Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model
Abstract
1. Introduction
2. Methodology
2.1. Spatial Features Extraction of Time Series Based on Convolutional Neural Network
2.2. Temporal Features Extraction of Time Series Based on Bidirectional Long Short-Term Memory (BiLSTM)
2.3. The CNN-BiLSTM
2.4. Forecasting Strategy for Univariate Time Series
Algorithm 1: Algorithm of recursive multi-step forecasting strategy. |
3. Hyperparameters Tuning Based on the Grid Search Approach
Algorithm 2: Grid search for tuning the optimal hyperparameters of the CNN-BiLSTM. |
4. Case Studies
4.1. Data Collection and Pre-Processing
4.2. Benchmarked Models for Comparisons and Evaluation Metrics
4.3. Forecasting Results Analysis
4.3.1. Case I: Total Energy Consumed by the Residential Sector
4.3.2. Case II: End-Use Energy Consumed by the Residential Sector
4.3.3. Case III: Primary Energy Consumed by the Commercial Sector
4.3.4. Case IV: End-Use Energy Consumed by the Commercial Sector
5. Discussion
5.1. Comparisons of the CNN-BiLSTM Model and Benchmarked Machine Learning Models
5.2. Comparisons of the CNN-BiLSTM Hybrid Model and Benchmarked Deep Learning Models
5.3. Performance Analysis of the Models Considering the COVID-19 Stay-at-Home Orders
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO COVID-19 Dashboard; World Health Organization: Geneva, Switzerland, 2020; Available online: https://covid19.who.int/ (accessed on 23 December 2022).
- U.S. Energy Consumption Fell by a Record 7% in 2020. Available online: https://www.eia.gov/todayinenergy/detail.php?id=47397 (accessed on 5 April 2021).
- Moreland, A.; Herlihy, C.; Tynan, M.A.; Sunshine, G.; McCord, R.F.; Hilton, C.; Poovey, J.; Werner, A.K.; Jones, C.D.; Fulmer, E.B.; et al. Timing of state and territorial COVID-19 stay-at-home orders and changes in population movement—United States, March 1–May 31, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1198. [Google Scholar] [CrossRef]
- Stay-at-Home Orders Led to Less Commercial and Industrial Electricity Use in April. Available online: https://www.eia.gov/todayinenergy/detail.php?id=44276# (accessed on 30 June 2020).
- Chen, C.f.; de Rubens, G.Z.; Xu, X.; Li, J. Coronavirus comes home? Energy use, home energy management, and the social-psychological factors of COVID-19. Energy Res. Soc. Sci. 2020, 68, 101688. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev. 2021, 143, 110888. [Google Scholar] [CrossRef] [PubMed]
- Chinthavali, S.; Tansakul, V.; Lee, S.; Whitehead, M.; Tabassum, A.; Bhandari, M.; Munk, J.; Zandi, H.; Buckberry, H.; Kuruganti, T.; et al. COVID-19 pandemic ramifications on residential Smart homes energy use load profiles. Energy Build. 2022, 259, 111847. [Google Scholar] [CrossRef] [PubMed]
- Tamba, J.G.; Essiane, S.N.; Sapnken, E.F.; Koffi, F.D.; Nsouandélé, J.L.; Soldo, B.; Njomo, D. Forecasting natural gas: A literature survey. Int. J. Energy Econ. Policy 2018, 8, 216. [Google Scholar]
- Wei, N.; Li, C.; Peng, X.; Zeng, F.; Lu, X. Conventional models and artificial intelligence-based models for energy consumption forecasting: A review. J. Pet. Sci. Eng. 2019, 181, 106187. [Google Scholar] [CrossRef]
