyue, Nophea Sasaki, Takuji W. Tsusaka, and Ekbordin Winijkul. 2023. "Park-Based Physical Activity, Users’ Socioeconomic Profiles, and Parks’ Characteristics: Empirical Evidence from Bangkok" Sustainability 15, no. 3: 2007. https://doi.org/10.3390/su15032007
APA StyleMiao, S., Sasaki, N., Tsusaka, T. W., & Winijkul, E. (2023). Park-Based Physical Activity, Users’ Socioeconomic Profiles, and Parks’ Characteristics: Empirical Evidence from Bangkok. Sustainability, 15(3), 2007. https://doi.org/10.3390/su15032007