- Wright, C.; Chan, C.W.; Laforge, P. Towards developing a decision support system for electricity load forecast. In Decision Support Systems; IntechOpen: London, UK, 2012. [Google Scholar]
- Soldo, B. Forecasting natural gas consumption. Appl. Energy 2012, 92, 26–37. [Google Scholar] [CrossRef]
- Taşpınar, F.; Çelebi, N.; Tutkun, N. Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy Build. 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Potočnik, P.; Soldo, B.; Šimunović, G.; Šarić, T.; Jeromen, A.; Govekar, E. Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia. Appl. Energy 2014, 129, 94–103. [Google Scholar] [CrossRef]
- He, Y.; Lin, B. Forecasting China’s total energy demand and its structure using ADL-MIDAS model. Energy 2018, 151, 420–429. [Google Scholar] [CrossRef]
- Jain, R.; Mahajan, V. Load forecasting and risk assessment for energy market with renewable based distributed generation. Renewable Energy Focus 2022, 42, 190–205. [Google Scholar] [CrossRef]
- Rakpho, P.; Yamaka, W. The forecasting power of economic policy uncertainty for energy demand and supply. Energy Reports 2021, 7, 338–343. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Sun, M.; Liu, S.; Forrest, J. A novel grey Lotka–Volterra model driven by the mechanism of competition and cooperation for energy consumption forecasting. Energy 2023, 264, 126154. [Google Scholar] [CrossRef]
- Şahin, U. Forecasting share of renewables in primary energy consumption and CO2 emissions of China and the United States under Covid-19 pandemic using a novel fractional nonlinear grey model. Expert Syst. Appl. 2022, 209, 118429. [Google Scholar] [CrossRef]
- Khan, A.M.; Osińska, M. Comparing forecasting accuracy of selected grey and time series models based on energy consumption in Brazil and India. Expert Syst. Appl. 2023, 212, 118840. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Z.; Peng, C.; Qi, K. Regional energy forecasting and risk assessment for energy security: New evidence from the Yangtze River Delta region in China. J. Clean. Prod. 2022, 361, 132235. [Google Scholar] [CrossRef]
- Ding, S.; Tao, Z.; Li, R.; Qin, X. A novel seasonal adaptive grey model with the data-restacking technique for monthly renewable energy consumption forecasting. Expert Syst. Appl. 2022, 208, 118115. [Google Scholar] [CrossRef]
- Ye, L.; Dang, Y.; Fang, L.; Wang, J. A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system. Appl. Energy 2023, 331, 120189. [Google Scholar] [CrossRef]
- Xie, N.; Liu, S. Discrete GM (1, 1) and mechanism of grey forecasting model. Syst.-Eng.-Theory Pract. 2005, 25, 93–99. [Google Scholar]
- Ahmad, T.; Zhang, D.; Huang, C. Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications. Energy 2021, 231, 120911. [Google Scholar] [CrossRef]
- Mehmood, F.; Ghani, M.U.; Ghafoor, H.; Shahzadi, R.; Asim, M.N.; Mahmood, W. EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting. Appl. Energy 2022, 324, 119754. [Google Scholar] [CrossRef]
- Aras, S.; Hanifi Van, M. An interpretable forecasting framework for energy consumption and CO2 emissions. Appl. Energy 2022, 328, 120163. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, M.; Wei, N.; Zhao, J.; Zhang, T.; He, X. An office building energy consumption forecasting model with dynamically combined residual error correction based on the optimal model. Energy Rep. 2022, 8, 12442–12455. [Google Scholar] [CrossRef]
- Rao, C.; Zhang, Y.; Wen, J.; Xiao, X.; Goh, M. Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model. Energy 2023, 263, 125955. [Google Scholar] [CrossRef]
- Zhu, L.; Li, M.; Wu, Q.; Jiang, L. Short-term natural gas demand prediction based on support vector regression with false neighbours filtered. Energy 2015, 80, 428–436. [Google Scholar] [CrossRef]
- Liu, H.; Tang, Y.; Pu, Y.; Mei, F.; Sidorov, D. Short-term Load Forecasting of Multi-Energy in Integrated Energy System Based on Multivariate Phase Space Reconstruction and Support Vector Regression Mode. Electr. Power Syst. Res. 2022, 210, 108066. [Google Scholar] [CrossRef]
- Jamei, M.; Ali, M.; Karbasi, M.; Xiang, Y.; Ahmadianfar, I.; Yaseen, Z.M. Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach. Appl. Energy 2022, 326, 119925. [Google Scholar] [CrossRef]
- Li, R.; Song, X. A multi-scale model with feature recognition for the use of energy futures price forecasting. Expert Syst. Appl. 2023, 211, 118622. [Google Scholar] [CrossRef]
- Mustaqeem; Ishaq, M.; Kwon, S. A CNN-Assisted deep echo state network using multiple Time-Scale dynamic learning reservoirs for generating Short-Term solar energy forecasting. Sustain. Energy Technol. Assess. 2022, 52, 102275. [Google Scholar] [CrossRef]
- Amalou, I.; Mouhni, N.; Abdali, A. Multivariate time series prediction by RNN architectures for energy consumption forecasting. Energy Rep. 2022, 8, 1084–1091. [Google Scholar] [CrossRef]
- Lee, Y.; Ha, B.; Hwangbo, S. Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea’s energy transition policy. Renew. Energy 2022, 200, 69–87. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, X.; Tang, F. Improved nonlinear mapping network for wind power forecasting in renewable energy power system dispatch. Energy Rep. 2022, 8, 124–133. [Google Scholar] [CrossRef]
- Ren, H.; Li, Q.; Wu, Q.; Zhang, C.; Dou, Z.; Chen, J. Joint forecasting of multi-energy loads for a university based on copula theory and improved LSTM network. Energy Rep. 2022, 8, 605–612. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, H.; Tao, Z.; Li, R. Integrating data decomposition and machine learning methods: An empirical proposition and analysis for renewable energy generation forecasting. Expert Syst. Appl. 2022, 204, 117635. [Google Scholar] [CrossRef]
- Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy 2022, 240, 122812. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Rajasekar, E.; Natarajan, S.; McCullen, N. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 2022, 168, 113097. [Google Scholar] [CrossRef]
- Zheng, J.; Du, J.; Wang, B.; Klemeš, J.J.; Liao, Q.; Liang, Y. A hybrid framework for forecasting power generation of multiple renewable energy sources. Renew. Sustain. Energy Rev. 2023, 172, 113046. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Wang, K.; Han, B. A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems. Energy 2022, 259, 124967. [Google Scholar] [CrossRef]
- Rick, R.; Berton, L. Energy forecasting model based on CNN-LSTM-AE for many time series with unequal lengths. Eng. Appl. Artif. Intell. 2022, 113, 104998. [Google Scholar] [CrossRef]
- Shabbir, N.; Kütt, L.; Raja, H.A.; Jawad, M.; Allik, A.; Husev, O. Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia. Energy 2022, 253, 124156. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, N.; Ullah, F.U.M.; Kim, M.J.; Lee, M.Y.; Baik, S.W. Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting. Energy Build. 2023, 279, 112705. [Google Scholar] [CrossRef]
- Niu, D.; Yu, M.; Sun, L.; Gao, T.; Wang, K. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. Appl. Energy 2022, 313, 118801. [Google Scholar] [CrossRef]
- Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M. A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid. Appl. Energy 2023, 332, 120525. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Ul Haq, I.; Hamdy, M.; Maria Mauro, G.; Muhammad, K.; Hijji, M.; Baik, S.W. Efficient Short-Term Electricity Load Forecasting for Effective Energy Management. Sustain. Energy Technol. Assessments 2022, 53, 102337. [Google Scholar] [CrossRef]
- Yan, K.; Zhou, X.; Chen, J. Collaborative deep learning framework on IoT data with bidirectional NLSTM neural networks for energy consumption forecasting. J. Parallel Distrib. Comput. 2022, 163, 248–255. [Google Scholar] [CrossRef]
- He, Y.L.; Chen, L.; Gao, Y.; Ma, J.H.; Xu, Y.; Zhu, Q.X. Novel double-layer bidirectional LSTM network with improved attention mechanism for predicting energy consumption. ISA Trans. 2022, 127, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144. [Google Scholar]
- Graves, A.; Schmidhuber, J. Offline handwriting recognition with multidimensional recurrent neural networks. In Proceedings of the Advances in Neural Information Processing Systems, San Francisco, CA, USA, 30 November–3 December 2008; Volume 21. [Google Scholar]
- Schmidhuber, J.; Wierstra, D.; Gomez, F.J. Evolino: Hybrid neuroevolution/optimal linear search for sequence prediction. In Proceedings of the 19th International Joint Conferenceon Artificial Intelligence (IJCAI), Scotland, UK, 30 July–5 August 2005. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, 9–12 December 2019; pp. 3285–3292. [Google Scholar]
- Yang, X.S.; Deb, S.; Zhao, Y.X.; Fong, S.; He, X. Swarm intelligence: Past, present and future. Soft Comput. 2018, 22, 5923–5933. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Nian, F. An adaptive particle swarm optimization algorithm based on directed weighted complex network. Math. Probl. Eng. 2014, 2014, 434972. [Google Scholar] [CrossRef]
- Van, P.T.; Van, T.H.; Tangaramvong, S. Performance Comparison of Variants Based on Swarm Intelligence Algorithm of Mathematical and Structural Optimization. Iop Conf. Ser. Mater. Sci. Eng. 2022, 1222, 012013. [Google Scholar] [CrossRef]
- Cui, Y.; Jia, L.; Fan, W. Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agric. For. Meteorol. 2021, 307, 108488. [Google Scholar] [CrossRef]
- Priyadarshini, I.; Cotton, C. A novel LSTM–CNN–grid search-based deep neural network for sentiment analysis. J. Supercomput. 2021, 77, 13911–13932. [Google Scholar] [CrossRef] [PubMed]
- Thanh, T.; Van Dai, L.; Minh, L. Effects of Data Standardization on Hyperparameter Optimization with the Grid Search Algorithm Based on Deep Learning: A Case Study of Electric Load Forecasting. Adv. Technol. Innov. 2022, 7, 258–269. [Google Scholar] [CrossRef]
- Subramanian, S.; Rao, A. Deep-learning based Time Series Forecasting of Go-around Incidents in the National Airspace System. In Proceedings of the 2018 AIAA Modeling and Simulation Technologies Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Schölkopf, B.; Smola, A.J.; Bach, F. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA; 2016; pp. 785–794. [Google Scholar]
Abbreviation | Definition | Expression |
---|---|---|
MAPE | Mean Absolute Percentage Error | |
MAE | Mean Absolute Error | |
RMSE | Root Mean Square Error | |
MSE | Mean Squared Error | |
MAAPE | Mean Arctangent Absolute Percentage Error | |
NRMSE | Normalized Root Mean Square Error | |
RMSPE | Root Mean Square Percentage Error | |
SMAPE | Symmetric Mean Absolute Percentage Error | |
U1 | Theil U Statistic 1 | |
U2 | Theil U Statistic 2 | |
IA | Index of Agreement | |
R | Coefficient of Determination |
CNN-BiLSTM | BiLSTM | CNN-LSTM | CNN | LSTM | SVR | LSSVR | RF | CatBoost | LGBM | XGBoost | |
---|---|---|---|---|---|---|---|---|---|---|---|
lr = 0.01 ℏ = 60 = 2 | lr = 0.1 ℏ = 20 | lr = 0.001 ℏ = 25 = 2 | lr = 0.1 = 2 | lr = 0.001 ℏ = 60 | C = 55 = = 0.03125 | C = 625 = 0.03125 | max_depth = 7 min_samples_leaf = 1 min_samples_split = 2 n_estimators = 50 | depth = 10 l2_leaf_reg = 100.0 lr = 0.01 | max_depth = 5 num_leaves = 50 reg_alpha = 0.01 reg_lambda = 1 | gamma = 0.0 lr = 0.1 max_depth = 5 min_child_weight = 1 reg_alpha = 1 | |
MAPE | 5.0417 | 5.8555 | 44.2395 | 22.0456 | 37.6811 | 20.8846 | 28.8258 | 5.1669 | 13.1710 | 5.9160 | 15.6317 |
MAE | 87.7030 | 102.3284 | 803.9523 | 428.3851 | 692.8386 | 343.4988 | 462.9180 | 91.8243 | 246.8932 | 105.8958 | 277.2572 |
RMSE | 110.8020 | 131.6346 | 869.9062 | 540.1201 | 767.0836 | 410.9314 | 571.3807 | 127.5901 | 318.3963 | 136.3436 | 371.4026 |
MSE | 12,277.0771 | 17,327.6641 | 756,736.8125 | 291,729.7188 | 588,417.2500 | 168,864.6442 | 326,475.9121 | 16,279.2250 | 101,376.2171 | 18,589.5845 | 137,939.8906 |
MAAPE | 0.0503 | 0.0584 | 0.4135 | 0.2132 | 0.3569 | 0.2011 | 0.2660 | 0.0514 | 0.1299 | 0.0590 | 0.1521 |
NRMSE | 0.0939 | 0.1115 | 0.7368 | 0.4575 | 0.6497 | 0.3481 | 0.4840 | 0.1081 | 0.2697 | 0.1155 | 0.3146 |
RMSPE | 0.0626 | 0.0727 | 0.4534 | 0.2593 | 0.3924 | 0.2577 | 0.3731 | 0.0708 | 0.1603 | 0.0730 | 0.2040 |
SMAPE | 5.0855 | 6.0200 | 57.8681 | 26.1360 | 47.5717 | 19.0293 | 24.1186 | 5.2382 | 13.8647 | 5.8904 | 16.0521 |
U1 | 0.0314 | 0.0375 | 0.3202 | 0.1746 | 0.2713 | 0.1123 | 0.1484 | 0.0360 | 0.0936 | 0.0383 | 0.1070 |
U2 | 0.0624 | 0.0741 | 0.4899 | 0.3042 | 0.4320 | 0.2314 | 0.3218 | 0.0719 | 0.1793 | 0.0768 | 0.2092 |
IA | 0.9720 | 0.9666 | 0.3690 | 0.4518 | 0.3935 | 0.3917 | 0.3762 | 0.9640 | 0.5246 | 0.9638 | 0.6462 |
0.8883 | 0.8423 | −5.8872 | −1.6551 | −4.3553 | −0.5369 | −1.9713 | 0.8518 | 0.0774 | 0.8308 | −0.2554 |
CNN-BiLSTM | BiLSTM | CNN-LSTM | CNN | LSTM | SVR | LSSVR | RF | CatBoost | LGBM | XGBoost | |
---|---|---|---|---|---|---|---|---|---|---|---|
lr = 0.01 ℏ = 50 = 2 | lr = 0.01 ℏ = 40 | lr = 0.01 ℏ = 65 = 3 | lr = 0.1 = 2 | lr = 0.1 ℏ = 45 | C = 5 = = 1.72844 | C = 15625 = 0.13446 | max_depth = 7 min_samples_leaf = 1 min_samples_split = 5 n_estimators = 50 | depth = 8 l2_leaf_reg = 0 lr = 0.01 | max_depth = 5 num_leaves = 50 reg_alpha = 0.001 reg_lambda = 0.1 | gamma = 0.0 lr = 0.5 max_depth = 5 min_child_weight = 1 reg_alpha = 1 | |
MAPE | 5.0292 | 5.3492 | 40.6992 | 21.2876 | 28.0344 | 11.0438 | 13.8404 | 9.0470 | 7.8271 | 7.3418 | 7.3984 |
MAE | 47.1754 | 50.2112 | 453.6898 | 227.9078 | 273.9267 | 111.5945 | 135.6584 | 89.3437 | 76.8737 | 72.0425 | 74.2770 |
RMSE | 68.3823 | 83.3169 | 555.3765 | 292.4198 | 339.5989 | 143.5384 | 166.9033 | 110.3985 | 97.0129 | 95.2964 | 96.7993 |
MSE | 4676.1406 | 6941.7031 | 308,443.0938 | 85,509.3438 | 115,327.4141 | 20,603.2779 | 27,856.7086 | 12,187.8240 | 9411.4937 | 9081.4098 | 9370.1064 |
MAAPE | 0.0501 | 0.0528 | 0.3781 | 0.2067 | 0.2621 | 0.1093 | 0.1366 | 0.0899 | 0.0779 | 0.0730 | 0.0736 |
NRMSE | 0.0676 | 0.0824 | 0.5491 | 0.2891 | 0.3358 | 0.1419 | 0.1650 | 0.1091 | 0.0959 | 0.0942 | 0.0957 |
RMSPE | 0.0692 | 0.0916 | 0.4404 | 0.2482 | 0.3513 | 0.1322 | 0.1622 | 0.1071 | 0.0926 | 0.0908 | 0.0918 |
SMAPE | 5.0129 | 5.6868 | 54.0280 | 23.7873 | 27.1095 | 11.8818 | 14.7027 | 9.5339 | 8.1516 | 7.5961 | 7.7344 |
U1 | 0.0329 | 0.0402 | 0.3546 | 0.1549 | 0.1689 | 0.0721 | 0.0848 | 0.0545 | 0.0476 | 0.0465 | 0.0476 |
U2 | 0.0660 | 0.0805 | 0.5364 | 0.2824 | 0.3280 | 0.1386 | 0.1612 | 0.1066 | 0.0937 | 0.0920 | 0.0935 |
IA | 0.9895 | 0.9840 | 0.4640 | 0.6817 | 0.5731 | 0.9491 | 0.9192 | 0.9717 | 0.9786 | 0.9795 | 0.9780 |
0.9546 | 0.9327 | −1.9923 | 0.1704 | −0.1188 | 0.8001 | 0.7298 | 0.8818 | 0.9087 | 0.9119 | 0.9091 |
CNN-BiLSTM | BiLSTM | CNN-LSTM | CNN | LSTM | SVR | LSSVR | RF | CatBoost | LGBM | XGBoost | |
---|---|---|---|---|---|---|---|---|---|---|---|
lr = 0.01 ℏ = 55 = 2 | lr = 0.01 ℏ = 25 | lr = 0.01 ℏ = 70 = 2 | lr = 0.01 = 2 | lr = 0.1 ℏ = 70 | C = 20 = = 0.04500 | C = 625 = 0.40171 | max_depth = 7 min_samples_leaf = 1 min_samples_split = 2 n_estimators = 100 | depth = 7 l2_leaf_reg = 1 lr = 0.01 | max_depth = 5 num_leaves = 50 reg_alpha = 0.01 reg_lambda = 1 | gamma = 0.0 lr = 0.5 max_depth = 3 min_child_weight = 2 reg_alpha = 0.01 | |
MAPE | 5.4774 | 12.6515 | 46.7455 | 27.8494 | 19.9738 | 15.4584 | 13.0736 | 13.0576 | 12.0870 | 14.0688 | 16.0561 |
MAE | 21.9951 | 47.7852 | 217.1153 | 93.8588 | 76.8539 | 69.5279 | 54.7455 | 56.1637 | 49.5175 | 56.9160 | 69.7948 |
RMSE | 27.1889 | 60.9706 | 273.3944 | 103.2772 | 90.8298 | 94.1978 | 74.6178 | 76.6894 | 65.7881 | 77.1039 | 96.7247 |
MSE | 739.2354 | 3717.4133 | 74,744.4766 | 10,666.1846 | 8250.0557 | 8873.2195 | 5567.8181 | 5881.2619 | 4328.0769 | 5945.0158 | 9355.6621 |
MAAPE | 0.0547 | 0.1248 | 0.4225 | 0.2650 | 0.1952 | 0.1515 | 0.1287 | 0.1285 | 0.1194 | 0.1382 | 0.1569 |
NRMSE | 0.0565 | 0.1267 | 0.5681 | 0.2146 | 0.1888 | 0.1958 | 0.1551 | 0.1594 | 0.1367 | 0.1602 | 0.2010 |
RMSPE | 0.0625 | 0.1545 | 0.5176 | 0.3233 | 0.2237 | 0.1887 | 0.1604 | 0.1611 | 0.1445 | 0.1719 | 0.1976 |
SMAPE | 5.5394 | 11.5774 | 66.3500 | 32.5211 | 20.7827 | 17.2753 | 14.5297 | 14.5490 | 13.2565 | 15.6626 | 18.3556 |
U1 | 0.0322 | 0.0680 | 0.4539 | 0.1319 | 0.1092 | 0.1204 | 0.0943 | 0.0975 | 0.0828 | 0.0972 | 0.1253 |
U2 | 0.0642 | 0.1439 | 0.6453 | 0.2438 | 0.2144 | 0.2223 | 0.1761 | 0.1810 | 0.1553 | 0.1820 | 0.2283 |
IA | 0.9930 | 0.9680 | 0.4525 | 0.8915 | 0.9243 | 0.8941 | 0.9408 | 0.9360 | 0.9545 | 0.9381 | 0.8952 |
0.9720 | 0.8590 | −1.8351 | 0.5954 | 0.6871 | 0.6634 | 0.7888 | 0.7769 | 0.8358 | 0.7745 | 0.6451 |
CNN-BiLSTM | BiLSTM | CNN-LSTM | CNN | LSTM | SVR | LSSVR | RF | CatBoost | LGBM | XGBoost | |
---|---|---|---|---|---|---|---|---|---|---|---|
lr = 0.01 ℏ = 125 = 2 | lr = 0.001 ℏ = 150 | lr = 0.01 ℏ = 5 = 2 | lr = 0.1 = 3 | lr = 0.01 ℏ = 10 | C = 100 = = 1.72844 | C = 390625 = 0.09336 | max_depth = 11 min_samples_leaf = 2 min_samples_split = 10 n_estimators = 100 | depth = 6 l2_leaf_reg = 1 lr = 0.01 | max_depth = 5 num_leaves = 50 reg_alpha = 1 reg_lambda = 1 | gamma = 0.0 lr = 0.05 max_depth = 3 min_child_weight = 1 reg_alpha = 1 | |
MAPE | 4.0034 | 18.0789 | 53.1444 | 24.0272 | 44.4674 | 9.0418 | 10.6892 | 11.9223 | 10.8338 | 12.0526 | 11.0120 |
MAE | 30.5129 | 138.1454 | 424.3060 | 176.0921 | 353.9534 | 75.3807 | 85.4468 | 95.7201 | 86.7298 | 96.8677 | 88.6650 |
RMSE | 37.4739 | 144.8520 | 449.4491 | 197.1012 | 374.8922 | 96.5099 | 111.9645 | 119.9051 | 106.6557 | 124.0479 | 106.3436 |
MSE | 1404.2955 | 20,982.1133 | 202,004.5000 | 38,848.8867 | 140,544.1250 | 9314.1634 | 12,536.0451 | 14,377.2259 | 11,375.4350 | 15,387.8716 | 11,308.9697 |
MAAPE | 0.0400 | 0.1784 | 0.4859 | 0.2318 | 0.4159 | 0.0898 | 0.1057 | 0.1178 | 0.1074 | 0.1190 | 0.1093 |
NRMSE | 0.0754 | 0.2913 | 0.9039 | 0.3964 | 0.7540 | 0.1941 | 0.2252 | 0.2412 | 0.2145 | 0.2495 | 0.2139 |
RMSPE | 0.0491 | 0.1885 | 0.5391 | 0.2751 | 0.4538 | 0.1097 | 0.1355 | 0.1446 | 0.1273 | 0.1472 | 0.1261 |
SMAPE | 4.0839 | 20.0636 | 73.4016 | 23.1385 | 58.0351 | 9.6521 | 11.0102 | 12.5102 | 11.4853 | 12.7886 | 11.5984 |
U1 | 0.0240 | 0.1005 | 0.3939 | 0.1240 | 0.3088 | 0.0641 | 0.0727 | 0.0788 | 0.0704 | 0.0818 | 0.0704 |
U2 | 0.0475 | 0.1836 | 0.5696 | 0.2498 | 0.4751 | 0.1223 | 0.1419 | 0.1520 | 0.1352 | 0.1572 | 0.1348 |
IA | 0.9840 | 0.7973 | 0.3550 | 0.4935 | 0.4142 | 0.8586 | 0.7996 | 0.8019 | 0.8464 | 0.7894 | 0.8249 |
0.9330 | −0.0004 | −8.6318 | −0.8523 | −5.7013 | 0.5559 | 0.4023 | 0.3145 | 0.4576 | 0.2663 | 0.4608 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Fu, Z. Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model. Sustainability 2023, 15, 1895. https://doi.org/10.3390/su15031895
Chen Y, Fu Z. Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model. Sustainability. 2023; 15(3):1895. https://doi.org/10.3390/su15031895
Chicago/Turabian StyleChen, Yifei, and Zhihan Fu. 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model" Sustainability 15, no. 3: 1895. https://doi.org/10.3390/su15031895
APA StyleChen, Y., & Fu, Z. (2023). Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model. Sustainability, 15(3), 1895. https://doi.org/10.3390/su15031895